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Abstract: It is a common practice to use a buffer zone to damp out spurious wave growth due to
computational error along the lateral boundary of limited-area weather and climate models. Although
it is an effective technique to maintain model stability, an unintended side effect of using such buffer
zones is the distortion of the data passing through the buffer zone. Various techniques are introduced
to enhance the communication between the limited-area model’s inner domain and the outer domain,
which provides lateral boundary values for the inner domain. Among them, scale-selective data
assimilation (SSDA) and the spectral nudging (SPNU) techniques share similar philosophy, i.e.,
directly injecting the large-scale components of the atmospheric circulation from the outer model
domain into the interior grids of the inner model domain by-passing the lateral boundary and the
buffer zone, but the two methods are taking different implementation approaches. SSDA utilizes
a 3-dimensional variational data assimilation procedure to accomplish the data injection objective,
whereas SPNU uses a nudging process. In the present study, the two approaches are evaluated
comparatively for simulating hurricane track and intensity in a pair of cases: Jeanne (2004) and Irma
(2017) using the Weather Research and Forecasting (WRF) model. The results indicate that both
techniques are effective in improving tropical cyclone intensity and track simulations by reducing
the errors of the large-scale circulation in the inner model domain. The SSDA runs produced better
simulations of temperature and humidity fields which are not directly nudged. The SSDA runs also
produced more accurate storm intensities in both cases and more realistic structure in Hurricane
Jeanne’s case than those produced by the SPNU runs. It should be noted, however, that extending
these case study results to more general situations requires additional studies covering a large number
of additional cases.

Keywords: scale-selective data assimilation; spectral nudging; hurricane; limited-area model;
domain nesting

1. Introduction

Global general circulation models (GCMs) remain the most advanced and indispens-
able tool to simulate and predict the changes in the earth’s climate system. Although the
rapid increase in computer power diminishes the need of simplifying assumptions and
makes the description at even finer scale possible, the computing power needed for GCMs
to resolve mesoscale features remains a goal of the future [1]. The concept of downscaling
is then introduced to bridge the gap between global and regional scales. It can be achieved
through high-resolution regional climate models (RCMs) or limited area weather prediction
models to dynamically map large-scale fields to regional or local scales of interest, which is
a process often referred to as dynamical downscaling.

As a traditional one-way dynamical downscaling, RCMs are nested in global models,
which provide initial and lateral meteorological boundary conditions. RCMs are thus not
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intended to greatly modify large-scale circulations of the GCMs, but to produce regional-
scale solutions in response to the regional forcing [2]. The strategy underlying the nesting
technique implies the potential challenge for RCMs to balance the performance by allowing
regional-scale features to develop indigenously and simultaneously retaining the large-
scale features provided by the global model. However, a critical drawback comes from the
inconsistency along the lateral boundaries, since regional solutions tend to drift away from
the large-scale driving fields [3]. For weather phenomena that are controlled primarily
by synoptic-scale processes, errors from the faulty expression of the external large-scale
circulation may result in a serious degradation of the ultimate solutions in the RCMs. A
stronger regulation from the global model other than prescribing the lateral boundary
conditions alone is desired. Therefore, a relaxation technique, also referred to as nudging,
is developed to mitigate such effect.

There are mainly two types of nudging techniques: grid/analysis nudging and spectral
nudging (SPNU). In grid nudging, variables at each grid point of the finer resolution model
will be nudged towards the driving fields on the coarser grids, which means grid/analysis
nudging is conducted indiscriminately at all scales. In contrast to grid nudging, in the SPNU
approach, the nudging term is expanded only on selected spectral scales in both zonal
and meridional directions, so waves outside the nudging spectrum are not directly altered
by nudging. Comparisons between these two nudging methods have been evaluated
under various scenarios, including the examinations on the ability to predict specific
meteorological variables [4–7], the comprehensive performance on balancing simulations
at small and large scales [8]. Since large-scale features are more appropriately depicted in
the global models, while the regional models can better resolve smaller-scale features [9],
spectral nudging generally outperforms grid nudging because the latter tends to over-
nudge at smaller scales [10,11].

To overcome the over-nudging issue, Peng et al. [12] proposed the use of a scale-
selective data assimilation (SSDA) approach to inject only the large-scale components of the
atmospheric circulation from the global analyses or forecasts and drive the regional models
in the interior of the model domain as well as through the specifications of initial and lateral
boundary conditions. The idea of SSDA is analogous to that of SPNU but utilizing a three-
dimensional variational assimilation scheme (3D-Var) other than introducing a nudging
term. A seasonal climate hindcasting study conducted by Peng et al. [12] demonstrated that
SSDA method could effectively assimilate the large-scale components from global analyses,
resulting in an overall improvement of the regional model simulations.

A number of case studies of tropical cyclones over the North Atlantic Ocean have
demonstrated the effectiveness of SSDA in storm track simulations. Liu and Xie [11] showed
through the simulation of Hurricane Felix (2007) that the overall mean track error for the
SSDA runs is reduced by over 40% relative to the control experiment along with a decrease
by over 14% of the mean intensity forecast error. As for the merit of the SPNU technique,
Wang et al. [13] noticed that simulations with SPNU turned on could realistically reproduce
several aspects of Typhoon Megi (2010), including not only the storm track and intensity
change but also structure development at various stages. In contrary to the conventional
belief that SPNU will suppress the dynamics of tropical cyclones, re-cent finding appears to
show the effectiveness of SPNU in the mitigation of the effects of spurious storm formations,
deviated storm track and associated large-scale circulation patterns [14]. Furthermore, with
employment of either SSDA or SPNU, regional simulations benefit from reducing the
uncertainty and sensitivity to the domain placement and geometry [9,15,16].

Although both SSDA and SPNU have shown some merits in regional climate predic-
tion and limited area numerical weather simulations, a comparison between the SSDA
and the SPNU schemes has not been made. Such a comparison may shed light on
how each method accomplishes the adjustments of model variables through the nudg-
ing/assimilation variable, and whether there is a basis for selecting one method or the
other. This study provides a preliminary evaluation of the respective performance of the
two methods in the simulation of two tropical cyclone cases. The assessment is carried out
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in two aspects: (1) the track and intensity simulations of individual hurricanes; and (2) the
simulation of the large-scale environmental conditions. The rest of this paper is organized
as follows. Section 2 gives a brief description of the SPNU and the SSDA approaches,
the regional model, and the data used in this study. The background of hurricane cases
and experiment settings are described in Section 3. The results are presented in Section 4,
followed by concluding remarks in Section 5.

2. SPNU and SSDA Approaches

The SPNU technique was first proposed by Waldron et al. [17] and then improved by
Storch et al. [18]. In the SPNU, model fields are nudged towards the externally driving
fields only on selected larger spatial scales. The nudging is achieved through the terms
introduced to certain model equations as internal forcings [19–21]. Therefore, artificial
terms are added into the governing equations. SPNU technique is a built-in feature in the
WRF model, and it can be turned on or off in the namelist set-up and the related parameters
can be adjusted based on the user’s needs as well.

The latest SSDA modeling system is composed of the version 3.8.1 WRF model as the
regional model, a 3D-Var scheme from the WRF’s data assimilation program (WRFDA,
version 3.8) and a low-pass filter to separate large and small-scale components from both
global and regional model forecasts. The filter utilizes the discrete fast Fourier transform
(FFT) along with a detrending program dealing with aperiodic lateral boundaries.

The entire simulation is achieved through a series of repeated SSDA cycles at a preset
time interval (e.g., 6-h) as the integration in the regional model advances forward in time.
Specifically, each SSDA cycle consists of four processes: (1) the low-pass filter extracts the
large-scale components of circulation from the global analyses or forecasts (LGCM); (2) the
low-pass filter separates the circulation simulated by the regional model into large-scale
(LWRF) and small-scale (SWRF) components; (3) SWRF and LGCM are combined in wave-
number space to obtain the full-scale field, correcting the large-scale component in the
regional model; (4) the combined field is assimilated into the regional model using 3D-Var
as input observations, producing the new restart file. Then WRF resumes its integration
and keeps the simulation moving forward until next SSDA cycle is reached. The extraction
process of LGCM can be accomplished independently and the cycling process between
WRF and WRFDA is made through input files (this process can also be done by updating
the restart files as in earlier versions of SSDA discussed by Peng et al. [12]). Under such
a cycling mode, both lateral and lower boundary conditions are updated based on the
input files to ensure consistency. In the WRFDA process, the Background Error Covariance
Matrix is set as the default. For more details of the SSDA approach, the reader is referred to
Peng et al. [12], Xie et al. [9] and Liu and Xie [11].

Since tropical cyclone (TC) tracks are predominantly steered by the large-scale envi-
ronmental circulation, the nudging is only applied to the horizontal wind fields in both
SPNU and SSDA procedures in this study. Thus, only the nudging parameters related to
winds are turned on and the nudging coefficient is set to the default value of 0.0003 in
the SPNU simulations. And in SSDA runs, the filtering process is only applicable to the
wind fields.

In this study, the Climate Forecast System Reanalysis (CFSR) data is used to provide
the initial and lateral boundary conditions required to drive the regional model. The
analyzed products are available every 6-h at 0.5◦ (≈55 km) horizontal grid spacing. CFSR
can capture the large-scale flow reasonably well [22] and is a suitable reanalysis data set to
study tropical cyclone environmental conditions [23,24].

3. Model Settings and Experiments

To evaluate the performance of the SSDA and SPNU approaches in improving TC
track and intensity changes, Hurricane Jeanne (2004) and Irma (2017) are selected as test
cases. Based on the National Hurricane Center’s (NHC) tropical cyclone reports [25,26], a
brief review is given below.
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Hurricane Jeanne originally formed from a tropical wave that moved from Africa to
the eastern tropical Atlantic Ocean. After weakening from a brief hurricane intensity stage,
Jeanne persisted for five days as a tropical storm in a weak steering flow that was created
by a preceding system, Hurricane Ivan. Later, it gradually strengthened to a hurricane
with 85-knot winds by the time it accomplished the anticyclonic loop on 23 September.
Continuing westward, Jeanne made landfall on the east coast of Florida in the early hours
of 26 September.

The formation of Hurricane Irma was similar to that of Jeanne, but it rapidly intensified
to a Category 2 hurricane within 24 h under favorable environmental conditions. For the
next several days, Irma reached major hurricane status and its intensity fluctuated due to
a series of eyewall replacement cycles. It reached its peak intensity with 160-knot winds
on 6 September and maintained for 37 h, making it one of the strongest storms in the
Atlantic TC history. Later Irma recovered from another eyewall replacement cycle and
attained Category 5 status for a second time, slamming Cuba. When it made a second
landfall in Florida on 10 September, its intensity dropped back to Category 3. Although
Irma experienced weakening several times, it maintained major hurricane status for over a
week. Cangialosi et al. [26] showed that extremely high ocean surface temperatures in the
path of Irma provided a condition sufficient to sustain its strong intensity.

For each hurricane case, three simulations are conducted, including the control run
(CTRL), one with SPNU and one with SSDA technique. The simulation period for Hur-
ricane Jeanne (2004) is from 0600 UTC 21 September to 0000 UTC 29 September. And
the simulation of Hurricane Irma (2012) starts from 1200 UTC 4 September and runs for
seven days to 1200 UTC 11 September. The horizontal grid spacing is 12 km, covering a
337 × 334 grid mesh for Jeanne and 424 × 343 for Irma. The model contains up to 50 verti-
cal levels, toped at 50 hPa. Physical configurations are kept the same for all simulations,
making the nudging technique being the only differentiating factor among the simulations
of each storm. Thompson microphysics scheme [27] is selected, coupling with RRTMG long-
wave and shortwave radiation schemes [28] since they can better communicate with each
other. Moreover, other schemes adopted here are MM5 similarity surface layer scheme,
RUC land surface scheme, YSU planetary boundary layer scheme [29] and Tiedtke cu-
mulus scheme [30]. HURDAT2 data [31] from NHC provides the official assessment of
each cyclone’s history through the post-storm analysis and therefore is used here as the
“best track” data. For each hurricane case, their best track positions are mapped with the
simulated tracks.

Omrani et al. [32] has demonstrated the crucial role of nudging the tropospheric
horizontal wind in correctly simulating the other variables, such as surface temperature
and rainfall. Previous studies of hurricane tracks and intensity using SSDA-enabled models
also demonstrated the effectiveness by assimilating mid- and upper- tropospheric wind
data alone [9,11]. Therefore, in this study, both SPNU and SSDA run only nudge horizontal
winds at vertical levels above 700 hPa, while no nudging is performed below 700 hPa.
All waves with a wave number greater than a preset cutoff wave number are not nudged.
Considering the scale of the driving field and the size of the WRF domains, the cutoff
wave number in zonal and meridional directions is set to 4 for both Hurricane Jeanne
and Irma simulations, which corresponds to approximately 1000 km in wavelength. The
nudging coefficients in SPNU and SSDA methods are kept unaltered, that is, the nudging
term is scaled by their default values. The time step of nudging is set to six hours, which
is consistent with the temporal frequency of the CFSR reanalysis data. That means, the
nudging of horizontal winds towards CFSR data is conducted only at 0000 UTC, 0600 UTC,
1200 UTC and 1800 UTC. As mentioned earlier, the interval between each SSDA cycle is
also set to 6-h for convenience.
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4. Results and Discussion
4.1. Effects on the Hurricane Track, Intensity, and Structure

Liu and Xie [11] noted that the advantage of SSDA becomes more apparent for forecasts
with a lead time longer than 48-h. When hurricane simulations are initialized only with
the analysis from the coarse grid data, large differences between the simulated hurricane
intensity and the observed actual intensity can occur during the initial deepening stage.
Therefore, the following comparisons on the track and intensity are focused on the period
after the first 48-h.

4.1.1. Track and Intensity Simulations

Both SSDA and SPNU techniques performed well for the hurricane track simulations
by placing the simulated hurricanes in a realistic atmospheric circulation. Without the
strong regulations from the large-scale circulation imposed on the model interior grids,
the tracks of the CTRL run deviate substantially from the best track and veered to the
ocean instead of making landfalls, as shown in Figure 1. The simulations from both the
SSDA and the SPNU runs are much closer to the best track data. The mean track errors in
the case of Jeanne are 43 km for the SPNU run and a slightly smaller 37 km for the SSDA
run, respectively. Due to the poor description of the large-scale flow, track error for the
CTRL run is 195 km, almost five times larger than the SSDA or SPNU simulations. In the
Irma case, there is a large mean track error of 541 km for the CTRL run, SSDA performs
significantly better, with a mean track error being only 32 km, better than the SPNU run,
which has an averaged error of 58 km as compared to the best track data.
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Best track data coming from HURDAT2 is labeled as “EXP_BEST” in red.

Although the large-scale circulations are nudged towards the observed fields and
the simulated tracks are improved, intuitively this should lead to an improvement in the
simulated hurricane intensity. However, the results turn out to be not as straightforward.
The differences of central surface pressure between the simulated and the best track data
are calculated, with positive values indicating higher surface pressure is produced from the
model run. Here we take Hurricane Jeanne’s central surface pressure differences at landfall
(around 108 h, in Figure 2a) as a reference point: before landfall, the surface pressure
rapidly decreases in the SSDA run, leading to relatively small pressure differences with
the best track data. Then, after landfall, due to the deviated path in the CTRL run, the
pressure errors continue to increase, and the trends in the SSDA and the SPNU runs are
similar. Although the SSDA run resembles the overall trend of the best track data, the
pressure difference at landfall is still close to 10 hPa. Compared to the simulated central
minimum pressure, the horizontal structure of the surface winds between the nudged runs
and the reanalyzed data appears to be closer to each other. Hence, we adopted the method
of Courtney and Knaff [33] to re-evaluate the simulated minimum pressure based on the
maximum mean near-surface wind. The minimum pressure (Pc) is estimated with the
following equations:

For ϕ < 18◦

Pc = 5.962 − 0.267Vsrm −
(

Vsrm

18.26

)2
− 6.8S + Penv

For ϕ ≥ 18◦

Pc = 23.286 − 0.483Vsrm −
(

Vsrm

24.254

)2
− 12.587S − 0.483ϕ + Penv

where ϕ is latitude, Penv is the environmental pressure, which is estimated by calculating
the azimuthal mean pressure in an 800 km annulus. Vsrm is storm relative maximum wind
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and S is related to the storm size and is a function of latitude and maximum wind. More
detailed information is referred to Knaff and Zehr [34]. The approach is first used with
the NHC’s best track data, and the derived central pressure is within 5 hPa. After the
correction, the mean absolute error (MAE) of the simulated minimum surface pressure is
6.4 hPa and 5.8 hPa for the SPNU and the SSDA runs, respectively.

Climate 2022, 10, x FOR PEER REVIEW 7 of 20 
 

 

NHC’s best track data, and the derived central pressure is within 5 hPa. After the correc-
tion, the mean absolute error (MAE) of the simulated minimum surface pressure is 6.4 
hPa and 5.8 hPa for the SPNU and the SSDA runs, respectively. 

(a)  

(b)  
Figure 2. Simulated 6-hourly (a) intensity and (b) track position errors for hurricane Jeanne (2004). 

During the simulation period of Irma, its observed minimum surface pressure re-
mains below 950 hPa and reaches its peak intensity of 914 hPa around 0600 UTC 6 Sep-
tember. Thus, the lack of proper initialization directly results in a weaker representation 
of Irma in the model simulations and further leads to large intensity differences from the 
best track data as shown in Figure 3. MAEs of the derived central pressure with the above 
pressure-wind relationship are 17.8 hPa and 14.3 hPa for the SPNU and the SSDA runs, 
respectively. Although the SSDA run outperforms the SPNU run as far as the intensity is 
concerned with the simple initial conditions currently used, more comprehensive exami-
nations should proceed with proper vortex initializations, such as assimilation of bogus 
wind information. 

0

5

10

15

20

25

78 84 90 96 102 108 114 120 126 132 138

Pr
es

su
re

Er
ro

r(
hP

a)

CTRL SPNU SSDA

0

10

20

30

40

50

60

70

78 84 90 96 102 108 114 120 126 132 138

Po
si

ti
on

Er
ro

r (
km

)

Simulation Time (hours)

SPNU SSDA

Figure 2. Simulated 6-hourly (a) intensity and (b) track position errors for hurricane Jeanne (2004).

During the simulation period of Irma, its observed minimum surface pressure re-mains
below 950 hPa and reaches its peak intensity of 914 hPa around 0600 UTC 6 September.
Thus, the lack of proper initialization directly results in a weaker representation of Irma in
the model simulations and further leads to large intensity differences from the best track
data as shown in Figure 3. MAEs of the derived central pressure with the above pressure-
wind relationship are 17.8 hPa and 14.3 hPa for the SPNU and the SSDA runs, respectively.
Although the SSDA run outperforms the SPNU run as far as the intensity is concerned with
the simple initial conditions currently used, more comprehensive examinations should
proceed with proper vortex initializations, such as assimilation of bogus wind information.



Climate 2022, 10, 168 8 of 20
Climate 2022, 10, x FOR PEER REVIEW 8 of 20 
 

 

(a)  

(b)  
Figure 3. Similar as Figure 2, but for hurricane Irma (2017). (a) intensity error, and (b) track posi-
tion error. 

4.1.2. Track and Intensity Simulations 
Figure 4 shows the vertical cross sections passing through the hurricane center and 

the location of the maximum surface wind. It shows the potential temperature and hori-
zontal wind speed valid at 84 (0000 UTC 25 September), 108 (0000 UTC 26 September) and 
114 (0006 UTC 26 September) simulation hours for both SSDA and SPNU experiments of 
Jeanne. It is clear that both nudging techniques are capable of capturing the features of a 
mature hurricane structure with realistic depictions of hurricane eye and eyewall. The 
radial extents of the 34 kt wind in the quadrant with the strongest wind are around 317 
km, 306 km and 265 km at 84, 108, and 114 simulation hours from the National Oceanic 
and Atmospheric Administration/Atlantic Oceanographic and Meteorological Labora-
tory/Hurricane Research Division (NOAA/AOML/HRD) surface wind analysis (H*wind; 
[35]). Although the horizontal extent of 34 kt wind in the quadrant with the strongest wind 
from the SSDA run is generally larger than that from the SPNU run with identical initial 
condition, the results from the SSDA run are much closer to that from the observed surface 
wind analysis. In addition, low-level wind fields at 10 m height right before and after the 
landfall are shown from H*wind, SSDA, and SPNU experiments. At 108 h before landfall 
(Figure 5, left column), the simulated hurricane centers lag behind that of the observation. 
The simulated zone of the maximum sustained winds exceeding 95 kt is larger with SSDA 
than that from the observation. Both simulations appear to have a substantial asymmetry 
compared to the observed structure, especially in the SPNU run, which is trending in the 

–10

0

10

20

30

40

50

60

18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120

Pr
es

su
re

 E
rr

or
 (h

Pa
)

CTRL SPNU SSDA

0

20

40

60

80

100

120

18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120

Po
si

ti
on

Er
ro

r(
km

)

Simulation Time (hours)

SPNU SSDA

Figure 3. Similar as Figure 2, but for hurricane Irma (2017). (a) intensity error, and (b) track
position error.

4.1.2. Track and Intensity Simulations

Figure 4 shows the vertical cross sections passing through the hurricane center and the
location of the maximum surface wind. It shows the potential temperature and horizontal
wind speed valid at 84 (0000 UTC 25 September), 108 (0000 UTC 26 September) and 114
(0006 UTC 26 September) simulation hours for both SSDA and SPNU experiments of
Jeanne. It is clear that both nudging techniques are capable of capturing the features
of a mature hurricane structure with realistic depictions of hurricane eye and eyewall.
The radial extents of the 34 kt wind in the quadrant with the strongest wind are around
317 km, 306 km and 265 km at 84, 108, and 114 simulation hours from the National
Oceanic and Atmospheric Administration/Atlantic Oceanographic and Meteorological
Laboratory/Hurricane Research Division (NOAA/AOML/HRD) surface wind analysis
(H*wind; [35]). Although the horizontal extent of 34 kt wind in the quadrant with the
strongest wind from the SSDA run is generally larger than that from the SPNU run with
identical initial condition, the results from the SSDA run are much closer to that from the
observed surface wind analysis. In addition, low-level wind fields at 10 m height right
before and after the landfall are shown from H*wind, SSDA, and SPNU experiments. At
108 h before landfall (Figure 5, left column), the simulated hurricane centers lag behind
that of the observation. The simulated zone of the maximum sustained winds exceeding 95
kt is larger with SSDA than that from the observation. Both simulations appear to have a
substantial asymmetry compared to the observed structure, especially in the SPNU run,
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which is trending in the northeast-southwest direction. In addition, both experiments fail to
simulate the realistic distribution of surface winds along the Florida coasts. After landfall
(Figure 5, right column), the simulated hurricane center with both runs still lags behind
the observation and the eye appears to be larger in both experiments when compared
to the observations. Despite another high-value area in the south produced from both
runs, the maximum sustained winds generated by the SSDA run more closely resemble the
observations in both distribution and magnitude. In contrast, the eastern zone of strong
winds from the SPNU run is larger than the observation and the highest value almost
reaches 85 kt.
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In the meantime, the vertical cross sections of Hurricane Irma valid at 1200 UTC
8 September in a 24 h interval are given in Figure 6. The horizontal extents of strong
winds are larger in the SSDA run than that produced with SPNU. There is also asymmetry
observed in the simulated structures in both runs, especially at 1200 UTC 10 September
(Figure 6, bottom). Such asymmetry is similar to that in Jeanne’s simulations. The examina-
tions of hurricane structure further confirm that different ways to include the large-scale
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flow from global analyses or forecasts can result in different impacts on the small-scale
features of the regional model.
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4.2. Effects on the Large-Scale Environment
4.2.1. Horizontal Winds

The improvement of hurricane track and intensity through nudging is accomplished
by more accurately simulating the large-scale circulations. Therefore, the capabilities of
these nudging techniques to correct and reproduce the large-scale circulation are examined
by analyzing the correlations of the wind fields between the simulations and the CFSR data
at different vertical levels. The first analyzed model data for Hurricane Jeanne (2004) and
Irma (2017) is 0600 UTC 23 September and 1200 UTC 6 September, respectively, allowing for
about a 48-h model spin-up period before the main analysis. A sensitivity test shows that
extending the spin-up period to more than 2-day does not further improve the simulated
tracks and intensities.
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The spatial patterns of root mean squared differences (RMS) were analyzed between
the data series from the model simulations and the corresponding CFSR data at the same
vertical level. Although the nudging is applied at 700 hPa and above in SSDA and SPNU
experiments, wind fields at low-level respond to such impact as well. The area averaged
RMSs of winds at 850 hPa are 2.43 m/s, 2.43 m/s and 3.20 m/s, respectively, for SSDA,
SPNU and CTRL runs. The spatial distributions of wind RMS at mid-tropospheric levels are
given. The effects of nudging winds with SSDA and SPNU in Jeanne’s case are comparable
at 700 hPa and 500 hPa (Figure 7a,b). Correction of the steering flow leads to an improved
simulation along the track path, although there are small variations of the wind speeds.
In the CTRL runs, without nudging towards the driving data, simulation of Jeanne’s path
greatly deviates from its observed course. In addition, at 700 hPa, there are large RMS over
several areas, such as the southern side of Mexico and the region along the south-eastern
coasts. Those regions are greatly improved in SSDA and SPNU runs, along with the band
of large RMSs from 20◦ N to 45◦ N shown at 500 hPa. The area averaged RMSs are 2.14 m/s,
2.26 m/s and 3.14 m/s for SSDA, SPNU and CTRL runs.
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Similar improvements in wind fields are observed in Irma’s case as well (Figure 7c,d).
Compared to the CTRL run, nudging techniques reduce the differences from the driving
data spreading from 15◦ N to 45◦ N. But in this case, the abilities of nudging by SSDA and
SPNU show discrepancy. Here, the overall RMSs of winds at mid-levels in the SSDA run
are smaller than that in the SPNU run, especially over the continents and the northern side
of the domain. The area averaged RMSs of 700 hPa are 1.99 m/s and 2.29 m/s for SSDA
and SPNU, and the difference of these numbers becomes larger for 500 hPa with 2.05 m/s
and 2.71 m/s. The corrections of the large-scale wind fields by SSDA and SPNU technique
are most effective along the areas where tropical cyclones pass.

The effects on winds between SSDA and SPNU are sensitive to the selected cases. This
is supported by Figure 8 as well, showing the time series of the domain-averaged Pearson
correlation coefficients of wind fields between model runs and CFSR data. At each vertical
level, the desired variable is first re-gridded from a high-resolution grid of WRF simulation
to a low-resolution grid of CFSR data via the bilinear algorithm. Then the coefficients
are computed by correlating time series of simulated and validated CFSR winds at each
grid point. To ensure a meaningful interpretation, the first coefficient corresponds to a
time series starting from the outputs at initial time to that after the 48-h simulation time,
including 8 temporal points. As the model keeps integrating forward, the time series to
compute the correlation coefficient incrementally incorporates more temporal points.

Figure 8a,b shows the results for Jeanne, large positive coefficient signifies close
consistency between model runs and CFSR data. After 48-h simulation, nudging effect
starts to show the improvement, but it does not greatly differentiate from the CTRL run at
700 hPa. Until around 0600 UTC 26 September, overall correlation coefficients of wind field
from CTRL run start to decrease, meaning that the model run in the absence of nudging
gradually drifts away from CFSR data with reduced similarity. During the simulation
periods, effects of SSDA and SPNU on wind fields are generally comparable. In the case of
Irma (Figure 8c,d), correlation coefficients of CTRL run show a decreasing trend around
1200 UTC 8 September. A point to be further noted is that SSDA run outperforms SPNU
run a little in this case.
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Figure 8. Time series of domain-averaged Pearson correlation coefficients of wind at 700 hPa and
500 hPa for the cases: Hurricane Jeanne (a,b) and Irma (c,d).

4.2.2. Temperature and Relative Humidity

In the phase of assimilation and the internal forcing introduced by the spectral nudging,
model information experiences exchanges and spreads vertically and horizontally through
the balanced fields of wind, temperature, pressure, etc. Therefore, nudging tropospheric
wind will indirectly impact the synoptic scale circulation and further other tropospheric
variables. In the case of Irma, extremely high sea surface temperature plays a significant role
in maintaining it as a major hurricane for over a week [26]. Previous studies [36,37] have
also confirmed the contribution of enhanced relative humidity in the middle troposphere to
the formation of active TCs and even multiple tropical cyclone events. Therefore, realistic
simulations of such variables are crucial as well. To further inspect the effects of the nudging
techniques on other environmental variables, the comparisons against CFSR data of the
temperature and relative humidity are given subsequently.

Figure 9 gives the RMSs distribution of temperature at 700 hPa and 500 hPa for
Hurricane Jeanne (a,b) and Irma (c,d). It is clear that temperature fields respond indirectly
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to the nudged winds as well. Compared to RMSs fields obtained from the CTRL run,
nudging techniques apparently push the temperature fields towards the driving data by
showing reduced errors against CFSR. Areas near the southeastern coasts, Caribbean Sea
and along the western side of the domain give reduced errors compared to the CTRL run
in the case of Jeanne. For Hurricane Irma, nudging shows effects mainly over the region
to the east of the northeastern states. It is intriguing to see that SSDA and SPNU show
a remarkably different nudging effect, especially at 700 hPa for both cases (Figure 9a,c).
With SSDA applied, the band from 15 ◦N to 35 ◦N covering the Atlantic Basin has lower
RMSs with CFSR data than that generated in the SPNU runs. Those differences become
less obvious at 500 hPa, although the domain-averaged RMSs of the SSDA run (2.22 K and
2.27 K for Jeanne and Irma) are slightly smaller than that of the SPNU run (2.25 K and
2.42 K).

Climate 2022, 10, x FOR PEER REVIEW 15 of 20 
 

 

With SSDA applied, the band from 15 °N to 35 °N covering the Atlantic Basin has lower 
RMSs with CFSR data than that generated in the SPNU runs. Those differences become 
less obvious at 500 hPa, although the domain-averaged RMSs of the SSDA run (2.22 K and 
2.27 K for Jeanne and Irma) are slightly smaller than that of the SPNU run (2.25 K and 2.42 
K). 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 9. RMS patterns of 700 hPa and 500 hPa temperature fields between simulated runs and 
CFSR data, for Hurricane Jeanne (2004, (a,b)) and Irma (2017, (c,d)). 

Next, we validate the simulations of relative humidity (RH) field at mid-levels to that 
from the CFSR data. For Hurricane Jeanne (Figure 10a), in general, the RH fields take on 
the opposite patterns on each side of 30° N, wet to the south and relatively dry to the 
north. Except in the continental regions where model runs produce similar features, they 

Figure 9. RMS patterns of 700 hPa and 500 hPa temperature fields between simulated runs and CFSR
data, for Hurricane Jeanne (2004, (a,b)) and Irma (2017, (c,d)).



Climate 2022, 10, 168 16 of 20

Next, we validate the simulations of relative humidity (RH) field at mid-levels to that
from the CFSR data. For Hurricane Jeanne (Figure 10a), in general, the RH fields take on
the opposite patterns on each side of 30◦ N, wet to the south and relatively dry to the north.
Except in the continental regions where model runs produce similar features, they tend to
generate larger RH values, especially over the western side of the Gulf of Mexico and to the
east of the Bahamas. CTRL and SPNU runs produce enhanced RH along the southeastern
coastal areas and near Cuba, whereas SSDA run appears to be closer to the driving data
over those areas. This is also supported by the area-averaged RMSs of SSDA run which is
lower than that of the SPNU and CTRL runs by 20% and 34%, respectively. Overestimations
of the simulated RH by CTRL and SPNU runs are observed again in Hurricane Irma’s case
(Figure 10b). SSDA run, however, produce a drier condition over most of the maritime
areas, such as the Gulf of Mexico and eastern side of Caribbean Sea. But an important
feature of drier RH over the eastern side of the domain from the CFSR data is reproduced
only from SSDA run. Combining with a lower RMS of SSDA, the results indicate that SSDA
does not greatly drift away from the CFSR data concerning the indirect effect of nudging
winds on the mid-tropospheric RH fields.
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Figure 10. Mean 700 hPa relative humidity (unit: %) from CFSR, CTRL, SPNU, and SSDA runs for
Hurricane Jeanne (2004, (a)) and Irma (2017, (b)).

In addition, Figure 11 gives the time series of domain-averaged correlation coefficient
between model fields (TK: temperature; RH: relative humidity) and the CFSR data. Only
outputs after 48-h simulation time are counted, similar to the analysis of wind fields.
Correlation coefficients of three model runs are comparable in the first 72-h after the
simulation, and then differences are perceived. The similarities are generally higher in the
SSDA runs than that in the SPNU and CTRL runs. Overall, through nudging the upper air
winds, temperature and RH are indirectly impacted and also pushed towards the driving
data to maintain a balanced system.
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Figure 11. Similar to Figure 2, but for temperature and relative humidity at 700 hPa for Hurricane
Jeanne (2004, (a,b)) and Irma (2017, (c,d)).

5. Conclusions

The Scale-selective data assimilation (SSDA) approach shares a similar strategy with
the spectral nudging (SPNU) technique which is built inside the WRF-ARW model, to
selectively inject the large-scale components of atmospheric circulations from the global
model into the regional model.

A preliminary comparison between the two approaches is conducted for two hurricane
cases. The main conclusions are:

1. By improving the large-scale winds, the intensities and tracks of Hurricane Jeanne
(2004) and Irma (2017) are significantly improved in both the SSDA and SPNU runs.

2. The simulated temperature and humidity fields capture key features and appear
to closely resemble the driving data (reduced errors and better correlation with
observations) in the SSDA runs than in the SPNU runs, but both are better than the
CTRL runs without nudging.
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3. The storm structures produced by the SSDA runs are more realistic than that from
the SPNU runs. The surface wind distribution and intensity are better captured in
the SSDA run in Hurricane Jeanne’s case, and both are better than the control run.
Comparison for Irma is not conducted due to the lack of observed H*wind data at the
time of this study.

The results from the studies indicate that the SPNU and SSDA techniques are both
effective means to improve tropical cyclone intensity and track simulations by improving
the large-scale circulation in the regional model domain. Furthermore, the results indicate
that the SSDA runs produced better simulations of temperature and humidity fields which
are not directly nudged, as well as more accurate intensities for the two cases selected in this
study. The SSDA runs also captured more realistic storm structures than those produced
by the SPNU runs in the Hurricane Jeanne case, indicating that the SSDA method enabled
more balanced adjustments between the nudged variable (wind field used in this study)
and other variables (such as temperature and humidity) in these cases. It should be noted,
however, that generalizing these results beyond the two selected cases requires additional
studies based on a much larger sample size.
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