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Abstract: Nowadays, a challenge in Climate Science is the seasonal forecast and knowledge of
the model’s performance in different regions. The challenge in South America reflects its huge
territory; some models present a good performance, and others do not. Nevertheless, reliable
seasonal climate forecasts can benefit numerous decision-making processes related to agriculture,
energy generation, and extreme events mitigation. Thus, given the few works assessing the ECMWF-
SEAS5 performance in South America, this study investigated the quality of its seasonal temperature
and precipitation predictions over the continent. For this purpose, predictions from all members
of the hindcasts (1993–2016) and forecasts (2017–2021) ensemble were used, considering the four
yearly seasons. The analyses included seasonal mean fields, bias correction, anomaly correlations,
statistical indicators, and seasonality index. The best system’s performance occurred in regions
strongly influenced by teleconnection effects, such as northern South America and northeastern
Brazil, in which ECMWF-SEAS5 even reproduced the extreme precipitation anomalies that happened
in recent decades. Moreover, the system indicated a moderate capability of seasonal predictions in
medium and low predictability regions. In summary, the results show that ECMWF-SEAS5 climate
forecasts are potentially helpful and should be considered to plan various strategic activities better.

Keywords: seasonal climate prediction; temperature; precipitation; South America; forecast skill
score; bias correction

1. Introduction

South America (SA) is a continent with a broad latitudinal extension and diversity
of biomes, favoring different climates within its territory [1]. In addition, climate condi-
tions directly influence the main socioeconomic activities developed in the region. These
activities include agriculture, power generation, fishing, tourism, and the textile industry.
Consequently, information derived from seasonal climate predictions is vital for different
sectors of South American society.

The chaotic internal dynamics of the atmosphere limit the prediction of detailed
evolution of meteorological events from a few days to two weeks [2]. However, the
statistical behavior of the weather, expressed by its temporal and spatial averages, can
be predicted on time scales of a season or longer [3]. The same physical principles and
equations ground the mathematical models used for weather and climate prediction [4]. The
primary difference is that climate models need additional information on the climate system
components, such as oceans, land, cryosphere, atmospheric chemistry (including aerosols,
ozone, and greenhouse gases), and a more detailed representation of the stratosphere [4].

Pioneering studies [5–7] laid the theoretical basis for the progress of numerical climate
prediction [8]. Climate prediction derives mainly from the predictability of the boundary
conditions, such as sea surface temperature (SST), sea ice, soil moisture, and snow cover,
and from the significant influence of these variables in determining future atmospheric
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conditions [9–12]. For instance, it is possible to predict SST anomalies associated with El
Niño (or its counterpart, La Niña) a few months in advance, which allows for predicting
their atmospheric impacts [13] and anticipating future problems with climate extremes.

Robust seasonal climate forecasts can benefit decision-makers in numerous socioeco-
nomic activities. For example, seasonal climate predictions are essential for the electricity
sector, as they benefit activities related to the generation, transmission, and distribution
of energy [14]. Seasonal climate predictions may also benefit agriculture, another relevant
South American economic sector. Agricultural activity is fundamental to Brazil’s economy,
representing 21.4% of the Gross Domestic Product (GDP), and has significant importance in
global markets [15]. Moreover, agriculture is one of the activities most sensitive to climatic
effects, given that its productivity depends directly on the temperature and precipitation
conditions of the region where it is performed [16].

Seasonal climate predictions provide strategic information for risk management and
drought [17,18] and flood [19] mitigation, benefiting farmers and infrastructure sectors [17].
In addition, seasonal climate forecasts are potentially helpful for farmers’ decision-making,
improving their ability to mitigate drought and plan crop types, resource use, crop insur-
ance, and agricultural contracts [17]. Concerning SA, Drumond et al. [20] found a higher
occurrence of dry events in large portions of the eastern continental area during the last
decade. In this changing scenario, extreme events prediction may also benefit other sectors
vulnerable to natural hazards, such as wildfires and heat waves [21,22]. However, due to
the strong influence of teleconnection effects, the tropical and subtropical regions possess
the skill of drought prediction at a seasonal time scale, while in extratropical regions,
drought forecast is still subject to considerable uncertainty limiting the assurance of its
reliability [17]. In this context, reducing the uncertainty about the land surface properties
among current land analyses and a more realistic representation of the land initial states
result in a better simulation of the land-atmosphere coupling, which plays a crucial role in
improving drought prediction on seasonal scales [23].

Global and regional climate models can reproduce and predict the main characteristics
of precipitation, temperature, and circulation over SA, but they still fail to simulate regional
climate over terrains with a complex topography [1,24–29]. The global models’ coarse
spatial resolutions restrict their ability to simulate precipitation and represent the orography
and land-atmosphere interactions [30]. In addition, the low density of rain-gauges and
measurements on complex terrain limits data acquisition for model validation and may
lead to misinterpretation of performance [31].

The European Centre for Medium-Range Weather Forecasts—System 5 (ECMWF-
SEAS5) constitutes the state-of-the-art global modeling of seasonal climate forecasts [32].
Recently, Ferreira and Reboita [1] and Gubler et al. [33] applied cluster analysis to seasonal
precipitation predictions from ECMWF-SEAS5 hindcasts (the system’s climatological model
constituted by predictions of past conditions) in order to validate the system’s performance
in representing the different regimes of precipitation over SA. Both works showed remark-
able skill in predicting the spatial distribution of precipitation. However, there is still a
scarcity of studies that assess the quality of ECMWF-SEAS5 seasonal rainfall predictions
for specific domains in SA, particularly the prognostic forecasts made as of 2017.

Every seasonal climate prediction model is affected by bias since the modeled climate
differs from the observed one to a greater or lesser extent. This model bias can be estimated
from a previous set of past climate simulations, known as hindcasts. Thus, the hindcasts
constitute an average state of the modeled climate, and their systematic error can be used to
correct the model forecasts. Within this framework, this study aims to validate the ECMWF-
SEAS5 seasonal precipitation and temperature predictions over SA, considering the set
of hindcasts and forecasts. We apply bias correction to the seasonal forecasts considering
the hindcasts’ systematic error and assess the quality of ECMWF-SEAS5 seasonal climate
predictions in different subdomains of SA. Hence, we indicate the regions whose forecasts
have better confidence. We stress that there are still no studies evaluating the performance
of ECMWF-SEAS5 prognostic predictions (forecasts) for SA. Moreover, the few existing
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works analyzing retrospective predictions (hindcasts) have employed different assessment
methods than those used here. In this sense, the shortage of studies evaluating the ECMWF-
SEAS5 performance over SA justifies this work’s relevance, given that the system represents
the latest generation of the continuous evolution of global seasonal climate modeling, and
several sectors of SA may benefit from more accurate seasonal climate predictions.

2. Materials and Methods
2.1. ECMWF-SEAS5 Data

The ECMWF-SEAS5 forecasting system consists of a 51-member ensemble starting
every month (on the first day) and integrated for approximately seven months (215 days).
In addition, SEAS5 uses retrospective seasonal forecasts from past decades to verify and
calibrate the forecasting system compared to historical records. This set of hindcasts (or
reforecasts, as they are forecasts run retrospectively) has a 25-member ensemble starting on
the first day’s month from 1993 to 2016. For more information, Johnson et al. [32] present a
detailed description of the system components and physical parameterizations employed
in ECMWF-SEAS5.

Seasonal climate forecasts start from an observed state of all Earth system components
and then evolve over a few months. Thus, errors present at the beginning of the forecast
persist or grow during the integration of the model, reaching magnitudes comparable to the
forecast signals [34–36]. In this scenario, the coupled general circulation model components
must be consistent with each other at the initial time of the forecasts to avoid the influence of
initialization shock, which is associated with the departure of the model climatology from
the observed [37]. Therefore, adjusting all the coupled model components with observations
during the forecast initiation is a procedure that mitigates the initialization shock, reduces
the forecast error at different time scales, and improves the model’s predictability [37].

The errors in climate prediction may be random, and the ensemble technique quanti-
fies their effect. ECMWF-SEAS5 employs an ensemble method called “burst mode”. All
members are initialized on the same date of origin in this procedure but with slightly
different initial state conditions (different perturbations) to sample the observations’ un-
certainties [32]. Regarding the ECMWF-SEAS5 atmospheric module, initial undisturbed
atmospheric conditions start at member 0 of the ensemble. The initial conditions for all
other members have perturbations applied to some fields to represent the uncertainty of
the atmosphere’s initial state. Disturbed fields include upper air layers and limited soil
moisture, soil temperature, snow, sea-ice temperature, and surface temperature [32].

Furthermore, other errors in climate predictions are systematic, and by comparing
retrospective forecasts (hindcasts) and observations, it is possible to correct these systematic
flaws [34–36]. These systematic errors, also known as biases, arise from the difference
between the atmospheric and oceanic states simulated by the model and those of the
observed climate and can vary by season, region, and forecast lead time. The model’s
systematic bias can be estimated by creating a set of forecasts from past years compared to
historical records. In this way, hindcasts are a fundamental process in the seasonal climate
prediction system, as they provide the model’s climatological error, which allows a more
accurate interpretation of the real-time forecasts. The hindcasts are created with a version of
the forecast system that is as close as possible to that used for real-time forecasts to ensure
that they provide a reasonable estimate of the expected bias. Since the magnitude of the
bias may be comparable to the year-to-year variation in seasonal average weather, this bias
must be considered when interpreting real-time forecasts. [38].

This study employed ECMWF-SEAS5 surface data (seasonal forecast daily data on
single levels) of total rainfall (accumulated every 24 h since the forecast began) and 2-m
temperature (instantaneous values every six hours), covering the hindcast data from
January 1993 to December 2016 and forecast data from January 2017 to December 2021.
These data have 1◦ × 1◦ horizontal resolution (available on the page https://cds.climate.
copernicus.eu/cdsapp#!/dataset/seasonal-original-single-levels?tab=form, accessed on
5 January 2022).

https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-single-levels?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-original-single-levels?tab=form
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2.2. NOAA CPC Data

Seasonal precipitation forecasts from ECMWF-SEAS5 were validated against the
National Oceanic and Atmospheric Administration—Climate Prediction Center analysis
(NOAA CPC) [39]. The NOAA CPC Unified Gauge-Based Analysis of Global Daily Pre-
cipitation (CPC-Global) dataset is derived from thousands of rain-gauges across the globe,
cooperative observation networks, and meteorological agencies; data quality control is
carried out through comparisons with historical records, surface measurements, radar and
satellite observations, and predictions from numerical models [39]. CPC daily precipita-
tion has a spatial resolution of 0.5◦, with a time series of daily data available since 1979
and updated daily (available at https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/
GAUGE_GLB/RT/, accessed on 23 April 2022). This study used CPC daily precipitation
data from January 1993 to March 2022.

ECMWF-SEAS5 2-m temperature predictions were validated against the CPC Global
Daily Temperature data, with a resolution of 0.5◦ (available at https://psl.noaa.gov/data/
gridded/data.cpc.globaltemp.html, accessed on 23 April 2022). These data correspond
to the daily maximum and minimum 2-m surface temperature registered between 06Z-
06Z. For comparison, daily averages of the 2-m temperature from ECMWF-SEAS5 were
calculated with the estimated daily maximum and minimum in the same hourly interval.
Before these steps, CPC data were interpolated to the spatial resolution of ECMWF-SEAS5
by the bilinear method [40].

2.3. Construction of the Seasonal Means and Domain of Study

ECMWF-SEAS5 produces predictions with a forecast length of seven months (215 days).
However, here we focus on the predictions relative to the first trimester from the second
month after the forecast start, also known as lead time forecast 1 (assuming the month of
initialization is the lead time 0). For instance, if the forecast started on 1 February, March,
April, and May (trimester MAM) correspond to the first three months from the lead time 1.

Daily arithmetic means of CPC and all of the ECMWF-SEAS5 members (25 members
for the hindcasts and 51 for the forecasts) were calculated to compute monthly and tri-
monthly means, yielding maps and statistics for all trimesters of the year. However, for
brevity, only the seasons of March-April-May (MAM), June-July-August (JJA), September-
October-November (SON), and December-January-February (DJF) are shown here. Thus,
the seasonal mean results from 600 integrations in the hindcasts (25 members for 24 years)
and 255 integrations in the forecasts (51 members for five years).

ECMWF-SEAS5 trimonthly means were also spatially compared to CPC data, consid-
ering their average values in six subdomains of South America (Figure 1): Amazon (AMZ;
5–15◦ S and 52–68◦ W), Northeast Brazil (NEB; 2.5–13◦ S and 35–45◦ W), Southeast Brazil
(SEB; 19.5–25.5◦ S and 40–52.5◦ W), South Brazil (SB; 25–32.5◦ S and 47.5–60◦ W), Argentine
Pampas (AP; 32.5–40◦ S and 52.5–65◦ W), and Northern South America (NSA; 7.5–2.5◦ S
and 55–70◦ W). The subdomain selection was based on Reboita et al. [41]. Furthermore,
considering the skill score evaluation, the interannual variability of predicted precipitation
anomalies in three subdomains was evaluated: the North (NB2, 0–7.5◦ S, and 50–57.5◦

W), indicated by yellow subdomain (1), Northeast (NEB2, 5–12.5◦ S, and 40–47.5◦ W),
illustrated in the yellow subdomain (2), and South Brazil (SB2, 25–32.5◦ S, and 50–55◦ W),
indicated by yellow subdomain (3) (Figure 1).

2.4. Statistical Analysis
2.4.1. Hindcasts Seasonal Prediction Skill Score

The seasonal anomaly skill score evaluates the precipitation and temperature pre-
dictions from the ECMWF-SEAS5 hindcasts. These skill scores consist of mean temporal
correlations between predicted and observed trimonthly anomalies [42], considering the
climatological mean (1993–2016) from the ECMWF-SEAS5 and CPC datasets. Given that
the samples are composed of 24 pairs of values (1993–2016) for each season, a two-tailed
Student’s t-test with 95% confidence (α = 0.05) and 22 degrees of freedom provides the

https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/RT/
https://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/RT/
https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html
https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html
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critical Pearson value of ≈0.40, indicating that correlations equal to or above this threshold
are statistically significant [43]. Thus, only skill scores equal to or above 0.3 are presented.
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2.4.2. Forecast Bias Correction

Since hindcasts provide the systematic errors of the model, it is essential to account
for the climatological biases of retrospective predictions for the correction and better use of
real-time forecasts. In this sense, a simple bias correction was applied to the ECMWF-SEAS5
seasonal forecasts, following the methodology of Reboita et al. [44]. First, we computed
each season’s CPC climatological mean (1993–2016). Then, the seasonal difference (Difi)
between ECMWF-SEAS5 and CPC was calculated for each year of the hindcast period
(1993–2016) as:

Difi = ECMWF SEAS5 Hindcasti −CPCi (1)

From Difi, the climatological average (ADifSeason) was calculated for each season. For
the bias correction (BC) of ECMWF-SEAS5 forecasts, the difference was subtracted from
the seasonal average:

BCi = ECMWF SEAS5 Forecasti −ADifSeason (2)

2.4.3. Statistical Indicators

Statistical indicators were employed to verify the accuracy of ECMWF-SEAS5 in the
different subdomains analyzed. The metrics used were: Pearson’s coefficient of correlation
(r), coefficient of determination (R2), relative error (RE), Willmott’s index of agreement (d),
and the Kling–Gupta Efficiency (KGE). Pearson’s coefficient of correlation (r) measures the
degree of correspondence between variables from two datasets, assuming values from−1 to
1. A correlation close to 1 (−1) indicates a very high positive (negative) correlation [45]. The
coefficient of determination (R2) measures the fit of the predicted data with the observed
one, assuming values between 0 and 1. The higher the value of R2, the better the fit of
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forecasts concerning the observations [45]. The relative error (RE) represents the proportion
between the model’s error and the climate variability over SA.

Willmott’s index of agreement (d) evaluates the accuracy of predictions regarding
the observations and may assume values between 0 and 1. Values close to 0 indicate
disagreement between predicted and observed data, and values close to 1 indicate better
prediction accuracy [46]. The d index is given by Equation (3):

d = 1− ∑n
t=1(ŷt − yt)

2

∑n
t=1(|ŷt − yt|+ |yt − yt|)

2 (3)

where n is the number of samples, t is the period, ŷt is the value predicted by ECMWF-
SEAS5, yt is the value obtained by CPC, and yt is the average of values obtained by CPC.

Kling–Gupta Efficiency (KGE) [47,48] combines Pearson’s correlation, bias ratio, and
variability ratio, giving information about the model’s performance in estimating the
observed variable. KGE is defined according to Equation (4):

KGE = 1−

√
(r− 1)2 +

(
σsim

σobs
− 1
)2

+

(
µsim
µobs

− 1
)2

(4)

where r is the linear correlation between observed and simulated values, σsim is the simula-
tions’ standard deviation, σobs is the observations’ standard deviation, µsim is the mean of
simulations, and µobs is the mean of observations.

2.5. The Seasonality Index (SI)

Walsh and Lawler [49] proposed the Seasonality Index (SI), identifying rainfall regimes
based on monthly rainfall distribution. Higher SI values indicate an asymmetry in the
distribution of precipitation throughout the year, while values close to zero indicate that
there is little or no seasonal variation in rainfall.

The SI is the sum of the absolute values of the differences between the amount of
rain each month and the annual average of total precipitation, divided by the annual
precipitation. To obtain an average SI, we calculated the SIi for each year in the hindcasts
period (1993–2016) by Equation (5):

SIi =
1
Ri

∑12
n =1

∣∣∣∣Xin −
Ri

12

∣∣∣∣ (5)

where Ri is the total annual precipitation in the year i, Xin is the monthly precipitation in
the month n of the year i, and SIi corresponds to the SI for each year.

3. Results and Discussion
3.1. Temperature

This section presents the ECMWF-SEAS5 2-m temperature predictions and the com-
parison with CPC fields. Thus, it is possible to evaluate the model simulations regarding
seasonal climate variability and spatial patterns of temperature. Figure 2 shows the seasonal
mean temperature predictions produced by ECMWF-SEAS5, and the 600 retrospective
seasonal forecasts give the mean value generated from the 25 ensemble members for the
24 years of hindcasts.

ECMWF-SEAS5 hindcasts have good performance in representing the seasonal tem-
perature variation in the South American continent. However, except for MAM (Figure 2a),
bias maps show that ECMWF-SEAS5 underestimates temperatures across SA most of the
year. The system underestimates by up to 1 ◦C in portions of AMZ and NSA, whilst in SEB
and SB, the cold bias is up to 2 ◦C (1 ◦C) during spring (summer).
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The NEB presents mixed biases and the slightest negative deviations, overestimating
up to 1 ◦C in most inland regions (Figure 2a,b). Similarly, the Pampas and central Argentina
point to overestimates of up to 2 ◦C in MAM (Figure 2a). In contrast, the AMZ region
presents a cold bias throughout the year. Besides, the system’s cold bias also covers AP,
indicating underestimates of up to 2 ◦C in SON (Figure 2c).

Other studies also verified that global climate models (GCMs) underestimate air
temperature prediction in SA [41,42,50,51]. For example, Kim et al. [50] analyzed the
ECMWF-SEAS4 and Climate Forecast System version 2 (CFSv2) hindcasts and observed
a systematic cold bias of both models in SA. Reboita et al. [41] obtained similar results,
finding a CFSv2 cold bias over SEB and NEB from MAM to SON. Osman and Vera [51]
investigated the performance of nine models from the Climate Historical Forecast Project
(CHFP) and concluded that models intensify the cold bias in periods of both El Niño-
Southern Oscillation (ENSO) phases. Finally, Chou et al. [42] found a systematic cold bias
of the Eta regional model over the entire South American continent. However, the authors
observed a warm bias in the AP region between MAM and MJJ, similar to the present
results (Figure 2a).

GCMs also have constraints in simulating the complex topography of the South
American continent, especially over regions such as the Andes and La Plata basin [24].
Moreover, systematic air temperature errors are associated with the initial soil moisture
conditions since this variable modifies the temperature amplitude at the surface level, as
the increase in soil moisture induces a reduction in temperature differences between day
and night [52].

Skill scores allow evaluating the ECMWF-SEAS5 capability to represent the seasonal
rainfall variability over SA. Skill scores correspond to the temporal correlations between
the trimonthly temperature anomalies predicted by the hindcast ensemble mean and those
obtained by CPC, considering both datasets’ climatological mean (1993–2016) [42]. Studies
show that the threshold of skills scores equal to 0.3 indicates the usefulness of seasonal
forecasts, regarding correlations below 0.3 to potentially harmful predictions, while correla-
tions above 0.6 suggest beneficial forecasts even for application at a local scale [33,42]. For
this reason, this study presents only skill scores equal to or greater than 0.3.

The best ECMWF-SEAS5 seasonal temperature anomaly skill scores occur in regions
strongly influenced by the ENSO. For example, in the summer months, ECMWF-SEAS5 can
predict the temperature in regions such as AMZ and NSA, whose statistically significant
correlation values are above 0.7 (Figure 3d), corroborating other equivalent findings [33].
Due to the Pacific SST influence over such regions, temperatures are expected to rise
(decrease) during El Niño (La Niña) [13,33].

The SA tropical region gives the best correlations throughout the year, with values
above 0.6 over NSA, AMZ, and NEB areas. The NEB region provides good skill score
results practically throughout the year. The excellent performance of ECMWF-SEAS5 in
this Brazilian sector shows that its skillfulness does not derive only from the strong Pacific
influence on the region but also from other modes of variability such as the Tropical Atlantic
Dipole [13,32,53–57].

ECMWF-SEAS5 presents a moderate performance in SEB and SB in SON and DJF,
where the system’s marginal performance shows statistically significant correlations above
0.4 (Figure 3c,d). On the other hand, AP indicates no appreciable performance over the
entire year. In contrast, central Argentina shows modest correlations of up to 0.5 in JJA and
DJF (Figure 3b,d).
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the 1–3-month lead times. The score is nondimensional. Dotted areas denote statistical significance at
a 95% confidence level using the Student’s t-test.

Figure 4 compares the DJF temperature from the ECMWF-SEAS5 forecasts ensemble
mean without (Figure 4a) and with (Figure 4b) the simple bias correction obtained with
the hindcasts climatological error. An expressive improvement in the forecast bias and
reduction in the model’s systematic errors can be seen across most SA (Figure 4b3). In
this sense, we emphasize the usefulness of evaluating the hindcast and forecast datasets
separately since the former provides the climatological error of the model, allowing for
better use and interpretation of the real-time forecasts.
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Figure 4. ECMWF-SEAS5 seasonal 2-m temperature (◦C) forecasts for DJF from 2017–2021 without
(a) and with (b) the simple bias correction.

Figure 5 presents the ECMWF-SEAS5 forecasts ensemble mean with bias correc-
tion. The 255 prognostic seasonal forecasts provide the mean value computed from the
51 ensemble members for the five years of forecasts. In general, the bias correction tech-
nique reduces model errors throughout the year over most of the continent. For example,
in MAM, the error correction reduces both the cold bias north of 20◦ S and the warm bias
below this latitude (Figures 2a and 5a). However, the warm bias in the NEB persists even
after correction, as does the cold bias in central Brazil in SON (Figure 5c). During this
season, the cold bias reduction in central Argentina is also evident. Similarly, in DJF, a
cold bias reduction occurs over most Brazil. In summary, simple bias correction allows a
better interpretation of the model predictions and indicates the satisfactory performance of
ECMWF-SEAS5 seasonal temperature real-time forecasts over SA.

3.2. Precipitation

ECMWF-SEAS5 reproduces the seasonal patterns of precipitation in SA and shows
good agreement with the CPC fields. As a result, ECMWF-SEAS5 captures the South
Atlantic Convergence Zone (SACZ) [58] in the summer (Figure 6d). However, CPC shows
smaller precipitation amounts than ECMWF-SEAS5, indicating that the forecast system
overestimates rainfall in the region by up to 1 mm day−1 (Figure 6d).
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Figure 6. Left column: seasonal mean precipitation (mm day−1) derived from the ECMWF-SEAS5
hindcasts, averaged for 1993–2016 and over the 25 ensemble members, for (a) MAM, (b) JJA, (c) SON,
and (d) DJF. Center column: CPC seasonal mean precipitation (mm day−1) averaged over 1993–2016.
Right column: seasonal precipitation mean errors (mm day−1) obtained by the difference between
ECMWF-SEAS5 and CPC and averaged over 1993–2016.



Climate 2022, 10, 128 13 of 25

In autumn and winter, the dry season begins in SEB [1], reducing precipitation in
central SA (Figure 6a,b). In those seasons, the precipitation maxima occur in NSA and AMZ,
and ECMWF-SEAS5 reasonably represents these patterns. In contrast, during spring and
summer, precipitation increases in most of SA [1], and the system appropriately represents
the seasonal rainfall variability.

In SB, seasonal rainfall predictions show little variability during the year, similar to
the CPC fields. However, ECMWF-SEAS5 underestimates rainfall most of the year and
overestimates it in spring (Figure 6c).

In SON and DJF, ECMWF-SEAS5 overestimates rainfall up to 1 mm day−1 in AMZ
and SEB. Moreover, portions of AMZ, SEB, and western SA with the highest precipitation
overestimates coincide with the temperature underestimates in those sectors, a thermody-
namically expected feature since precipitation energy is used for water evaporation instead
of heating the atmosphere via sensible heat [41]. Conversely, sectors like NEB and north
Brazil have dry biases throughout the year. For example, from MAM to SON, dry biases in
the central-east NEB and north Brazil are more prominent, showing that ECMWF-SEAS5
underestimates the rainy season of those areas [1,42].

In conclusion, seasonal rainfall predictions from ECMWF-SEAS5 hindcasts suggest
systematic overestimates (underestimates) in AMZ and SEB during the rainy (dry) season
and systematic underestimates in NSA and NEB throughout the year.

Regarding the seasonal precipitation anomaly skill scores, NSA has statistically signifi-
cant skill scores above 0.5 in SON and DJF (Figure 7c,d), agreeing with previous findings
for the same region [42]. Likewise, NSA has moderate skill scores in MAM and JJA
(Figure 7a,b), which is also analogous to other outcomes [33,42]. Again, this precipitation
anomaly forecast skill stems from the greater climate predictability in the tropical region
and the robust response of these sectors to the Pacific SST [8,13].

NEB presents significant skill scores above 0.5 in the wetter season of MAM (Figure 7a),
corroborating other studies [33,42]. This satisfactory performance is due to the strong
relationship between tropical Atlantic SST and rainfall in NEB during MAM [13,53–57].

ECMWF-SEAS5 seasonal precipitation anomaly correlations showed best values in
NSA, NEB, and SB and low scores in AMZ, SEB, AP, and central SA. Nevertheless, the
ECMWF-SEAS5 performance in NEB and SB indicates that its capability derives not only
from ENSO mechanisms but also from other modes of climate predictability that contribute
to a better seasonal forecasting skill, such as the Tropical Atlantic Dipole and Southern
Annular Mode.

Another region with relevant skill scores is SB, in which SON and DJF have significant
values above 0.5 (Figure 7c,d). Even though Chou et al. [42] have not found notable
skill scores for this sector (except at SON and OND seasons), the southern subtropical
region has already shown relevant predictability associated with ENSO teleconnection
effects [13,33,59]. Furthermore, our results suggest the potential benefit of ECMWF-SEAS5
precipitation predictions to increase farmers’ capability for drought and flood mitigation,
especially in rainfed agriculture.

SEB has low skill scores throughout the year, similar to Chou et al. [42]. However,
MAM and JJA show significant moderate values in some portions of the region, including
central Brazil (Figure 7b,c). SEB presents the lowest predictability due to the little depen-
dence on the SST anomalies and the great variety and variability of transient atmospheric
systems that drive the rainfall over this sector [1,8,13].
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Figure 7. Seasonal precipitation anomaly prediction skill scores greater than 0.3 for the ECMWF-
SEAS5 hindcasts for (a) MAM, (b) JJA, (c) SON, and (d) DJF. Seasons correspond to reforecasts from
the 1–3-month lead times. The score is nondimensional. Dotted areas denote statistical significance at
a 95% confidence level using the Student’s t-test.

Since ECMWF-SEAS5 showed good anomaly precipitation forecasting skills in NSA,
NEB, and SB, subdomains of these sectors were selected to evaluate the system’s ability
to simulate their interannual variability of seasonal rainfall anomalies, considering the
climatological mean of 1993–2016. ECMWF-SEAS5 has an adequate capacity to simulate
the interannual variability of seasonal rainfall anomalies in the NB2 (Figure 8). Despite
underestimating precipitation, the system represented the oscillations of seasonal anomalies
in the summer and spring seasons, as in DJF and SON from 2008 to 2018 (Figure 8a2), and
captured the most prominent negative rainfall deviations, such as the drought events in
1997/1998 and 2015 [60]. In addition, predictions in winter coherently simulated seasonal
anomalies’ variability, as in JJA from 2000 to 2012. On the other hand, the system did not
adequately reproduce negative anomalies in MAM from 2011 to 2015 (Figure 8a1).
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Figure 8. Average seasonal precipitation anomalies (mm day−1) in the NB2 (a), NEB2 (b), and SB2
(c) subdomains from 1993 to 2021. The vertical black line indicates the hindcasts’ end and forecasts’ start.

In the NEB2 subdomain, ECMWF-SEAS5 presents a drier bias, as illustrated in other
results (Figure 6). However, the model’s performance in simulating the seasonal anomalies
of MAM from 1998 to 2004 and from 2009 to 2020 is notable (Figure 8b1). Generally, GCMs
have an excellent predictive capacity in NEB during MAM due to the region’s strong
relationship between tropical Atlantic SST and rainfall [53–57]. Besides, it approached the
largest negative deviations in 1998, 2002, and 2004. Despite representing the negative bias
in ENSO periods like MAM in 1998 [61,62], the system smooths the negative anomalies in
MAM of 2011 and 2012 and SON of 2015. From 2011 onwards, ECMWF-SEAS5 exhibits a
wetter bias, failing to reproduce mainly the drier DJF anomalies (Figure 8b2).
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In the SB2 subdomain, ECMWF-SEAS5 captures some CPC maximums, as in JJA and
SON of 1997 (Figure 8c). However, the model remained stable throughout the forecasts’
integration during the different seasons and failed to simulate some precipitation maxima
as in JJA of 2002 and 2011 (Figure 8c1). Despite simulating the interannual variability
of anomalies with relative correspondence in SON, the system does not satisfactorily
reproduce the phenomenon in other seasons. For example, the most pronounced negative
anomalies, such as those occurring from 2003 onwards, are not well represented by the
ECMWF-SEAS5 predictions. In SB2, it is clear that ECMWF-SEAS5 does not correctly
represent the drier and wetter anomalies.

GCMs have constraints to predicting rainfall over Southern Brazil and Southeastern
SA due to several aspects, such as a lower ability to simulate rainfall from frontal systems
and orographic processes in subtropical latitudes [63], inappropriate representation of the
physical processes involved in mesoscale convective systems [64], limitation in reproducing
cyclogenesis associated with adiabatic processes [65], and underestimation of low-level
jets [63,66]. Although results show a good ability of ECMWF-SEAS5 to predict precipitation
anomalies in SB (Figure 7c,d), more regionalized analyses indicate that the system fails to
capture the drier extremes. In this context, regional downscaling techniques may improve
the model’s predictive ability in the sector.

After evaluating the quality of ECMWF-SEAS5 hindcasts seasonal predictions for
SA, it is worth analyzing how the forecasts behave concerning the system’s climatological
model. Despite systematic overestimation (underestimation) errors in regions such as
the AMZ, SEB, and SB (NEB), hindcasts showed that ECMWF-SEAS5 has a satisfactory
performance in representing the South American seasonal climate patterns.

Figure 9 presents the ECMWF-SEAS5 seasonal precipitation forecasts after bias cor-
rection obtained with the hindcast climatological error. The technique notably reduces the
systematic errors of underestimating rainfall in NEB and NSA during the year and the wet
bias in AMZ.

Nevertheless, the ECMWF-SEAS5 wet behavior over the continent remains even after
bias correction. Equatorial portions maintain their wet bias throughout the year, and the
rainfall overestimation in the continental part of SACZ during DJF persists (Figure 9d3).
The latter sector has low or negligible predictability associated with SST variations, given
that SACZ is dominated mainly by internal variability [67,68]. Despite that, bias correction
reduces the overestimation of rainfall in SEB and the Amazonian portion of SACZ.

Here we highlight some limitations and contributions of the present study. Among the
drawbacks, we stress that data used as observations for validation also have uncertainties
due to the low density of rain-gauges and the interpolation techniques employed [69].
Such conditions may lead to misinterpretation of the forecast performance, which becomes
even more problematic in SA, given the restricted rain-gauge network in regions with
complex topography over the continent [31]. In this regard, the validation of climate
models can also assist in evaluating the quality of observational data [70]. However, we
highlight the similarity of the results found here with those obtained by validating ECMWF-
SEAS5 with data from pluviometric stations [33], such as the model’s high performance
in predicting rainfall in the north of Uruguay in DJF. In this sense, the current study
corroborates previously found results [33] and complements the analyses by including
different evaluation methods and the validation of real-time forecasts.

The current work also contributes by presenting the regions of SA with better forecast
performance by ECWMF-SEAS5, indicating equal or superior performance to that yielded
by a regional model with dynamical downscaling [42]. We emphasize that it is not intended
to analyze the different models and studies in a competitive or exclusionary way but to
point out deficiencies and potentialities that can assist in the cooperative use of different
models and seasonal climate predictions.
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Figure 9. Left column: seasonal mean precipitation (mm day−1) derived from the ECMWF-SEAS5
forecasts after bias correction, averaged for 2017–2021 and over the 51 ensemble members, for
(a) MAM, (b) JJA, (c) SON, and (d) DJF. Center column: CPC seasonal mean precipitation (mm day−1)
averaged over 2017–2021. Right column: seasonal precipitation mean errors (mm day−1) obtained
by the difference between ECMWF-SEAS5 seasonal forecasts after bias correction and CPC, averaged
over 2017–2021.
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Using different metrics to verify the model’s proficiency is also essential. An example
occurs with the significant correlations of precipitation anomalies found in the NEB and
SB since regionalized analyses showed that ECMWF-SEAS5 was not efficient in capturing
some anomalous rainfall events in these sectors. Thus, anomaly correlations alone may not
be sufficient for model performance evaluation.

The present study advances the analyses of ECMWF-SEAS5 dexterity in SA by ex-
amining the quality of real-time forecasts corrected by the hindcast climatological error.
Here, the relevance of distinctly evaluating the forecast ensemble is emphasized to identify
systematic model errors and correct them in the prognostic predictions, ensuring better
interpretation and use of seasonal forecasts. Our results show that a simple bias correction
significantly reduces the model’s systematic biases and reiterates its satisfactory perfor-
mance over most of SA. In general, the biases present after correction occur in regions
notably critical for climate predictability, such as the continental sector of SACZ.

Finally, we underline that the period of forecasts is relatively short, and complemen-
tary methods of evaluating their performance are needed. Considering the recent period of
forecasts (2017–2021), we stress the action of La Niña and its effects on precipitation and
temperature in SA. Within this framework, global models have lower dexterity in simulat-
ing the different types of La Niña, and limitations in predicting its teleconnection effects,
given that errors persist even when SST biases are eliminated from the simulations [71]. In
this context, we note that evaluating the performance of forecasts and hindcasts is essential
since the latter has a more extensive set of predictions, allowing the model’s assessment
with more robust statistics. On the other hand, the retrospective predictions present more
idealized conditions than the prognostic forecasts since the hindcasts are better calibrated
and submitted to complete data ingestion for the initial conditions [34–36].

3.3. Seasonality Index (SI)

The Seasonality Index (SI) measures the monthly rainfall variability throughout the
year, assessing seasonal contrasts in rainfall quantities rather than dryness or wetness of
a month in an absolute sense [49]. Although the method uses rainfall distribution for all
months, a seasonal pattern is detected when the SI value is above 0.6 [72].

The SI index can be easily calculated, allowing its application to monthly accumulated
climatic and hydrological variables such as evaporation and river discharge. However, its
limitation relies on the description of average rainfall regimes, so there is no evidence of the
seasonality of individual years, and the monthly unit of measurement may be too coarse to
evaluate regions where seasons last only a few weeks [49].

Figure 10 shows the SI for SA, considering the ECMWF-SEAS5 hindcasts and the CPC
rainfall. Again, the maps indicate many similarities between the two types of outputs,
showing that ECMWF-SEAS5 satisfactorily represents the seasonal contrasts of precipitation
on the continent.

In northeastern Brazil, a sector comprising Semiarid Brazil [73], ECMWF-SEAS5 points
to a broader area extension with 0.80 ≤ SI ≤ 0.99, whose classification is markedly seasonal
with a long drier season. Moreover, cluster analyses [1,33] also identified this region
marked by interannual rainfall variability, with arid and rainy years, whose variability is
due to teleconnection mechanisms [73], showing that ECMWF-SEAS5 can reproduce the
phenomena. Moreover, SI also identifies other SA portions with a drier climate, such as the
Atacama Desert region, with SI > 0.99, which corresponds to a category where most rain
occurs in three months or less, a pattern similarly found in Sub-Saharan Africa [49].

Discrepancies occur in southern Argentina, where ECMWF-SEAS5 indicates a region
with 0.20 ≤ SI ≤ 0.39, classified as equable but with a wetter season, where CPC yields
0.4 ≤ SI ≤ 0.59, categorized as rather seasonal with a short drier season. In addition, in
western SA, covering the region east of the Atacama Desert, ECMWF-SEAS5 shows values
of 1.0 ≤ SI ≤ 1.19 (indicating that most rain occurs in three months or less), while the
CPC gives values of 0.8 ≤ SI ≤ 0.99 (markedly seasonal with a long drier season). These
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differences are assumed to be due to systematic errors in ECMWF-SEAS5, as the system
gives the highest overestimates in the mountain range during summer (Figure 6d).
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1993–2016 for South America.

Differences aside, the two outputs generate very similar fields. The SEB region falls
into the categories of seasonal (0.6 ≤ SI ≤ 0.79) and rather seasonal with a short drier
season (0.4 ≤ SI ≤ 0.79), where CPC presents the same SI spatial distribution, showing that
ECMWF-SEAS5 can simulate the influence of the South American monsoon system over
the region [1,58].

For the SB domain, ECMWF-SEAS5 also shows a similar field to CPC, with SI ≤ 0.19
(categorized as very equable), characteristic of a region with homogeneous precipitation
distribution throughout the year, previously identified in cluster analyses [1,33]. For the
AMZ, there is also correspondence between the two fields, with values of 0.2 ≤ SI ≤ 0.39
(equable with a definite wetter season) in the northwest and 0.4≤ SI≤ 0.59 (rather seasonal
with a short drier season) in the central, eastern, and southwest AMZ, results similar to
those of Sapucci et al. [74] that applied SI to different precipitation databases in the Amazon
basin. In addition, ECMWF-SEAS5 also captures the variability of seasonal precipitation
regimes in tropical SA, with values of SI ≤ 0.59 in the northwestern part of the continent
and 0.4 ≤ SI ≤ 0.79 in the far north of SA.

3.4. Statistical Indicators

Table 1 presents the statistical indicators for each SA domain analyzed, considering the
hindcast and forecast datasets. For temperature predictions, NSA shows the best results,
with higher r (0.65), R2 (0.42), and d (0.79). According to Gilewski and Nawalany [75],
correlations above 0.6 indicate satisfactory model performance, implying that only the
AMZ, NEB, and NSA sectors correctly predicted temperature anomalies. On the other
hand, SB and AP show lower values of r, d, and higher magnitudes of RE.
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Table 1. Mean statistical indicators of temperature and precipitation anomaly predictions for each
subdomain through the 1993–2021 period. For each indicator, the best results are in bold. Asterisks
indicate statistically significant r values at a 95% significance level using Student’s t-test.

Temperature Statistical Indicators 1993–2021

Region r R2 d RE (%) KGE

SEB 0.32 0.10 0.57 5.58 0.73

AMZ 0.61 * 0.37 0.75 4.66 0.78

NEB 0.62 * 0.38 0.77 2.30 0.66

SB 0.22 0.05 0.51 9.27 0.80

AP 0.27 0.07 0.51 14.66 0.78

NSA 0.65 * 0.42 0.79 6.00 0.68

Precipitation Statistical Indicators 1993–2021

Region r R2 d RE (%) KGE

SEB 0.25 0.06 0.35 21.80 0.88

AMZ 0.23 0.05 0.38 24.80 0.80

NEB 0.54 * 0.30 0.67 24.09 0.87

SB 0.56 * 0.32 0.61 22.42 0.52

AP 0.43 * 0.19 0.48 23.23 0.30

NSA 0.41 * 0.17 0.54 18.63 0.71

Regarding the indicators for precipitation anomaly predictions, NEB and SB provide
the best r (around 0.55) and d (around 0.6), suggesting an acceptable performance [75] of
the ECMWF-SEAS5 seasonal rainfall predictions in these sectors. However, AMZ, SEB, and
NSA also indicate good KGE (between 0.71 and 0.88). In contrast, AP presents the lowest
R2 (about 0.19) and KGE (0.30).

Notably, all regions presented less than 25% relative errors, within the acceptable
range of 30% for precipitation simulation errors [76]. Precipitation predictions driven by
observed data can reproduce rainfall at the regional and seasonal scales with errors due
to uncertainties in observational datasets, which can be high, especially in remote areas
or mountainous regions [76]. Again, we stress the need to use different metrics to assess
model capability, as single indicators may not be sufficient to identify model potentialities
and flaws in different regions of SA. For example, SB showed the best r and R2 values in
seasonal rainfall predictions, but regionalized analyses indicated that the model fails to
capture the local interannual variability of precipitation anomalies. Similarly, the NSA
indicated good skill score values for rainfall anomaly predictions during the austral spring
and summer, but statistical indicators suggest both modest prediction performance (r~0.4)
and lower magnitudes of associated errors (RE~18.6%).

4. Conclusions

The present work aimed to evaluate the quality of seasonal precipitation and 2-m
temperature predictions from ECMWF-SEAS5 over SA. Hence, their hindcasts from 1993 to
2016 and forecasts from 2017 to 2021 were validated.

The seasonal mean precipitation prediction fields indicated an appropriate simulation
of the seasonal patterns, satisfactorily representing the monsoon system and the rainfall
variability in the SA interior. Nevertheless, hindcasts have systematically overestimated
AMZ, SEB, and SB rainfall predictions. Conversely, the system has systematic underestima-
tion errors in predicting rainfall over NEB.

The temperature fields indicate that ECMWF-SEAS5 has a systematic cold bias over
most SA. However, exceptions occur in NEB and AP, where the system overestimates the
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temperature. In addition, the cold bias tends to be accentuated in the austral summer
months, covering regions such as AP.

The skill score assessment showed that the best seasonal correlations of precipitation
and temperature anomaly occur in high climate predictability areas such as the tropical
latitudes of NSA and NEB, but also subtropical latitudes like SB. In other words, the
most reliable ECMWF-SEAS5 seasonal climate predictions occur in the equatorial Amazon,
northern SA, and northeastern Brazil tropical regions. However, there is also an indication
of potential forecast skill in regions of medium and low climate predictability, such as in
Southern Brazil in SON and DJF and Southeastern Brazil in MAM and JJA. In addition,
analyses focused on the best performing sectors indicated that the system was able to
capture extreme precipitation anomalies in the north and northeastern Brazil, such as in the
years 1997/1998, 2012, and 2015. In contrast, ECMWF-SEAS5 did not adequately reproduce
the dry anomalies in southern Brazil. Due to its systematic wet bias over most of SA,
seasonal predictions come closer to the wet anomalies in northern and northeastern Brazil
but overestimate or smoothen the dry ones in the country’s south. Given this, the system
presents a potential predictive capacity for extreme drought events, mainly in the more
tropical sectors of SA, and post-processing techniques can improve its applicability for such
purposes [77].

Regarding the novelty of the present work, we highlight the analysis of the quality of
ECMWF-SEAS5 real-time forecasts over SA. Applying the simple bias correction technique
through the hindcast climatological error suggests a considerable reduction of the system-
atic errors in the forecasts. In general, the cold bias of the model is reduced over most
of the continent, but temperature underestimation remains (although with less intensity)
in the central sectors of SA. Similarly, bias correction in real-time precipitation forecasts
illustrates an expressive reduction of the ECMWF-SEAS5 wet bias over SA, but systematic
overestimation error persists in problematic regions for climate predictability, such as the
continental sector of SACZ. Furthermore, we emphasize that the short series of prognostic
forecasts and the influence of climate phenomena during the period make additional eval-
uations of the forecasts necessary, such as statistical and sensitivity tests of the different
ensemble members and evaluation of the members’ dispersion from the ensemble mean.
In this context, it is relevant that future studies investigate these issues for more assured
reliability of ECMWF-SEAS5 real-time forecasts over different SA subdomains.

It is also relevant to highlight the need for using different metrics to evaluate the
performance of ECMWF-SEAS5 seasonal climate predictions over SA. The results here
indicate that, even in regions with satisfactory model performance, such as southern Brazil,
the predictions still fail to capture anomalous events. Similar findings have been previously
identified [33], reiterating the importance of assessing model accuracy in a more plural and
localized manner.

Seeking physical explanations for the model errors is beyond the scope of this work.
Despite numerous advances and constant development of climate modeling, errors are
intrinsic to the process. However, several studies point to different causes for the deviations,
such as deficiency in SST simulation, errors in the initialization of soil moisture conditions,
and inappropriate physical parameterization [3,34–36,78]. In addition, improved extreme
events prediction requires a deep understanding of drought and flood mechanisms, refined
observations from data assimilation, better parameterizing techniques, efficient ensemble
methodologies, and proper uncertainty quantification [17].

Furthermore, the realistic representation of South American climate features remains
a challenge for numerical models, and they still fail in simulating regional climate over
terrains with a complex topography [21,22]. Notwithstanding, the findings here allow us to
conclude that ECMWF-SEAS5 effectively predicts seasonal precipitation and temperature
over South America and has potential application to guide decision-making. Hence, we
strongly encourage using EMCWF-SEAS5 seasonal climate forecasts by the different South
American socioeconomic sectors.
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