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Abstract: Travel times in urban road networks are highly stochastic. However, most existing travel
time estimation methods only estimate the mean travel times, while ignoring travel time variances.
To this end, this paper proposes a robust travel time distribution estimation method to estimate both
the mean and variance of travel times by using emerging low-frequency floating car data. Different
from the existing studies, the path travel time distribution in this study is formulated as the sum of the
deterministic link travel times and stochastic turning delays at intersections. Using this formulation,
distinct travel time delays for different turning movements at the same intersection can be well
captured. In this study, a speed estimation algorithm is developed to estimate the deterministic
link travel times, and a distribution estimation algorithm is proposed to estimate the stochastic
turning delays. Considering the low sampling rate of the floating car data, a weighted moving
average algorithm is further developed for a robust estimation of the path travel time distribution.
A real-world case study in Wuhan, China is carried out to validate the applicability of the proposed
method. The results of the case study show that the proposed method can obtain a reliable and
accurate estimation of path travel time distribution in congested urban road networks.

Keywords: travel time distribution; turning delay distribution; floating car data; advanced traffic
information systems

1. Introduction

In recent years, urban road networks in many countries are becoming more congested [1].
To alleviate traffic congestions, increasing attention has been given to developing intelligent
transportation systems (ITS), with the aim to best use existing transportation networks through various
advanced information technologies. The accurate and robust estimation of travel time information is
critical to many ITS applications. The provision of updated travel time information enables travelers to
make informed path choice decisions to avoid congested sites [2–4]. Moreover, the updated travel time
information allows for network operators to evaluate network performance, and to identify bottlenecks
for proactively deploying effective controls so as to improve overall traffic conditions [5,6].

During the last few decades, various technologies have been developed to collect real-time
travel time information [7,8]. Existing data collection techniques could be roughly classified into two
categories: fixed traffic detection systems; and, floating car systems [9,10]. The fixed traffic detection
systems employ conventional stationary detectors, such as loop detectors, installed at specific locations
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of road segments. These stationary detectors can continuously record every travel speed and traffic
volume for all vehicles passing through the road segment with detectors. Because of their high
installation and maintenance cost, stationary detectors are generally installed at only freeways or a few
major roads. Thus, fixed traffic detector systems tend to have a small spatial coverage. Floating car
systems are an emerging data collection technique, due to the recent advances in positioning and
wireless communication techniques. The floating car system typically makes use of a large fleet of
probe vehicles (e.g., thousands of taxis in a city), equipped with global positioning system (GPS)
devices. The locations and speeds of moving probe vehicles are collected at a certain time interval to
estimate travel time. The floating car systems are able to collect real-time travel time information for
any part of the network where probe vehicles move. Due to the low operational cost and large spatial
coverage, floating car data (FCD) recently has become a major data source for travel time estimation
studies, as well as many ITS applications.

Travel time estimation methods have been intensively studied in the existing literature [10].
Many effective methods have been proposed to estimate the mean travel times in freeways based on
stationary detectors, including statistical methods and analytical methods [11–17]. These travel time
estimation methods for freeways, however, cannot be easily applied to urban road networks, mainly
due to the following two reasons. Firstly, as mentioned above, stationary detectors are generally
deployed at a few major roads, and are thus insufficient for estimating travel times in large-scale urban
road networks. Secondly, travel times in congested urban road networks are highly stochastic, largely
caused by the interruptions of signal controls at intersections. Many empirical studies have found that
the stochastic nature of travel times in urban road networks have had a significant impact on travelers’
route choice behavior [4]. The reliability of travel times has been recognized by network operators as
one of the most important performance indicators. Nevertheless, the existing methods for estimating
mean travel times in freeways ignore travel time variances, and thus are inadequate for estimating
actual traffic conditions in urban road networks. Therefore, it is necessary to develop new methods for
estimating both the mean and the variation of travel times (i.e., travel time distributions) in urban road
networks using FCD.

In recent years, much attention has been given to developing travel time estimation methods
based on the FCD [1,11,15,17–21]. Herring [17] used FCD to estimate and predict traffic states, rather
than link travel times. Sanaullah [19] used FCD to study the influence of vehicle penetration rates,
data sampling frequencies, vehicle coverage on the links, and time window lengths on the accuracy of
link travel time. Zheng [20] proposed a three-layer ANN model to estimate urban link travel times
for individual probe vehicle data. Tang [21] presented a method to estimate travel time based on
low-frequency FCD. These travel time estimation methods based on FCD could provide effective mean
travel times for a large-scale road networks, but travel time variances are still ignored.

To the best of our knowledge, only a few methods based on FCD have been developed to estimate
travel time distributions in urban road networks. Jenelius [1] presented a statistical model to estimate
travel time in urban road networks based on low-frequency FCD. Both the mean travel time and 95%
confidence intervals were given. Jenelius [22] analyzed the estimation of path travel time distributions
based on probe vehicle data sampled by time and space, and highlighted the difference between
them. Rahmani [15] developed a non-parametric method for route travel time distribution estimation
using low-frequency FCD. The 25th, 50th, and 75th percentile values of the estimated travel time
distributions were used to compare with that of the observed travel time distributions.

Along the line of previous work, this study proposes a robust method to estimate travel time
distributions in urban road networks by using low-frequency FCD. Different from previous work,
the path travel time distribution in this study is formulated as the sum of deterministic link travel
times, and stochastic turning delays at intersections. Using this formulation, distinct travel time delays
for different turning movements at the same intersection can be well captured. For example, left turns
in China or USA (or right turns in the UK) are generally much more difficult than forward movements.
The main contributions of this paper are summarized as follows.
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Firstly, an effective method is proposed to estimate path travel time distributions based on
low-frequency FCD. In this study, the path travel time distribution in this study is formulated as the
sum of the deterministic link travel times and stochastic turning delays at intersections. A robust speed
estimation algorithm based on the degree of central tendency is proposed to estimate deterministic
link travel times. A distribution estimation algorithm is proposed to estimate the stochastic turning
delays. Based on the arrival time of the intersection, α-discrete approximation method [23] is utilized
to generate the path travel time distribution.

Secondly, a weighted moving average algorithm is proposed to smooth deterministic link travel
time and stochastic turning delays. Considering the low level of market penetration and the low
sampling rate of probe vehicles, the sample size of FCD may not be sufficient in some time intervals.
Thus, this method can provide a robust estimation and obtain reliable results.

Thirdly, to illustrate the applicability of the proposed method, a comprehensive case study is
carried out using FCD from the Wuhan network. Two new indexes are employed to evaluate the
accuracy of the estimated path travel time distributions. The experimental results show that the
proposed method can obtain a reliable and accurate estimation of path travel time distribution in
congested urban road networks.

The remainder of this paper is organized as follows. Problem statement of travel time distribution
estimation is introduced in Section 2. The proposed method to estimate travel time distribution is
presented in Section 3. A case study using real-world FCD collected at Wuhan, China is reported in
Section 4. Conclusions and recommendations for further research are given in Section 5.

2. Problem Statement

A road network can be represented as a directed graph G = (N, A, Ψ), consisting of a set of n
nodes N = {ni}, i = 1, 2, · · · , n, a set of directed links A =

{
aij
∣∣ni, nj ∈ N

}
, and a set of allowed

movements Ψ =
{
ψijk

∣∣∣aij, ajk ∈ A
}

. Each node ni is a geographical location representing a network
intersection, which can be either signalized or non-signalized [24]. A link aij is defined to be the road
section from its tail node ni to head node nj. Its length is denoted by dij, and its travel time, denoted by
tij, is represented to be deterministic but varying with time of day. Each element ψijk ∈ Ψ represents
an allowed movement from tail link aij to head link ajk, passing through node nj. A movementψijk /∈ Ψ
means that this movement is restricted in the road network (e.g., no U-turn). A movement ψijk is
assumed to have no physical distance, but it associates with a stochastic turning delay, denoted by Tijk,
varying with different probe vehicles and time of day. In this study, different movements (e.g., left-turn,
through, and right-turn movements in Figure 1) at the same node can have distinct turning delays.
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Let pod be a selected path from origin no to destination nd. The path travel time, denoted by Tod,
is the sum of the related link travel times and turning delays along the path as

Tod = ∑
aij∈pod

tij(Yi) + ∑
ψijk∈pod

Tijk(Yj) (1)

where Yi and Yj are the arrival times at link aij and node nj respectively. As both arrival time and
turning delays are stochastic time-dependent variables, the path travel time Tod is also a random
variable conditionally depending on arrival times, link travel times and turning delays along the path.

In this study, trajectories of probe vehicles (i.e., FCD) are adopted to estimate the path travel
time distribution, Tod, as well as associated link travel times and turning delay distributions along the
path. As shown in Figure 1, the trajectory of rth probe vehicle consists of a set of GPS sampling points,
{..., cr

ij, ...}. Each GPS sampling point cr
ij compromises of a set of attributes, including time stamp λr

ij,
instantaneous speed vr

ij, and geographic location in terms of latitude and longitude. This geographical
location can be equivalently represented by a network location using the linear reference system in
terms of a link aij and a relative location θr

ij ∈ [0, 1] [7]. For example, θr
ij = 0.5 indicates sampling

point cr
ij is located at the middle of the link aij. As illustrated in Figure 1, there are two GPS sampling

points, cr
ij and cr

jk, at adjacent links aij and ajk. The time difference λr
jk − λ

r
ij between these two sampling

points is the vehicle’s experienced travel time, which can be decomposed into two components:
(1) deterministic travel times at these two network links, (1 − θr

ij)tij + θ
r
jktjk, (2) and a stochastic

turning delay τr
ijk, experienced for movement ψr

ijk. Given a trajectory set of r probe vehicles during
the same time interval, the observation set of link travel times and turning delay distributions can be
generated. In next section, a robust method is proposed to estimate the path travel time distributions
based on the observation set generated from FCD.

3. The Proposed Method

In this section, a robust method to estimate path travel time distribution using low-frequency FCD
is proposed. Figure 2 shows the framework of this proposed method. After collecting the FCD, a basic
work should be done first. Due to GPS measurement errors and digital map geometric errors, the GPS
locations may not appear on the network links. Thus, a map-matching (MM) procedure is required to
precisely match these FCD onto network links. Then, link travel time is estimated as a deterministic
value considering the reliability of the collected speed data. Next, the estimation of turning delay
distribution is presented. Afterward, a weighted moving average method is adopted in this study
to smooth the travel time of each interval to provide a reliable and robust estimation of travel time
distribution. Finally, path travel time distribution or interval is estimated.
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3.1. Link Travel Time Estimation

The link travel time tij is calculated as the ratio of link length and speed (tij = dij/vij), where,
vij is the maximum speed of link aij. To ensure the reliability of the maximum speed, the sampling
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speed of all vehicles on link aij are sorted in ascending order. The last several sampling speeds are
weighted to calculate the maximum link speed as follows.

vij =
u

∑
p=1

q

∑
r=1

wr,p
ij ∗ vr,p

ij /
u

∑
p=1

q

∑
r=1

wr,p
ij (2)

where vr,p
ij is the speed of pth sampling point of rth probe vehicle on the link aij during the period of

interest. wr,p
ij denotes the weight of the corresponding GPS sampling speed vr,p

ij .
In this study, it is postulated that the vehicles far from the intersections are less likely to be

interrupted by signal timing. Following this postulation, the concept of degree of central tendency is
introduced to calculate the weight parameter wr,p

ij . The degree of central tendency indicates that the
degree of a sampling point from the midpoint of link, and can be obtained by the following formula:

wr,p
ij = 1−

∣∣∣θr,p
ij − 0.5

∣∣∣/0.5 = 1−
∣∣∣2 ∗ θr,p

ij − 1
∣∣∣ (3)

Only when the GPS sampling points are on the middle of the link, that is, θr,p
ij equals to 0.5,

the degree of central tendency wr,p
ij is equal 1, which means that the GPS sampling point is fairly

reliable based on the hypothesis.

3.2. Estimation of Turning Delay Distribution

This step is to estimate the turning delay distribution for different turning movements. For the rth

probe vehicle, these can be categorized into two types: (I) there is at least one sampling point from
the same probe vehicle on each link; (II) at least one full link is existing between the two consecutive
sampling points from the same probe vehicle as shown in Figure 3.
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3.2.1. Turning Delay Estimation for Type I

Figure 4 shows an illustration of sparsely sampling GPS data on the links for Type I. As shown
in Figure 4, given the rth probe vehicle, its locations at tail link aij and head link ajk are recorded at
time instance λr

ij and λr
jk respectively. It should be noted that if several GPS points are recorded in

the same link, the GPS point with the largest central tendency degree (blue points) is selected. It can
reduce error caused by sampling points being too close to the intersection. As shown in the blue area
of Figure 4, the difference (λr

jk − λ
r
ij) of these two time stamps λr

ij and λr
jk is the experienced travel time

between two sampling points.
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is equal 1. However, the sampling points cannot be exactly in the middle of the links as there are
still acceleration (or deceleration) times arriving at the intersection and leaving from the midpoints.
In this study, vehicles are assumed to accelerate to a maximum speed or decelerate to current speed
uniformly. τr

ij and τr
jk (the red areas shown in Figure 4) represent these acceleration (or deceleration)
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τr
jk =

∣∣∣vjk−vr
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∣∣∣
vjk · (vjk + vr

jk)
(5)

In addition, the relationship between the sampling points (blue points) and midpoints (red points)
has a certain influence on the calculation of travel time between the two consecutive midpoints.
For example, in Figure 4, τr

ij should be included in the travel time, while τr
jk should be excluded.

Therefore, sign function is introduced to describe this situation as follows.

sgn(θr
∗ − 0.5) =


−1 θr

∗ < 0.5
0 θr

∗ = 0.5
1 θr

∗ > 0.5
(6)

Following the travel direction in Figure 4, when the sampling point is on the right side of
the midpoint (e.g., θr

ij > 0.5), sgn(θr
ij − 0.5) = 1. Also, when the sampling points are accurately

located in the midpoints, sgn(θr
∗ − 0.5) is equal to 0, which means that there is no acceleration

(or deceleration) times.
The turning delay (denoted by τr

ijk, the green area in Figure 4), experienced when the vehicle
passes through the turning movement ψijk, can be estimated by subtracting free-flow travel time from
the total travel time as shown below:

τr
ijk = (λr

jk − λ
r
ij) + [sgn(θr

ij − 0.5) · τr
ij − sgn(θr

jk − 0.5) · τr
jk]− (

dij

2 · vij
+

djk

2 · vjk
) (7)
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The first two terms in Equation (7) are the estimated travel time with delays. In the third term,
the vehicle is travelling at a constant speed vjk on head link ajk and vij on tail link aij, while the delay
due to queuing, acceleration, and deceleration is included in the turning delay.

3.2.2. Turning Delay Estimation for Type II

For Type II, the question is how to reallocate travel delay into individual intersections only
based on the GPS-equipped FCD. Some models have been developed to decompose travel times by
Hellinga [25] and Zheng [20]. However, considering the algorithm’s complexity and efficiency, a more
simple and effective method is put forward.

There are two intersections between two sampling points as shown in Figure 5. Similar to Type I,
the turning delays (denoted as τr

ijk, τr
jkl) for these two intersections can be estimated as

τr
ijk + τ

r
jkl = (λr

kl − λ
r
ij) + [sgn(θr

ij − 0.5) · τr
ij − sgn(θr

kl − 0.5) · τr
kl ]− (

dij

2 · vij
+

dkl
2 · vkl

) (8)

where τr
ij and τr

kl can be calculated similarly with Equations (4) and (5).
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The question is how to reallocate turning delays into each intersection. The traffic condition in the
middle link is likely to be free flow, since the sampling interval is quite short. The allocation coefficients
are the function of travel speed, link free-flow speed, link length, and the relative location of sampling
points on the link. However, to simply to the algorithm, it is assumed that the delays passing through
the upstream and downstream intersections are proportional to the length between the two midpoints.
Hence, the allocated delays of intersections nj and nk are calculated accordingly as followings:

τr
ijk =

1
2 dij +

1
2 djk

1
2 dij + djk +

1
2 dkl
· (τr

ijk + τ
r
jkl) =

dij + djk

dij + 2 · djk + dkl
· (τr

ijk + τ
r
jkl) (9)

τr
jkl =

1
2 djk +

1
2 dkl

1
2 dij + djk +

1
2 dkl
· (τr

ijk + τ
r
jkl) =

djk + dkl

dij + 2 · djk + dkl
· (τr

ijk + τ
r
jkl) (10)

3.2.3. Delay Distribution of Different Turning Movements

Three kinds of turning movements are defined when probe vehicles go through the road
intersection, that is, through-movement, left-turn movement, and right-turn movement [18]. With the
obtained turning delays, τr

ijk, for all probe vehicles during the same time interval, the turning delay
distribution, Tijk, can be fitted. In general, the turning delay obeys Normal, Lognormal, or Gamma
distribution. In this paper, the best-fitted distribution is chosen as the type of turning delay distribution.
Therefore, the turning delay distribution may change with different intersections and time intervals.
It is much more reasonable in highly stochastic urban road networks.
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3.3. The Weighted Moving Average Method

As probe vehicles generally have a low level of market penetration (e.g., 3%) and a low sampling
rate (e.g., 2 min), the sample size of FCD may not be sufficient in some time intervals. The smoothing
methods, such as the moving average method, Savitzky–Golay smoothing, roughness penalty
smoothing, and Kernel smoothing are a commonly used techniques to address this issue. In the
previous studies, smoothing methods are generally employed to obtain a robust estimation of mean
travel times. In this study, the conventional moving average method is extended to obtain a robust
estimation of bot mean and variances of travel times. The moving average method is adopted due
to its simplicity and effectiveness [26,27]. Let te

ij,w−1 and tij,w be the estimated link travel time at time
interval w− 1 and link travel time at time interval w. Using the weighted moving average method,
the estimated link travel time at time interval w, denoted by te

ij,w can be calculated by

te
ij,w = αw · tij,w + (1− αw) · te

ij,w−1 (11)

αw = 1− (1− η)rw (12)

where αw is the adaptive smoothing factor, which depends on a sensitivity parameter η and the number
of probe vehicles rw passing link aij during the time interval w.

This weighted moving average method is further extended to improve the turning delay
distribution. Let Te

ijk,w−1 and Te
ijk,w be the estimated travel time distribution at time intervals w− 1 and

w using the weighted moving average method, tijk,w and σijk,w be the mean and standard deviation
(STD) of the turning delay distribution at time interval w. The estimated travel delay distribution can
be calculated by

te
ijk,w = βw · tijk,w + (1− βw) · te

ijk,w−1 (13)

(σe
ijk,w)

2 = βw · (σijk,w)
2 + (1− βw) · (σe

ijk,w−1)
2 (14)

βw = 1− (1− η)sw (15)

where βw is the adaptive smoothing factor. sw is the number of probe vehicles through the turning
movement ψijk during time interval w. te

ijk,w, te
ijk,w−1, σe

ijk,w and σe
ijk,w−1 are the estimated mean and

STD of the turning delay distribution at time interval w and w− 1, respectively. After processing the
results with the weighted moving average method, estimated travel delays can be quite reliable.

3.4. Estimation of Path Travel Time Distribution

Let the mean and STD of path travel time distribution be tod and σod, respectively. They can be
expressed as

tod =
λ

∑
i=1

ti
ij(Yi) +

λ−1

∑
i=1

tj
ijk(Yj) (16)

σod =

√√√√λ−1

∑
i=1

(σi)
2
+

λ−1

∑
i=1

λ−1

∑
j=1

cov(ψi, ψj) (17)

where cov(ψi, ψj) is the travel time covariance between the ith and jth intersections along the path.
In the application of ITS, the provision of travel time distribution to road users may be meaningless.

It seems more reasonable to provide the confidence interval (CI) based on the estimated travel time
distribution. Given a confidence level α, the CI = [lw, uw] covers the range of probable travel times
travelers may encounter, where lw and uw correspond to the lower and upper bounds of a CI.

4. Case Study

The performance of the proposed model is investigated using numerical experiments. This section
describes the experimental setup and discusses the experimental results.
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4.1. Test Site and Data Collection

A real-world case study is reported in this section to demonstrate the applicability of the proposed
distribution estimation method of turning delay and path travel time. The probe vehicle system in
Wuhan, China is adopted for this case study. This probe vehicle system utilizes 11,245 taxis as probe
vehicles, and the sampling time interval is about 40 s. 80% of the collected data are used to construct
a model, and the rest of the data are test data. To validate performance of the proposed method, a major
road (or path) from ‘Wuhan University’ to ‘Wuchang Railway Station’ (as shown in Figure 6) was
selected as the study path. This selected path consists of eight links and seven intersections, and its
travel distance is 5.8 km. Travel times are estimated at 15-min interval from the morning peak to
evening peak (07:00–22:00) of a typical weekday on 17 September 2009 (Thursday).

In this paper, the MM and the path inference algorithm [28] are used. Chen et al., take into account
the projection distance, network topology, and the shortest path comprehensively to determine the
best candidate link. The proposed method is competitive with the existing FCD–MM algorithms with
respect to both MM accuracy and computational performance.
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Many studies assume that travel times follow for normal distribution [23,29]. Moreover, lognormal
distribution is also a reasonable alternative. In congested urban road networks, travel times however
are highly stochastic due to the fluctuations in traffic demand and supply, traffic control, and drivers’
varying behaviors, etc. Thus, the type of travel time distribution may be quite different at different
locations in different periods. Based on these current studies, the path travel time and turning
delay distribution are usually fitted with several classical distributions, namely normal distribution,
lognormal distribution, and gamma distribution [30,31]. According to the Chi-square test, the best-fit
results of turning delay distributions are shown in Table 1. On the whole, the lognormal distribution is
superior to the other two distributions at a 5% significance level. More than 50% of the distributions
follow lognormal distribution, and the same results can be found in off-peak periods. In the
morning and evening peak, the percentage of lognormal distribution decreases slightly, but is still
dominant. The results show that normal distribution cannot describe a certain skew and long tail
distribution [16]. In conclusion, the assumption that all turning delay distributions obey the same
distribution is unreasonable.
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Table 1. Best-fit results for three types of turning delay distributions at 5% significant level.

χ2 Test Time Period Normal Lognormal Gamma

Percentage of different
distribution types

7:00–22:00 17.38% 50.71% 31.91%

Morning peak (7:00–10:00) 16.67% 46.43% 36.90%

Evening peak (16:00–19:00) 26.19% 48.81% 25.00%

Off peak 14.68% 52.78% 32.54%

4.2. Evaluation Metrics

To quantify the accuracy assessment, two widely accepted metrics, namely, mean absolute
percentage error (MAPE) and root mean square error (RMSE), were adopted to evaluate the accuracy
of the estimated mean of path travel time distribution,

MAPEt =
100%

n

n

∑
w=1

∣∣∣tod
e,w − tod

obs,w)
∣∣∣

tod
obs,w

(18)

RMSEt =

√
1
n

n

∑
w=1

(tod
e,w − tod

obs,w)
2 (19)

where tod
e,w and tod

obs,w are the estimated and observed mean values of path travel times at time interval
w, and n is the number of time intervals during the period of interest. Smaller MAPEt and RMSEt

indicate a higher accuracy of the estimated mean path travel time.
The MAPE and RMSE concepts were extended to evaluate the accuracy of the estimated STD of

the path travel time as followings,

MAPEσ =
100%

n

n

∑
w=1

∣∣∣σod
e,w − σod

obs,w)
∣∣∣

σod
obs,w

(20)

RMSEσ =

√
1
n

n

∑
w=1

(σod
e,w − σod

obs,w)
2 (21)

where σod
e,w and σod

obs,w are the estimated and observed STDs of path travel times at time interval w.
For many transportation applications, it is meaningful to construct a travel time interval at a given

confidence level from the estimated or predicted travel time distribution [32,33]. The accuracy of travel
time interval represents the integrated accuracy of both the estimated mean and STD. Two metrics were
adopted to evaluate these accuracies: probability outside of the predicted (estimated) time interval
(POPI), and the probability outside of the observed time interval (POOI) [34]. The POPI measures
the percentage of observed data, or observed travel time interval outside of the estimated travel time
interval, while the POOI measures the percentage of estimated distribution outside of the observed
travel time interval.

Let Ie = [le, ue] represent the estimated travel time interval. The lower and upper bounds are
le = Φ−1

e (α/2) and ue = Φ−1
e (1 − α/2), respectively, at confidence level 1 − α, where Φ−1

e (·) is
the inverse cumulative distribution function (CDF) of the estimated path travel time distribution.
Similarly, the observed travel time interval is expressed as Iobs = [lobs, uobs]. lobs = Φ−1

obs(α/2) and
uobs = Φ−1

obs(1− α/2), respectively, which denote the lower and upper bounds of the observed travel
time interval, at a confidence level of 1− α, where Φ−1

obs(·) is the inverse of the CDF of the observed path
travel time distribution. Let I = Ie ∩ Iobs be the intersection between the estimated and observed travel
time intervals. l and u are the lower and upper bounds of the intersection, respectively. For a certain
time interval, POPI = 1, and POOI = 1, if I = ∅.
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In mathematical terms, POPI is defined as follows,

POPI =
100%

n
·

n

∑
w=1

(1− Φobs(u)−Φobs(l)
1− α

) (22)

where Φobs(·) denotes the CDF of the estimated travel time distribution. The POPI value ranges from
0 to 1. The smaller POPI indicates capture of larger proportion of observed data, i.e., higher accuracy
of the estimated travel time interval. As noted by Shi [34], this POPI metric is very useful, but tends to
exhibit bias for situations of wide travel time intervals due to large STD errors.

As an alternative, the POOI measures the percentage of estimated distribution outside of the
observed travel time interval. Φe(·) denotes the CDF of the estimated travel time distribution.
Accordingly, POOI can be defined as

POOI =
100%

n
·

n

∑
w=1

(1− Φe(u)−Φe(l)
1− α

) (23)

The POOI value also ranges from 0 to 1. The larger POOI value indicates the lower accuracy of the
estimated travel time interval, because the larger proportion of estimated travel time interval is outside
of the observed travel time interval. Therefore, these POPI and POOI matrices are complementary to
evaluate the accuracy of the estimated path travel time interval.

4.3. Experimental Results and Analysis

This section reports the experimental results of the case study. In the proposed method,
the sensitive parameter η in Equations (12) and (15) was set as 0.2, which is initially recommended by
Dion and Rakha [26], Tam and Lam [27].

Figure 7a shows the path travel times estimated by the proposed method against the observed
path travel times. The coefficient of determination (R2) is 0.90, which reflects the accuracy of the
estimated path travel times. It implies that 90% of the estimated path travel times are well fitted with
the observed travel times on the study path during the period of interest. Moreover, the cumulative
frequency distribution of the absolute percentage errors of the path travel times is depicted in Figure 7b.
It can be seen that half of the estimated travel times on the selected path are within 3% errors, whereas
at least 90% of the estimated path travel times are within 8% errors. The estimation errors of the
travel times on the selected path are all less than 13% in the study periods (as the red star shows).
The proposed path travel time estimation method provided a reliable and accurate estimation of mean
travel time, tod

e , throughout the period of interest, with MAPEt = 3.7%. In summary, the performance
of the proposed algorithm for urban travel time estimation is shown to be satisfactory.ISPRS Int. J. Geo-Inf. 2017, 6, 253  12 of 16 
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The upper and lower bounds of the estimated and observed path travel time intervals are given
in Figure 8. In this paper, the confidence level is equal to 80% (i.e., α = 0.2, 90%− 10% = 80%) due
to two main reasons. On one hand, the travel time interval is determined by the level of confidence.
Very narrow travel time intervals with a low confidence level are not reliable, while very wide
travel time intervals with a high confidence level are not practically very useful. On the other hand,
10th and 90th percentile values of travel time distribution are usually used as the lower and upper
bounds of travel time interval in the existing studies [35–38]. In Figure 8, the constructed travel time
intervals for both of the estimated and observed travel time distributions are shown in red and blue
dotted lines, respectively. POPI and POOI metrics are also calculated for an 80% confidence level.
Observed data from the field survey, shown in green dots, were only used for accuracy validation.
As shown in the figure, the estimated travel time intervals can cover most observed data well during
the period of interest. The proposed path travel time estimation method provided a reliable and
accurate estimation of mean travel time, tod

e , throughout the period of interest, with MAPEt = 3.7%.
However, the relatively large MAPEσ = 21.4% indicates that the proposed method has a bigger bias
in estimation of path travel time distribution STD, σod

e , for the period of interest. This highlights the
challenge of accurately estimating σod

e in congested road networks. One major reason may be the
difficulty of estimating σod

e of the population using biased and sparse samples. The RMSEs of the mean
and STD are 0.85 and 0.95 min, respectively. This indicates that the mean and STD of the estimated
and observed path travel time distributions fluctuate within 1 min.ISPRS Int. J. Geo-Inf. 2017, 6, 253  13 of 16 
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In terms of the accuracy of the estimated travel time interval, POPI is 18.4%, somewhat better
than the target (20%), which indicates that a high proportion (81.6%) of observation data was well
covered by the estimated path travel time interval. It can also be seen from the figure that the estimated
interval was not too wide, given the relatively large STD error. POOI is equal to 9.5%, which is
much smaller than the target (20%). Overall, the STD was underestimated, because the observation
samples were relatively sparse. Thus, the POPI and POOI metrics demonstrate that the proposed
method could obtain accurate and robust estimations of the path travel time interval (i.e., path travel
time distribution).
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It can be observed from Figure 8 that the mean path travel time is stable, varying only from
12.1 min to 22.3 min. A lucky traveler may only require 9.6 min (as the blue star shows), while
an unlucky one may even spend 29.5 min for the same trip (as the red star shows). For example,
travelers want to take the train at 10:30 and set aside 10 min to check in, which means that travelers
should arrive at Wuchang Railway Station at 10:20. The estimated mean travel time is 22.3 min,
and the STD is 2.8 min. Based on the distribution of path travel times, travelers would choose
appropriate departure times based on their attitudes of on-time arrival. Risk-seeking travelers (on-time
arrival probability ρ is lower than 50%) tended to assign a small travel time budget for their trips.
When ρ = 10%, risk-seeking travelers were assigned only 19.2 min travel time budget, which was
13.9% less than the expected travel time. However, the observed travel time was 21.6 min, and this
was 2.4 min larger than the assigned travel time, which meant that risk-seeking travelers were almost
late for their train. When ρ = 90%, the risk-averse travelers started their trips at 9:54, and this travel
time budget was about 4.4 min larger than the expected travel time, that is, more time should be set
aside to ensure a higher probability of on-time arrival. Therefore, it is necessary to provide not only
the mean path travel time but also the variation of travel time distribution to travelers, so that they can
make an informed trip planning decision.

The study demonstrated through Chi-square tests that the assumption of lognormal distribution
is consistent with field travel time observations, and that lognormal distribution is representative of
urban travel times under both light and heavy traffic conditions.

5. Conclusions and Further Studies

Provision of link or path travel time distribution information is a crucial requirement for travelers
to make reliable route choice decisions incorporating travel time uncertainty. With advances in
information and communication technologies (ICT), floating car systems, such as probe vehicles,
are widely used in congested urban road networks. These floating car data collected from floating car
systems are beneficial for robust and accurate estimation of travel time distribution information.

This paper addressed the problem of estimating travel time distribution in congested urban
road networks using low-frequency FCD. In this study, the link travel time was modeled as
a deterministic variable without consideration of interruptions caused by signal timing at intersections.
Such interruptions due to signal timing were considered in delays of different turning movements at
intersections. In this way, turning delays of different turning movements (through, right turn, and left
turn) were modeled as random variables and fixed into lognormal distribution, which was consistent
with field travel time observations validated through Chi-square tests. In addition, a weighted moving
average method was proposed to provide a reliable and robust estimation of link travel time and
turning delay distribution, considering that a sample size of FCD may be not sufficient. A speed
estimation algorithm using the degree of central tendency instead of coverage proportion is presented
to estimate the link travel time. A α-discrete approximation method is utilized to generate the path
travel time distribution.

A case study using real-world FCD collected in Wuhan, China was carried out to demonstrate the
applicability of the proposed travel time estimation method. The results of the case study indicated
that the lognormal distribution could provide a satisfied fitting for path travel time distribution,
and turning delay distribution in congested urban road networks. Also, the results validated that the
proposed method could obtain robust and accurate estimation of path travel time distribution over the
whole period of interest. Compared with the observed travel time distribution, the estimation errors
were quite low with respect to MAPEt, MAPEσ, POPI and POOI metrics.

In the future study, the existing research can be extended in the following ways. First, travel
times in this study were assumed to follow lognormal distributions for all time periods. However,
several previous studies have found that the travel times in congested road networks could be better
represented by normal, gamma, or Burr distributions [39]. These distributions may be suitable for
different time periods. Second, fusing traffic data from multiple sources to estimate or predict travel
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time distribution is also a significant challenge [34]. Last but not the least, travel time distributions
were estimated in this study for the current time interval. Extension of the proposed method to the
problem of short-term travel time distribution prediction is another interesting topic for further study.
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