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Abstract: Heterogeneity-preserving property models of subsurface regions are commonly constructed
by means of sequential simulations. Sequential Gaussian simulation (SGS) and direct sequential
simulation (DSS) draw values from a local probability density function that is described by the
simple kriging estimate and the local simple kriging variance at unsampled locations. The local
simple kriging variance, however, does not necessarily reflect the geological variability being present
at subsets of the target domain. In order to address that issue, we propose a new workflow that
implements two modified versions of the popular SGS and DSS algorithms. Both modifications,
namely, LVM-DSS and LVM-SGS, aim at simulating values by means of introducing a local variance
model (LVM). The LVM is a measurement-constrained and geology-driven global representation of
the locally observable variance of a property. The proposed modified algorithms construct the local
probability density function with the LVM instead of using the simple kriging variance, while still
using the simple kriging estimate as the best linear unbiased estimator. In an outcrop analog
study, we can demonstrate that the local simple kriging variance in sequential simulations tends to
underestimate the locally observed geological variability in the target domain and certainly does
not account for the spatial distribution of the geological heterogeneity. The proposed simulation
algorithms reproduce the global histogram, the global heterogeneity, and the considered variogram
model in the range of ergodic fluctuations. LVM-SGS outperforms the other algorithms regarding
the reproduction of the variogram model. While DSS and SGS generate a randomly distributed
heterogeneity, the modified algorithms reproduce a geologically reasonable spatial distribution
of heterogeneity instead. The new workflow allows for the integration of continuous geological
trends into sequential simulations rather than using class-based approaches such as the indicator
simulation technique.

Keywords: sequential simulation; local variance model; geological heterogeneity; uncertainty
estimation; subset variability

1. Introduction

Drawing conclusions from uncertain data in Earth sciences is rather usual than unusual.
Each measurement in geoscientific studies is affected by measurement errors and represents only
a subset of the natural variability of geological media. The natural variability is a substantial
business-critical controlling factor of different types of subsurface utilization such as mining,
hydrocarbon and geothermal exploitation, carbon capture and storage, or nuclear waste disposal.
The physical variability of rocks is defined as the complexity or heterogeneity of a system within time
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and space [1]. Even marginal discrepancies from the predicted property distributions in the subsurface
can lead to inaccurate simulations of a quarrie’s production potential or a reservoir’s recovery and
life-time [2,3]. Especially the small-scale variability of rock physical properties makes field-sized
predictions still challenging.

Natural heterogeneity and the corresponding property distribution in time and space can be
modeled through interpolation, statistical regression, machine learning or stochastic simulation [4,5]
by using a number of observations or training data. Due to technical, economic or temporal limitations,
geoscientific sampling campaigns practically always end up in scarce data sets within a target
domain Ω. Accordingly, estimates of properties often do not account for or misfit the observed
geological structures in the field and especially conventional interpolation techniques such as kriging
produce smooth transitions at sharp geological boundaries. Moreover, they may fail to reproduce
the global statistics appropriately. Conventional interpolations tend to underestimate the presence of
values in the upper tail of a distribution and likewise in the lower tail, too [5]. Consequently, major
geological heterogeneities, such as faults, major bounding surfaces, or physicochemical anomalies,
are very likely not to be reproduced appropriately by a continuous random function (RF) [6].

In contrast to conventional interpolation techniques, stochastic simulations aim to reproduce the
variance and the histogram observed in the global data [7,8]. Based on either being constrained or
not, stochastic simulations split up into unconditional and conditional simulations [9]. Unconditional
Monte Carlo-based simulations reproduce the original histogram without spatial constraints.
The realizations produced by those methods, however, are regularly far away from representing
the true spatial distribution and constitute “most likely” cases at the best. Conditional simulations,
in contrast, aim to reproduce the original property distribution by means of discretely sampled points
together with spatial characteristics such as the observed variogram model [10].

One type of conventional simulation algorithms is represented by the sequential Gaussian
simulation (SGS) in which the local variability is simulated by sampling the local probability density
function (PDF) derived from the local simple kriging variance σ2

SK. This parameter results from the
previously performed interpolation of the standard normally distributed data set [11]. Early field
studies have proven the potential of this method to predict rock properties at unknown locations and to
assess the uncertainty that can be expected in the area of interest [12–15]. More recent approaches lead
to modifications of the SGS algorithm without the need to transform the original variable into standard
normal space. That technique—better known as direct sequential simulations (DSS)—may, for example,
sample from the global histogram rather than from the local PDF [9] or perform a quantile-quantile
back-transformation into the original variable’s space after the simulation. Those approaches can
reproduce both the original histogram and experimental semivariogram model as well [10]. The local
PDF derived from σ2

SK, however, mainly reflects the degree of uncertainty induced by the interpolation
method itself and does not necessarily reflect the local variability observed on a smaller scale than Ω.

In order to enhance the accuracy of sequential simulations, we propose a new workflow, which
incorporates the local variability derived from measurements on a subset of Ω into SGS and DSS
under the consideration of measurement errors. The modified SGS and DSS algorithms utilize a global
representation of the locally observable variance, named local variance model (LVM), in order to draw
a value at an unsampled location. Accordingly, the algorithms are called LVM-SGS and LVM-DSS.
Before simulation, an integer programming optimization analysis is performed in order to optimize the
robustness of the underlying interpolation function. Instead of sampling from the local PDF, which is
generated by means of σ2

SK, or by solving a global optimization problem, our parametric approach
simulates a local PDF based on a measurement-constrained and geology-driven variance extracted
from the LVM. The local PDF hereby is simulated with a Box–Muller transform [16].

The method was tested and validated in a case study, which has been conducted in a potential
geothermal reservoir formation in southwestern Germany. Therefore, we measured the intrinsic
permeability, representing a key parameter in many types of subsurface utilization, on a set of samples
taken from an active quarry. Ω is represented by a 3-D outcrop model, which is constructed by means
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of photogrammetric outcrop wall reconstruction. The model covers a volume of 9000 m3. Small-scale
variability is derived from rock samples, which are taken from two representative rock cubes. Those are
regarded as Ωb and cover a volume of 0.0156 m3 and 0.008 m3, respectively. The rock cubes are taken
from the same outcrop, from which the global samples are taken from. Eventually, our approach is
compared to the conventional SGS and DSS algorithms and assessed by its ability to reproduce the
global variogram model and the geological heterogeneity.

2. Theoretical Background

2.1. Spatial Variability

In order to reduce the probability of economic failure in mining industries, the concept of the
regionalized variable had been developed by Matheron [17] in the 1960s. The regionalized variable
is a function that takes a definite value at each point of space. In geological media that regionalized
variable often proved to be too complex to be expressed by mathematical functions. A regionalized
variable is assumed to show a more or less steady continuity in space accompanied by local fluctuations
(Figure 1). In geological media, those fluctuations usually result from the physical variability observed
at smaller scales.

Figure 1. Conceptualization of a regionalized variable after [5] exemplary illustrated for the
intrinsic permeability.

Lithological and physical variability is subject of numerous geoscientific studies [18–21] and is
commonly termed heterogeneity. In the Oxford Dictionary [22] the word heterogeneity is defined as a
Difference or diversity in kind from other things or a Composition from diverse elements or parts; multifarious
composition. In most works, this term is used to describe that an object consists of multiple subsets
being different to one another in one or more attributes. Li and Reynolds [1] restrict the term to be the
variability of a system property in three-dimensional space. Fitch et al. [23] provide a set of methods to
quantify heterogeneity within a sample of observations including the coefficient of variation (cv),

cv =

√
σ2

µ
, (1)

where σ is the standard deviation and µ is the arithmetic mean and the Dykstra–Parsons coefficient (cdp)

cdp =
x50 − x84

x50
, (2)

where xn is the nth percentile of a distribution.
The continuity of a regionalized variable is thus dependent on the continuity of the geological

media and may or may not provide continuity in a mathematical sense. In this work, we will use the
term property for a regionalized variable, the term field for the (quasi-)continuous spatial distribution
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of a property, and the term target domain Ω for an area of interest. When we mention global and local
characteristics, we refer to characteristics of Ω and its subsets Ωb, respectively.

2.2. Geostatistical Interpolation

Geostatistical interpolation techniques aim to estimate a value at unsampled locations of a
property in Ω and build the base for sequential simulations. The most popular geostatistical
interpolation technique is kriging. In the following subsections, we will briefly describe the theory
behind kriging and focus on its variety simple kriging (SK). Moreover, we will discuss practical
computational aspects such as neighborhoods.

2.2.1. Spatial Neighborhood

As the system of linear equations for geostatistical estimations might grow very large,
those algorithms require subset-sampling in order to perform reasonably. Therefore, a 3-D search
ellipsoid can be used to find the neighbors of a point in a mesh [24]. This ellipsoid can be defined by
six properties: azimuth α; dip β; plunge γ together with the radius in X rx, Y ry, and Z direction rz of
the ellipsoid. α, β, and γ define the ellipsoid’s clockwise rotation around the Z, X, and Y axes in this
exact order. Accordingly, the rotation matrix T can be defined as

T =

( cos α sin α 0
− sin α cos α 0

0 0 1

)(1 0 0
0 cos β sin β
0 − sin β cos β

)(cos γ 0 − sin γ
0 1 0

sin γ 0 cos γ

)
. (3)

After translating the mesh such that xx = xy = xz = 0 and rotating it according to Equation (3),
Equation (4) can be used to determine, whether a point x′ with the transformed coordinates x′x, x′y and
x′z is located inside or on the boundary of the search ellipsoid (≤1) or not (>1).

(
rx

x′x

)2
+

(
ry

x′y

)2

+

(
rz

x′z

)2
≤ 1 (4)

2.2.2. Variography

The variographic analysis is a crucial prerequisite for numerous geostatistical interpolation
techniques. Hereby, the experimental semivariogram represents the cumulative dissimilarity of a
discrete set of point-pairs with nc representing the count of point-pairs within the distance classes h of
identical distance increments (Equation (5)).

γ(h) =
1

2nc(h)

nc(h)

∑
k=1

(
z(xk + h)− z(xk)

)2 (5)

The continuous counterpart, represented by the theoretical semivariogram γtheo, is an
approximation of the experimental semivariogram assuming z(x) to be a stationary random field [25].
γtheo is used to fit the experimental variogram. The spherical variogram model γsph with a nugget effect
is a popular nested model used to fit the experimental semivariogram [26,27], which is calculated by

γ(h)sph =
n + b ·

( 3|h|
2a −

|h|3
2a3

)
if 0 ≤ |h| < a

n if |h| ≥ a,
(6)

with n being the nugget, b the sill and a the range [6]. The variogram model represents a covariance
function c with the relationship γ(h)theo = c(0)− c(h), where c is a positive definite, even function
and c(0) = n + b in case of a spherical variogram model with nugget effect. Semivariograms can be
used to quantify the spatial or time correlation of a random variable [27–29]. c and γtheo are input
variables for geostatistical interpolation algorithms.
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2.2.3. Simple Kriging

Kriging is a commonly used stochastic technique to interpolate geological rock properties in space
and time [30]. The kriging estimator is the best linear unbiased estimator (BLUE) of a property as it
minimizes the error variance. It incorporates the covariance structure of the globally sampled values
into the weights for predicting the value z(x0) at an unsampled location x0 [31]. Therefore, z(x0) is
calculated by weighting the values of the sampled locations and building a linear combination of those
what gives

z(x0) =
n

∑
k=1

wk · z(xk), (7)

where wk is the weight of the sampled point xk with the value z(xk). The kriging types primarily differ
by their derivation of the weight vector. For all kriging systems, a system of linear equations must be
solved as it is outlined in the following paragraphs, in which we will consider the simple kriging (SK)
technique [32] and expand it by the integration of a locally varying mean [33]. Therefore, we modify
Equation (7) into

z(x0)SK =
n

∑
k=1

wk · z(xk) +

(
1−

n

∑
k=1

wk

)
· µ. (8)

in which the known stationary mean µ has been added [6]. While SK assumes that µ is globally
constant and known, SK with locally varying mean assumes µ to be constant only in the neighborhood
of x0. In order to obtain the SK weights, a system of n linear equations must be solved in which n
stands for the number of considered neighbors. This system of equations is defined as

Aw = b, (9)

which corresponds to c(x1 − x1) · · · c(x1 − xn)
...

. . .
...

c(xn − x1) · · · c(xn − xn)


︸ ︷︷ ︸

A

wSK
1
...

wSK
n


︸ ︷︷ ︸

w

=

c(x1 − x0)
...

c(xn − x0)

 ,

︸ ︷︷ ︸
b

(10)

with c as covariance function and xn as point with known value [25]. In SK each interpolated point
provides a simple kriging variance σ2

SK [5], which we can calculate by means of the formula

σ2
SK = c(0)−

n

∑
k=1

wkc(xk, x0). (11)

The quality of a kriging interpolation is dependent on the variogram model and its goodness of
fit to the experimental semivariogram.

2.2.4. Consideration of Measurement Error Variance

We already saw that kriging induces a local interpolation error by itself, namely, σ2
SK. There are,

however, also other components which bias the interpolation result. Besides σ2
SK, the local and

unknown variability of z(x) in Ωb as well as the measurement error variance σ2
m might play an

important role (Figure 2). Integrating σ2
m into an interpolation can be achieved by estimating the

measurement error precision σm with a variance of σ2
m and incorporating it into the kriging system of

linear equations giving
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c(x1 − x1) + σ2
1 · · · c(x1 − xn)

...
. . .

...
c(xn − x1) · · · c(xn − xn) + σ2

n


wSK

1
...

wSK
n

 =

c(x1 − x0)
...

c(xn − x0)

. (12)

In contrast to the conventional formula, σ2
m with regard to the considered known value at xk is

added in the diagonal of the matrix [25]. This accounts for the heteroscedastic nature of geological
parameters as they commonly show a higher variability for high values and a lower variability for
low values.

Figure 2. Schematic of the uncertainty components integrated into a predictive model of rock properties.
(a) Illustration of an interpolation process using neighboring points xk with known values to predict
the unknown value at x0. (b–d) Schematic of the local probability density functions (PDFs) in form of a
Gaussian distribution defined by σ2 and µ for the estimated kriging error variance σ2

SK at x0 (b), the
observed measurement error σ2

m at the point x3 (c) and the observed variance σ2
b in a subset Ωb of Ω (d).

2.3. Sequential Simulation

In contrast to geostatistical interpolation techniques, sequential simulations aim to reproduce
the global statistics in form of the considered variogram model and the global histogram. Therefore,
in order to account for the spatial heterogeneity of a rock property, the sequential Gaussian simulation
(SGS) and the direct sequential simulation (DSS) algorithm can be utilized for univariate simulation.
SGS is based on the multi-Gaussian approach [33], which assumes that the kriging error is standard
normally distributed with µ = 0 and σ2

SK = 1. This requires that each one-point cumulative density
function (CDF) of any linear combination of the RV is normally distributed, that all subsets of the RF
are multivariate normal, that the two-point distribution is normal and that all conditional distributions
of subsets of the RF are normal [33]. If the RF fulfills the requirements, then the simple kriging estimate
and variance characterize the posterior cumulative CDF under consideration of the normal score
variogram model. Thus, we need to transform the original distribution’s CDF into standard normal
space for SGS. In order to transform any point in the CDF (F(Z(u))) of any random variable Z(u) to a
random function Y(u) and vice versa the following equation can be applied,

Y(u) = φ(Z(u)) = G−1[F(Z(u))], (13)

where G−1 is the inverse Gaussian CDF of Y(u), which is also named quantile function [34], and φ is
the inverse Gaussian CDF of F(Z(u)). Thus, z and y correspond to the same probabilities. For each
previously interpolated point xj now a random value of the normal distribution N

(
µSK, σ2

SK
)
,

whose PDF defines as
f (x) =

1
σ
√

2π
e−

1
2 (

x−µ
σ )

2

, (14)
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is drawn as z(x0) using the Box–Muller transform [35]. We can perform this transform by applying
the equation

z(x0) =
√
−2 · log(u1) · cos(2π · u2) · σ + µ, (15)

with u1 and u2 as random numbers ∈ [0, 1], σ as the standard deviation, and µ as the mean of the
original distribution. The simulation is eventually back-transformed into the original space using a
quantile-quantile back-transformation mapping technique. The reproduction of the covariance model,
however, does not require the multi-Gaussian approach as long as the estimate and variance are
derived from the SK estimation [9,10]. Thus, the conditional distribution type, which is chosen in order
to simulate the variability at each point, does not necessarily need to be Gaussian. With this in mind,
it is evident that a normal score transform is not needed before performing a sequential simulation.
This results in the DSS approach, which commonly samples from the global PDF by determining the
sampling interval from the local PDF [9].

2.4. Model Validation

2.4.1. Cross-Validation

In order to assess the quality of a realization, models, which are constructed by means of
interpolation or simulation techniques, should be validated. Commonly, interpolations are validated
by cross-validation. This technique is usually performed by using point removal procedures called
leave-p-out cross-validation (LpO CV). For the LpO CV, p randomly selected samples are removed
from the input data set of size n with 0 < p < n and the interpolation or simulation is performed
without these samples [36]. As measures of goodness of fit, the mean-square error (MSE, Equation (16)),
the root-mean-square error (RMSE, Equation (17)), and the mean-absolute error (MAE, Equation (18))
of the realization can be calculated as

MSE =
1
n

n

∑
k=1

(
ẑ(xk)− z(xk)

)2, (16)

RMSE =

√
1
n

n

∑
k=1

(
ẑ(xk)− z(xk)

)2 (17)

and

MAE =
1
n

n

∑
k=1
|ẑ(xk)− z(xk)|, (18)

where ẑ(xk) are the simulated points. While Willmott et al. [37] question the status of the triangle
inequality for the RMSE, which is required for a distance function metric, Chai and Draxler [38] show
that the RMSE in fact fulfills this condition. Thus, if the model errors follow a normal distribution,
the RMSE is to favor over the MAE [38].

2.4.2. Ergodic Fluctuations

The minimum requirement for geostatistical simulations is their ability to reproduce the original
data, the global summary statistics and the global variogram model [8,39]. Erdogic fluctuations refer
to the discrepancy between the model parameters and the realizations’ statistics [6]. In the case of the
variogram model, the discrepancy of a realization to the variogram model is related to the limitation of
the integrated constraints to a limited neighborhood. This, in fact, leads to higher errors at far ranges
within the simulation. In this study, we quantified the ergodic fluctuation of a realization by estimating
the average MSE between the experimental semivariogram and the variogram model. If a realization’s
discrepancy among the experimental variogram and variogram model does not exceed the original
values discrepancy, the variogram reproduction is said to be within the range of ergodic fluctuations.
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3. Sequential Simulation using a Local Variance Model

In this section, we will describe how the SGS and DSS algorithms need to be modified in order to
sample from a local variance model (LVM). The LVM can be described as a global representation of
the locally observable variance σ2

LVM in one mesh cell. Thus, the LVM can be referred to as the local
geological heterogeneity. The LVM is constructed using a mapping technique in which the value of
the mapped variances is constrained by a set of measurements. Those are intended to represent the
small-scale variability present at the mapped position. Subsequently, the variance is interpolated onto
Ω. The basic concept of interpolating a distribution in space is illustrated in Figure 3c.

2
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e
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h
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μ +1 1σμ -1 1σ

μ +2 2σμ -2 2σ
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4 m0 2
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b

Figure 3. (a) Photogrammetric model of the investigated sandstone quarry. The outcrop is
compartmentalized by two scissor faults and consists of two lacustrine-deltaic Bouma sequences [40].
(b) Sedimentological 1-D section of the sedimentary architecture observed in the outcrop. The Bouma
sequence provides an erosive base. One sequence is characterized by a fining-upward trend and consists
of intraclasts-rich massive sandstones at the base and trough cross-bedded and ripple cross-bedded
sandstones towards top [40]. (c) Spatial interpolation of a PDF exemplary illustrated with both
theoretical Gaussian distributions derived from the measurements of OSB1_c and OSB2_c.

The sequential simulations are performed on the nodes of Ω using a modification of the SGS and
DSS algorithms, namely, the LVM-SGS and LVM-DSS. Our basic idea is that, if and only if the geological
heterogeneity is exceeding σ2

SK at xk, we will sample from the LVM-constructed PDF instead of from
the kriging-derived PDF. Otherwise, if the interpolation error is greater than the expectable geological
heterogeneity, we will sample from the kriging-derived PDF. The generalized algorithm is displayed
in Algorithm 1. All analyses have been conducted with the open-source software GeoReVi [41] in
which the new algorithms have been implemented as extensions in the C# programming language
(Appendix A).
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Algorithm 1 LVM-SGS and LVM-DSS

Given: Ω; x; N . Target domain; Sampled locations; Neighborhood information;

Initialize: uSim; x′ . Simulated locations; Spatial neighbors;

if GMV-SGS then
Y(x)← Equation (13) . Transform to standard normal space

end if
γ(h)← Equation (5) . Estimate the experimental variogram

γ(h)sph ← Equation (6) . Derive the variogram model and the covariance function

for all ui in Ω do
x′ ← Equation (3) & Equation (4) . Determine the neighborhood with N applied to x & uSim

µSK ← Equation (8) using γ(h)sph . From x′

σ2
SK ← Equation (11) using γ(h)sph . From x′

Allocate σ2
LVM(x′i)

if σ2
SK ≥ σ2

LVM(x′i)
then

z(ui)← Equation (15) from N
(
µSK, σ2

SK
)

. Draw a value with σ2
SK

else
z(ui)← Equation (15) from N

(
µSK, σ2

LVM
)

. Draw a value with σ2
LVM

end if
Add z(ui) to uSim

end for
F(Z(u))← Equation (13), . Back-transform the simulated values into the original space

3.1. Case Study

In order to test and evaluate the new workflow with the modified algorithms, we conducted an
outcrop analogue study in a quarry in Germany. In the following subsections, we will outline the object
of investigation, the sampling strategy and the modeling techniques used to implement the LVM-SGS
and LVM-DSS algorithms. We decided to use the intrinsic permeability k for the implementation as
that property plays a critical role in numerous types of subsurface utilization—especially with regard
to subsurface reservoirs.

3.1.1. Object of Investigation

An actively quarried sandstone outcrop (long. 7.647546, lat. 49.523821) in Obersulzbach, which is
located in the Saar-Nahe basin in southwestern Germany, has been selected as object of investigation
(Figure 3a). The outcrop exposes the Disibodenberg Formation of the innervariscan Rotliegend Group,
which constitutes a deeply buried [42] potential hydrothermal reservoir unit [43] in the northern Upper
Rhine Graben. The Disibodenberg Formation in the quarry is composed of two Bouma sequences
(Figure 3b) from a lacustrine delta, which deposited during Permian times. There were two selection
criteria being decisive for selecting the quarry. On the one hand side, the sedimentary beds are ≥2 m
thick and laterally continuous. Moreover, the outcrop is actively mined, which reduces the impact of
recent weathering onto the permeability. Moreover, it was possible to extract both rock samples from
the outcrop wall as well as oriented rock cubes from different representative lithofacies types in order
to conduct multi-scale three-dimensional investigations. The outcrop measures 50× 15× 10 m and
thus owns the size of a typical cell in common static and dynamic reservoir models (see, e.g., in [44]).

3.1.2. Sampling Strategy

Numerous studies showed that the physical variability in geological media must be integrated as
a function of measurement volume, also known as the representative elementary volume (REV) [45].
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The REV denotes a volume, at which a representative amount of heterogeneity is captured by one
measurement [46] minimizing the smaller-scale fluctuations. Therefore, a multi-scale approach based
on the concept of the REV has been implemented. Accordingly, 39 cylindrical rock samples with
diameters and lengths of four centimeters were extracted from the outcrop wall. The samples were
taken from six 1-D profiles covering the entire quarry area (Figure 4a). More information regarding the
sample positions and orientations can be found in Linsel [41]. Those samples were used for the global
field simulations.

k [mD]

global sample positions 42.51

a b

Figure 4. (a) Photogrammetric model of the investigated sandstone quarry in Obersulzbach, Germany.
Sample locations are displayed as spheres, whose color indicates the observed permeability value at
the sample locations. (b) Hexahedral non-orthogonal mesh of the investigated outcrop generated by
an IDW interpolation using the nodes of the photogrammetric model as constraints.

The quarry contains sequences from a prodelta mouthbar deposited as turbiditic densites.
The sequences graduate from a high-energetic depositional environment at the base to a low-energetic
environment at the top as the flow velocity is steadily declining. The sequences consist of
heterogeneous, intraclast-rich sandstones at the base and of trough cross-bedded, ripple cross-bedded
and homogeneous sandstones at the top. Consequently, the sequences can be declared as Bouma
sequences containing the Bouma A to Bouma E intervals in a fluvial-dominated lacustrine-deltaic
depositional environment [47]. Based on that, we assumed that the variability within one Bouma
sequence is highest at the base and lowest at the top (Figure 3b).

Accordingly, two rock cubes of 0.2× 0.2× 0.2 m (OSB2_c) and 0.25× 0.25× 0.25 m (OSB1_c) were
taken—one from the top (Bouma E) and one from the base (Bouma A) of one sequence—in order to
capture both the highest and the lowest variability. The locations of the cubes within the quarry and
the strata are shown Figure 3a,b.

We selected two types of lithofacies: OSB1_c, a discontinuously cross-bedded, intraclast-rich
lithofacies type and OSB2_c, a homogeneous lithofacies type without macroscopically observable
internal bounding surfaces. In total, 79 rock cylinders were extracted from rock cube OSB1_c and
29 from OSB2_c. More information regarding the sampling process can be found in Linsel et al. [40].
Those samples were used for constraining the LVM.

3.1.3. Laboratory Measurements

The cylinder samples were cut, oven-dried at 105 ◦C and measured in the laboratory for
determining the intrinsic gas permeability k at unsaturated conditions. k can be considered one
of the key parameters of geothermal reservoir rocks with regard to hydrothermal systems in porous
aquifers [48]. k was measured with the Hassler cell Darmstadt permeameter. The device’s functionality
is described in detail in Filomena et al. [49]. The permeability is provided in the industry-standard
unit millidarcy (mD), where 1 mD corresponds to 9.869 × 10−16 m2. The permeability measurement
provides an error variance between 0 and 0.15 mD2 in the range of the observed values [50].
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3.1.4. Mesh Generation

In order to construct Ω, the outcrop wall is modeled using a photogrammetric representation
that was downsampled into 40× 20 faces and subsequently interpolated using Shepard’s p-value IDW
interpolation, which we can write as

z(x0) =
∑n

k=1

(
1/dp

k

)
· z(xk)

∑n
k=1 1/dp

k
, (19)

where d is the Euclidean distance between the the point with the known value xk and the point with
the unknown value x0 and p is an exponent factor to influence the weights non-linearly. IDW has been
applied with a short search radius of five meters and a power parameter of four. The interpolation
result has an RMSE of 0.024 m, which can be considered low for the surface interpolation. The resulting
outcrop surface is used as a bounding surface for a hexahedral mesh, which represents Ω, that is
composed of 75,240 cells (Figure 4b, Table 1). The rock cubes, which represent Ωb, are constructed by
an orthogonal, hexahedral mesh containing 25,230 (OSB2_c) and 64,000 cells (OSB1_c), respectively.
The volume of an average cell of the outcrop mesh is roughly eight times the volume of OSB1_c and
15 times the volume of OSB2_c (Table 1).

Table 1. Statistical characteristics of the outcrop mesh and both cube meshes (nn = number of nodes,
nc = number of cells, V = volume of the mesh, Vc = average volume of a mesh cell).

Object nn [-] nc [-] V [m3] V c [m3]

Outcrop (Ω) 82,000 75,240 9000 0.12
OSB1_c (Ωb) 68,921 64,000 0.0156 6.19×10−7

OSB2_c (Ωb) 31,500 25,230 0.008 1.25×10−7

The variance σ2
c derived from the measurements conducted on the samples from the rock cubes is

assumed to represent the variance σ2
Ωb

that can be expected in one cell of the outcrop mesh so that

σ2
LVM ≈ σ2

Ωb
, (20)

with σ2
LVM being the local sample variance, which we can calculate by means of the formula

σ2 =
1
n

n

∑
i=1

(xi − µ)2, (21)

where n is the total number of samples, µ is the mean and xi is the sample at the ith location.

4. Results

4.1. Spatial Variability

The variogram analysis reveals a range of 0.3 m and 0.2 m for the rock cube samples OSB1_c
and OSB2_c, respectively, and a range of 18 m for the outcrop samples (Figure 5a,d,g). The sill is
slightly higher in the outcrop region as it is in the rock cubes. Moreover, the outcrop samples show a
weak nugget effect. Generally, a scale effect can be observed in which the variance increases with the
considered volume. This effect is also present in the descriptive statistics (Figure 5c,f,i).

The measurements from the outcrop region show a cv of 0.28 and a cdp of 0.31. The histogram
indicates a normal distribution of k ranging from 0.7 mD to 4.6 mD (Figure 5b). A two-sided
Kolmogorov–Smirnov test [51], which is based on an implementation of Simard and Ecuyer [52],
confirmed the hypothesis that all samples come from a normal distribution. The application of Tukey’s
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outlier detection method [53] reveals no statistical outliers in the sample. By applying the classification
scheme of Corbett and Jensen [54], the sample can be classified as being very homogeneous.

The local histogram of k from OSB1_c shows a bimodality in the distrubtion ranging from 0.7
to 3.9 mD (Figure 5e). OSB2_c’s histogram shows a unimodal range from 0.8 to 1.5 mD (Figure 5h).
Again, no statistical outliers can be detected. The local variability of OSB1_c is significantly higher
than that of OSB2_c. k of OSB1_c provides a cv of 0.3 and a cdp of 0.4 while measurements from OSB2_c
show values of 0.2 for cv and 0.18 for cdp. cv and cdp of OSB1_c tend to cover the variability of the
global data. This result is in good agreement with the REV theory from Nordahl and Ringrose [45].
Both rock cubes can be classified being very homogeneous as well.
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Figure 5. Empirical variogram and variogram model, empirical histogram, and heterogeneity-indexes
derived from the k measurements for the outcrop (a–c), and the rock cubes OSB1_c (d–f) and
OSB2_c (g–i). A scale-effect is observable in the heterogeneity-indicating coefficient of variation,
the Dykstra–Parson coefficient and the sample variance. All variogram models are described by a
spherical model with nugget effect. The variogram model for (a) is described by n = 0.05 mD2, a = 23 m
and b = 0.75 mD2 with n as nugget, a as range, and b as sill. The model for (d) is described by
n = 0 mD2, a = 0.3 m and b = 0.58 mD2 while the model of (g) is described by n = 0.005 mD2, a = 0.18 m
and b = 0.08 mD2.

Thus, we can observe a significant small-scale variability. The bedding structures in OSB1_c are
well preserved in the permeability field of the k interpolation, which gradually increases from low
values between 0.7 and 2 mD in the lower beds to higher values between 2 and 4 mD in the upper beds
(Figure 6a). In OSB2_c the trend is running diagonally through the rock cube (Figure 6b); however,
no macroscopic bounding surfaces are visible, which could have had a control on the field of k here.
It should be noted, however, that the range of k is significantly smaller here compared to OSB1_c.
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Figure 6. Spatial distribution of the intrinsic permeability in the rock cubes OSB1_c (a) [40] and OSB2_c
(b) interpolated using the SK method.

4.2. Constructing the LVM

The LVM is constructed by means of a 3-D architectural element mapping of both Bouma
sequences in the quarry. The base and the top of the sequences are mapped which are being used to
constrain the LVM by the locally observable variance σ2

LVM. The exploratory data analysis reveals that
the variance of k in OSB1_c is five times larger than that of OSB2_c. This is in accordance with the
sedimentological mapping, which indicates a higher heterogeneity at the base of the Bouma sequence.

It is assumed that OSB1_c represents the most heterogeneous and OSB2_c the most homogeneous
lithofacies type in the Bouma sequences as it is illustrated in Figure 3b. Accordingly, the positions
of those lithofacies types are mapped throughout the quarry area and parameterized with σ2

LVM,
which has been determined by the k measurements of OSB1_c and OSB2_c. Thus, we use σ2

LVM = 0.43
for mapping the base boundaries of the sequences throughout the outcrop area. Likewise, σ2

LVM = 0.07
is used as a local variance for the topmost boundary of the single sequences. The mapping locations of
σ2

LVM are shown in Figure 7a. The points mapped onto the outcrop model are subsequently interpolated
onto Ω by using a SK-based interpolation procedure for parametric PDFs (Figure 3c). The interpolation
is conducted using 5 neighbors, a range of five meters, a sill of 0.005, a nugget of 0 and a plunge of 10◦

as the strata gently dip towards south. Figure 7b shows the constructed LVM which is being used by
the sequential simulation algorithms. It should be noted that we have a decent offset in the LVM in the
area of the central fault zones.

•

0 0 0

Figure 7. (a) Mapping of the local variance with regard to the observed geological structure. The highest
variance is indicated by red spheres whereas the lowest variance is indicated by blue ones. The variance
is derived from the rock cube measurements of OSB1_c—representing the most heterogeneous
lithology at the bottom of the Bouma sequences (red)—and OSB2_c—likewise representing the most
homogeneous lithology at the top of the Bouma sequences (blue). (b) The 3-D local variance model
(LVM) representing the locally observable variance, which is constrained by the mappings shown in (a).
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4.3. Optimizing the BLUE for Sequential Simulation

Prior to sequential simulation, the optimal SK conditions with regard to the integrated
measurement error variance σ2

m and the selected neighborhood are determined. Therefore, a simple
integer programming optimization is performed using varying measurement error variances (0.0 mD2

≤ σ2
m ≤ 0.15 mD2) and a varying number of neighbors (10 ≤ nn ≤ 20) as inequality constraints.

We can express the optimization problem as

min
σ2

m∈R, nn∈N
εSK(σ

2
m, nn) (22)

subject to 0 ≤ σ2
m ≤ 0.15

10 ≤ nn ≤ 20,

in which the SK error εSK in form of the RMSE and MAE must be minimized. The response surface
of the numerical optimization process indicates that the SK error is generally declining when σ2

m is
increasing. The lowest errors are produced with an nn of 10, 11, and 20. This sensitivity of the SK
error on the number of neighboring points is not unusual. The numerical optimization reveals that the
optimal conditions for SK are met at nn = 20 and σ2

m = 0.15 which yields a RMSE of 0.708 mD (Figure 8).
The interpolation error can be reduced by 16.5% for the RMSE and by 18.5% for the MAE. The final SK
realization and the spatial distribution of σ2

SK for that exact model is illustrated in Figure 9. It should be
noted that the spatial distribution of σ2

SK in a sequential simulation is different as previously simulated
locations are considered as well.
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Figure 8. Results of the linear integer programming optimization using the marked sampling points.
The interpolation error εRMSE is minimized using the inequality constraints given in Equation (22).
(a) RMSE response surface with regard to the incorporated measurement error variance σ2

m and the
maximum number of neighbors nn using a leave-one-out cross-validation. (b) Cross sections through
the response surface of (a).

The final modeling variables for the sequential simulations are given in Table 2. For SGS and
LVM-SGS, the original data are transformed into standard normal space with µ = 0 and σ = 1.
The transformation leads to an adaption of the considered variogram model as the sill is now 1
and not 0.75 with a nugget of 0 instead of 0.05.
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Figure 9. (a) Simple kriging estimate (b) and the local simple kriging variance for one SK realization.

Table 2. Modeling variables for the sequential simulations.

Variable SGS & LVM-SGS DSS & LVM-DSS

BLUE SK SK
Normal score transform yes no
Quantile-quantile back transform yes yes
Range x 50 m 50 m
Range y 50 m 50 m
Range z 15 m 15 m
Nugget 0.05 0
Sill 0.75 mD2 1 mD2

Range 23 m 23 m
Max. number of neighbors 20 20
Azimuth 0◦ 0◦

Dip 0◦ 0◦

Plunge 10◦ 10◦

Measurement error variance 0.15 mD2 0.15 mD2

4.4. σ2
SK versus σ2

LVM

The statistical and spatial characteristics of σ2
SK and σ2

LVM differ tremendously. σ2
SK is unimodally

distributed, whereas σ2
LVM provides a bimodal distribution (Figure 10a). It is evident that σ2

SK covers
the total range of the considered covariance model while σ2

LVM’s range is more limited. The probability
of simulating variances between 0.2 and 0.43 mD2 is higher when sampling from the LVM instead
of the local SK variance (Figure 10b). The median between σ2

LVM and σ2
SK differs by ≈ 0.08 mD2,

which indicates that the variability simulated in a realization of conventional sequential simulation
algorithms is systematically underestimated.

With regard to the variogram model, σ2
LVM has a range of 5 m and a sill of 0.36 mD2, and σ2

SK
has a range of 0.3 m and a sill of 0.1 mD2. Thus, σ2

SK seems to be spatially uncorrelated and random.
However, the grade of variability in the eastern part of the outcrop is slightly higher than in the western
part. Therefore, in contrast to σ2

LVM, σ2
SK obviously does not provide the simulation algorithm with a

spatial trend when simulating the local variability.
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Figure 10. (a) Comparison of the empirical histograms of the σ2
SK model produced in a DSS realization

with the LVM and (b) the empirical distribution of σ2
SK produced in the realization of (a).

4.5. Model Validation

All algorithms reproduce the considered variogram model within the range of ergodic fluctuations
after back-transformation (Figure 11a–d). The quality of variogram reproduction has been evaluated
by calculating the average mean square error εMSE of all realizations between the experimental
variogram and the variogram model. The best reproduction is produced by the LVM-DSS and
LVM-SGS algorithms, while the latter one provides the lowest degree of ergodic fluctuations
with εMSE = 0.066 mD2. All realizations reproduce short-range dissimilarities well but slightly
underestimate the dissimilarity at medium ranges. DSS and SGS tend to gentle underestimation
at far ranges which is a drawback of limited neighborhoods. This effect, however, is less expressed
in the LVM-based algorithms. For both types of sequential simulation, the LVM-based algorithm
outperforms the conventional conditional simulation approaches.



ISPRS Int. J. Geo-Inf. 2020, 9, 409 17 of 23

0 10 20 30 40 50
0

0 5.

1

1 5.

0

0 5.

1

1 5.

γ
(

)
h

[m
D

]
2

h [m]h [m]

γ
(

)
h

[m
D

]
2

εMSE =0.0 [mD ]66
2

εMSE =0.0 [mD ]8
2

εMSE =0.0 5 [mD ]7
2

DSS SGS

LVM-DSS LVM-SGS

εMSE =0.0 [mD ]83
2

0 10 20 30 40 50

a b

c d

Figure 11. Experimental variograms (gray) for 15 realizations of DSS (a), SGS (b), LVM-DSS (c) and
LVM-SGS (d) plotted together with the average over all realizations (blue) and the considered variogram
model (red), which is described by a nugget of 0.05 mD2, a range of 23 m and a sill of 0.75 mD2.

Visual Outputs

It is evident that all simulation algorithms provide visually comparable results (Figure 12).
It should be noted that the quadrilaterals of the 3-D models are subdivided using the Catmull–Clark
scheme [55] for visualization. Within this scheme, a new point in a quadrilateral is calculated by

xk+1
j =

1
n

n−1

∑
i=0

xk
i , (23)

with xk+1
j as the new point at subdivision step k + 1 in the center of the element j with n vertices at

the subdivision step k. This technique smooths the observable patterns in the models. There is an
obvious trend in all realizations, which indicates that the highest values are located in the eastern
part of the quarry and the lowest values in the western part. Having in mind that the applied
algorithms are conditional, this trend is in well accordance with the constraints as given by the global
measurements, which also provide the highest values in the eastern part of the quarry and the lowest
values in the western part (Figure 4a). The trend is most clearly depicted in the DSS and LVM-DSS
realizations (Figure 12). SGS and DSS tend to construct homogeneous regions more likely than their
LVM equivalents. Thus, those algorithms might indicate a homogeneity, which is likely not present in
the strata. Moreover, the heterogeneity of the LVM equivalents is more realistically oriented along the
bounding surfaces in the quarry than the models produced by the conventional algorithms.
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Figure 12. Exemplary model visualizations for the DSS, SGS, LVM-DSS and LVM-SGS realizations.

5. Discussion

In this study, we present a workflow that accounts for the locally observable geological variability
in modified versions of conventional sequential simulation algorithms. Our approaches produce
similar outputs as the conventional algorithms and reproduce the global variance model together
with the global summary statistics, which are important criteria for the validity of a statistical
simulation [8,10,39]. Our results are confirming the concept of the REV [45], in which the complexity of
a continuous random variable is increasing with reducing the scale of observation. Moreover, we can
confirm that σ2

SK constitutes no measure for the local estimation accuracy [56] as it is only reflecting
the spatial configuration of the constraining data points being simultaneously independent on the
constraints’ values [6]. There are, however, two points which must be raised in order to discuss the
benefits as well as the drawbacks of our approach.

5.1. Construction of the LVM

The main source of errors in the proposed workflow is based on the construction of the LVM.
The LVM has been derived by an integrated approach of measuring the local variability in the most
homogeneous and most heterogeneous lithofacies types in the sedimentary succession. The statistical
analysis revealed that this assumption proved to be true as the heterogeneity measures in OSB1_c
indicate a way higher variability as is present in OSB2_c. This, in fact, is building the basis for this
study. The variance has been assumed to be constant at the base and at the top of a Bouma sequence.
This assumption is limited by the number of samples taken within this case study. By constructing
the LVM with an SK interpolation, we assume that the variance in one sedimentary Bouma sequence
is continuous in a mathematical sense. This assumption might be proved to be too simple in future
studies. In order to validate those results, more local samples would be necessary to constrain the
LVM. This is a drawback in comparison to conventional SGS and DSS algorithms as those are not
dependent on estimating a global variability model.

5.2. Comparison of the Spatial Distribution of the Local Variance

Figure 13a,b illustrates the relationship between the LVM and a DSS realization (a) and an
LVM-DSS realization, respectively (b). Although the overall trend remains identical among both types
of simulation, the spatial distribution of local variability is uncorrelated and inherently different. In the
DSS realization, the heterogeneity within the region is randomly distributed. The most heterogeneous
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areas in the LVM-DSS realization reside in the light areas—in which σ2
LVM is high—whereas the most

homogeneous regions reside in the dark ones—where σ2
LVM is low. As the spatial distribution of σ2

SK
is primarily dependent on the distance to the constraining neighbors, the SGS and DSS algorithms,
in contrast to their LVM-based modifications, cannot account for a realistic spatial distribution of the
local geological variability. This observation is conceptually illustrated in Figure 13c, which shows the
spatial relationship between σ2

SK and σ2
LVM, as implied by the results of our study. It is evident that the

conventional algorithms underestimate the local geological variability in close ranges to conditional
data. It is also evident that σ2

SK systematically underestimates the natural variability present in the
geological medium, which is investigated in this study (Figure 10a). Therefore, SGS and DSS might
not be able reproduce the total geological variability as shown in this study, which is an advantage of
the proposed algorithms instead.
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Figure 13. Top-view onto a representative simulation result of DSS (a) and LVM-DSS (b) superimposed
by a gray-scale representation of the LVM with an opacity of 0.6. It is evident that the LVM-based
algorithms’ heterogeneity is highest in that area of the LVM in which it provides the highest local
variance as well. The conventional approach, however, does not reflect the expected variance in space.
(c) Conceptual illustration showing the spatial distribution of the constraining measurements k(xj) and
the spatial relationship between the simple kriging estimate µSK with the measurement error εm and
the two parameters used to simulate k in this study namely σ2

SK and σ2
LVM. Pr stands for the probability

of k under the condition that k belongs to the Gaussian distribution described by µSK together with
either σ2

SK or σ2
LVM.
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6. Conclusions

In this study, we propose a new workflow, which incorporates the locally observed variability
σ2

LVM into sequential simulations. We could demonstrate that the local simple kriging variance σ2
SK

differs from σ2
LVM in local volumes of the target region. Therefore, the DSS and SGS algorithms have

been modified by the replacement of σ2
SK through the measurement-derived σ2

LVM within one mesh cell.
This replacement has been done if and only if σ2

LVM ≥ σ2
SK. The LVM has been constructed by means

of geological mapping and the assumption that the variability is highest in the most heterogeneous
lithology and lowest in the least heterogeneous lithology in a Bouma sequence. The proposed approach
can be used in any type of spatial property simulation but is especially tailored for geological media.

The LVM-DSS and LVM-SGS approaches reproduce the observed variability in the sedimentary
succession adequately yet reproducing the minimum required statistical measures of a valid simulation
including the global histogram, the global heterogeneity, and the variogram model. Moreover,
in contrast to their conventional representatives, the LVM-based algorithms account for the spatial
distribution of the expected local variance adequately. Once the LVM is derived, it may be integrated
into other geostatistical simulation algorithms such as the turning bands method [57–60].

From our results we conclude the following.

1. The distance metrics RMSE and MAE in spatial interpolations can be optimized with regard to
the measurement error variance and the optimal neighborhood.

2. Geological samples always represent a small subset of the local variability, which should be
accounted for by high-resolution sampling at a random basis at the least.

3. The simple kriging variance does not necessarily account for the magnitude of local variability in
geological media and definitely does not account for its spatial distribution.

4. The fact that the local simple kriging variance does not reflect a geological trend might lead to
unforeseen problems when using sequential simulation-derived models as a basis for subsurface
utilization processes because the full geological heterogeneity might not have been taken into
account properly.

5. By introducing a measurement-constrained, geology-driven local variance model, the spatial
distribution of the variance that is expected in the investigated quarry can be integrated into
sequential simulations. This allows to simulate the geological variability, which might be greater
than the simulated variability in conventional sequential simulation algorithms.

Future research should focus on comparing σ2
SK and σ2

LVM under the consideration of other
physicochemical properties, other geological settings, and other scales. This might require adapting
the assumptions on the spatial continuity of the variability which should, however, always be based
on reliable geological analyses.
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Abbreviations

The following abbreviations are used in this manuscript:

CDF Cumulative distribution function
DSS Direct sequential simulation
LVM Local variance model
LpO CV Leave-p-out cross-validation
MAE Mean-absolute-error
MSE Mean-square error
PDF probability density function
REV Representative elementary volume
RMSE Root-mean-square error
RF Random function
RV Random variable
SGS Sequential Gaussian simulation
SK Simple kriging

Appendix A. Code and Data Availability

GeoReVi is an open-source software for Windows systems available under https://github.com/
ApirsAL/GeoReVi. Data is available under https://www.doi.org/10.6084/m9.figshare.11791407.v2.
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