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Abstract: Influential nodes are rare in social networks, but their influence can quickly spread to
most nodes in the network. Identifying influential nodes allows us to better control epidemic
outbreaks, accelerate information propagation, conduct successful e-commerce advertisements, and so
on. Classic methods for ranking influential nodes have limitations because they ignore the impact of
the topology of neighbor nodes on a node. To solve this problem, we propose a novel measure based on
local centrality with a coefficient. The proposed algorithm considers both the topological connections
among neighbors and the number of neighbor nodes. First, we compute the number of neighbor nodes
to identify nodes in cluster centers and those that exhibit the “bridge” property. Then, we construct
a decreasing function for the local clustering coefficient of nodes, called the coefficient of local centrality,
which ranks nodes that have the same number of four-layer neighbors. We perform experiments to
measure node influence on both real and computer-generated networks using six measures: Degree
Centrality, Betweenness Centrality, Closeness Centrality, K-Shell, Semi-local Centrality and our
measure. The results show that the rankings obtained by the proposed measure are most similar to
those of the benchmark Susceptible-Infected-Recovered model, thus verifying that our measure more
accurately reflects the influence of nodes than do the other measures. Further, among the six tested
measures, our method distinguishes node influence most effectively.

Keywords: social networks; influence of nodes; local centrality; clustering coefficient

1. Introduction

Social networks have created a new distributed information propagation architecture that
greatly improves peoples’ ability to spread and obtain information [1]. In the social network
propagation architecture, the spread of information is often affected by the influence of certain
nodes. Research results show that these highly influential nodes are rare in social networks, but
their influence can quickly spread to most nodes in the network. These vital nodes greatly influence the
structure and function of networks. Identifying these influential nodes helps to better our understand
complex networks; moreover, such identification can help in accurately predicting and controlling
network evolution.

In recent years, various centrality measures to identify vital nodes have been proposed such
as Degree Centrality (DC) [2], Betweenness Centrality (BC) [3], Closeness Centrality (CC) [4],
K-Shell (KS) [5], and so on. Based on these basic measures, researchers have proposed many other
influence-mining algorithms [5–14]. Degree centrality is a simple metric and has low computational
complexity; however, its result is not sufficiently accurate because it considers only the local node
information. Chen et al. [6] proposed a semi-local centrality (LC) measure that considers both
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the nearest and the next-nearest neighbors of a node. LC improves accuracy at the cost of low
computational complexity. BC and CC compute the influence of nodes based on global structure, and
they achieve higher accuracies; however, they are incapable of being applied in large-scale networks
because they need to calculate the shortest paths between all pairs of nodes in the network, which
is very time-consuming [3,4,8]. Kitsak et al. [5] noted that the most influential spreaders do not
correspond to the nodes with the largest degree, but to those located at the core of the network, as
identified by the K-Shell decomposition. However, the K-Shell method can divide nodes’ influences
into only a few levels: its analysis is coarse, and therefore, it is usually employed only to identify the
most influential nodes in the network. Liu et al. [9] discovered that not all real networks follow the
rules that nodes in high shells are very influential. In some networks, nodes in high shells, even those
in the innermost core, are not good spreaders: Lie et al. termed these a core-like group. Based on
the above results, they proposed a more accurate K-Shell measure that identifies influential nodes by
removing the edges between core-like nodes [10]; However, this method still does not consider the
impact of topological connections among neighbor nodes.

Studies show that the diversity of topological connections among the neighbors has a significant
effect on a node’s influence. Nodes with the same degree can have influences that are inversely
proportional to the number of connected components of their neighbors [11–15]. In addition,
the explosive growth of social networks adds importance to the efficiency of the influence measures.
Therefore, in large-scale social networks, to identify vital nodes efficiently and accurately, it is
necessary to consider both a node’s centrality and the topological connections among its neighbors.
The local clustering coefficient is an important metric that reflects the density of interactions among
neighbors [8,16]. Therefore, we propose a novel measure based on local centrality with a coefficient
(CLC), in which the local clustering coefficient of a node is used to measure its influence in addition to
its semi-local centrality. We performed experiments to measure node influence by using DC, BC, CC,
KS, LC and CLC. The results show that the precision of CLC is the same as or better than the other five
centrality metrics, yet involves little increase in time cost.

The rest of this paper is organized as follows. Section 2 introduces the novel proposed measure,
CLC. In Section 3, we introduce eight datasets and the evaluation methodologies used to study which
measures are most accurate. We also analyze the experimental results in this section. Section 4
concludes the paper and lists possible future work.

2. Local Centrality with a Coefficient to Measure Node Influence

We focus on unweighted, undirected, and simple networks in this paper. Let G = (V, E) be
a graph with n = |V| vertices and m = |E| edges. The influence of node v is denoted by CLC(v):

CLC(v) = f (c(v))× LC(v), (1)

where LC(v) is the semi-local centrality measure, c(v) is the local clustering coefficient of node v, and
f (c(v)) accounts for the effect of v’s clustering coefficient:

LC(v) = ∑
u∈Γ(v)

Q(u), (2)

Q(u) = ∑
w∈Γ(u)

N(w), (3)

where Γ(v) is the set of the nearest neighbors of node v, and N(w) is the number of the nearest and
next-nearest neighbors of node w. Usually, the local clustering coefficient (c(v)) plays a negative role
during spreading [13–15]; thus, f (c(v)) denotes a decreasing function of c(v):

f (c(v)) = e−c(v). (4)
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We first demonstrate the efficiency of our method by investigating its computational complexity.
Calculating N(w) requires traversing node w’s neighborhood within two steps, which costs O(〈k〉2),
where 〈k〉 is the average degree of the network. The computational complexity for calculating the
local clustering coefficient of each node O(n). Therefore, the total computational complexity for
our centrality measure is O(n〈k〉2) which is the same as the LC measure and has a much lower
computational complexity than the BC or CC measure. Further, in Table 1, we show the CPU (Central
Processing Unit, Core i5-6300 2.4 GHz) time for the six centrality measures on the five real networks
described in Section 3.1: Email, Twitter, Facebook, Epinions and Blog. We can see that our measure
requires slightly more time than LC but far less time than BC, CC and KS, especially on large-scale
networks. Compared with LC, the execution time of CLC increases less than 0.5 s and its growth rate
is less than 2% on all five real networks.

The CLC measure considers both the topological connections among neighbor nodes and the
number of neighbor nodes. The vital nodes in networks are usually those that are located in the core
of a node cluster or that function as a bridge between node clusters. To ensure low computational
complexity, the local area of a node includes only its four-layer neighbors. For each node in the
network, the greater the number of nodes in its local area, the more vital that node is. In this way,
we can identify the nodes that are located in the core of node clusters and those low-degree nodes
that function as a bridge between node clusters. As shown in Figure 1, node 2 is located at the core of
a node cluster, and node 3 is a bridge node. Although the degrees of nodes 2 and 3 are smaller than the
degree of node 1, the former have many four-layer neighbors. Therefore, we also consider them to be
of high influence. To rank the nodes with the same number of four-layer neighbors, we compute the
local node clustering coefficient and construct a decreasing function of it. The larger the local clustering
coefficient of a node is, the more tightly its neighbor nodes are connected to each other rather than
with other nodes, which confines the information spreading initiated from the node in a local region
and weakens the influence of nodes. In summary, the method we propose can rank node influence
more accurately than previous measures because it measures node influence by applying the product
of the decreasing function of the local clustering coefficient and the number of four-layer neighbors.
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Figure 1. Example of network local structure.

3. Experimental Results

3.1. The Datasets Used in the Experiments

To evaluate the effectiveness and the efficiency of our proposed centrality measure, we apply it to
both real and artificial networks. The real networks include Email [17], Twitter [18], Facebook [19],
Epinions [20] and Blog [21], all of which are treated as undirected. The artificial networks include
networks generated by the Erdos-Renyi (ER) random network model [8], the Watts-Strogatz (WS)
network model [8] and the Barabási-Albert (BA) scale-free network model [8], and are all undirected
and unweighted. The basic topological features of the eight networks are summarized in Table 2.
n and m are the total numbers of nodes and links, respectively, 〈k〉 and kmax denote the average
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and the maximum degree, respectively, C is the clustering coefficient, and βth is the epidemic
threshold. In homogenous networks such as ER and WS, βth = 1

〈k〉 , while in heterogeneous networks,

βth = 〈k〉
〈k2〉 [8,22].

Table 1. The CPU time (in seconds) of six measures on five real networks. 1

Network DC BC CC KS LC CLC

Email 0.0001 0.3551 0.5616 0.5621 0.2350 0.2372
Twitter 0.0003 24.5725 37.7616 37.7718 14.4024 14.6907

Facebook 0.0003 17.0798 33.6466 33.6534 11.6703 11.8865
Epinions 0.0003 26.6689 40.6052 40.6201 16.3923 16.6214

Blog 0.0006 56.4583 85.3895 85.4497 30.0134 30.4575
1 We used Python running on a Core i5-6300 2.4 GHz CPU processor with 4 GB memory.

Table 2. The basic topological features of the eight tested networks.

Network n m 〈k〉 kmax C fith

Email 1133 5451 9.62 71 0.22020 0.05350
Twitter 5000 135,610 27.12 733 0.26070 0.04740

Facebook 4039 88,234 43.69 1045 0.51917 0.01938
Epinions 5000 180,493 36.10 1344 0.15240 0.00580

Blog 10,312 333,983 64.78 3992 0.09139 0.00181
ER 2000 6000 6 18 0.00023 0.14220
WS 2000 6000 6 11 0.30014 0.16067
BA 2000 11,988 5.99 414 0.01124 0.01828

3.2. Evaluation Methodologies

We obtained the ranked lists by applying the six measures on each network. In principle, the
ranked list generated by an effective ranking method should be as consistent as possible with the
ranked list generated by the real spreading process. To simulate a realistic spreading process and
obtain the true spreading influence of nodes, we adopted the susceptible-infected-recovered (SIR)
model [23]. The SIR model, which is usually considered as the benchmark for measuring the accuracy
of other influence metrics, can effectively simulate an epidemic and the spread of information.

In the SIR model, a node has three states: (1) susceptible—a node is in the susceptible state before
it is infected by its neighbors; (2) infected a node that was just infected is in this state and can infect
its neighbors with a probability; and (3) refractory—a node that was in recovery and immune to the
disease is in this state.

In the SIR model, all the nodes are initially in the susceptible state except for one node, v, which
is in the infected state. At each time step, infected nodes infect their susceptible neighbors with
probability β and enter the recovered state with a probability of 1, after which they become immunized
and cannot be infected again. The spreading process ends when no infected node exists in the network.
The spreading ability of the original node v, Sβ(v), is defined as the number of nodes that were infected
by the end of the spreading process that originated from node v. When β is assigned a large value, the
spreading process finishes too quickly to distinguish the node influence. Therefore, we assigned a small
value to β, which was approximately the epidemic threshold βth. We set the number of simulations to
be 5000. The spreading influence of a node is defined as the average spreading ability of node v over
the entire range of β, Sβ(v). The value of β used for each network is listed in Table 3.

We can obtain a ranked list of nodes by a certain measure. To evaluate the correctness of that
measure, we compared the list to the ranked list generated by Sβ(v). The higher the correlation
between them is, the more accurate the metric is. We adopt Kendall’s tau (τ) as a rank correlation
coefficient [24]. Kendall’s tau (τ) is defined as follows:
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τ(R1, R2) =
Nc − Nd

1
2 N(N − 1)

(5)

where R1 and R2 are two ranked lists that contain N elements, respectively. Any pair of ranks (R1i, R2i)

and
(

R1j, R2j
)

are said to be concordant if the ranks for both elements agree: that is, if both R1i > R1j
and R2i > R2j or if R1i < R1j and R2i < R2j; otherwise, if R1i > R1j and R2i < R2j or if R1i < R1j and
R2i > R2j, they are said to be discordant. If R1i = R1j or R2i = R2j, the pair is neither concordant
nor discordant. Nc and Nd denote the amount of concordant and discordant pairs, respectively, and
τ ∈ [−1, 1]. A higher τ value indicates that the ranked list generated by the measure is more accurate,
and τ = 1 indicates that the ranked list generated by the measure is exactly the same as the ranked list
generated by the real spreading process.

Table 3. The propagation probability values of eight networks.

Network Email Twitter Facebook Epinions Blog ER WS BA

β

0.01 0.01 0.01 0.0058 0.00181 0.01 0.01 0.01
0.02 0.02 0.02 0.01 0.003 0.02 0.02 0.0183
0.03 0.03 0.03 0.02 0.005 0.03 0.03 0.02
0.04 0.04 0.04 0.03 0.01 0.04 0.04 03
0.05 0.05 0.05 0.04 0.015 0.05 0.05 0.04

0.0535 0.06 0.06 0.05 0.02 0.06 0.06 0.05
0.06 0.07 0.07 0.06 0.03 0.07 0.07 0.06
0.07 0.08 0.08 0.07 0.04 0.08 0.08 0.07
0.08 0.09 0.09 0.08 0.05 0.09 0.09 0.08
0.09 0.1 0.1 0.09 0.1 0.1 0.1 0.09
0.1 0.1 0.2 0.1422 0.15 0.1

0.15 0.1607

3.3. Experimental Results and Analysis

3.3.1. Rank Influence of Nodes

We evaluated the effectiveness and the efficiency of the CLC measure individually on each
of the eight networks proposed in Section 3.1. For the first six networks, we measured the nodes’
influence using DC, BC, CC, KS, LC and CLC, respectively. Because KS does not apply to BA and
WS networks, we tested and showed the performance of only the other five measures on those two
networks. We computed the τ values for the six measures under different propagation probabilities β.
The results in Figure 2 show that our CLC metric achieves a better performance across a wide range
of propagation probability values (β) for all eight networks, which indicates the robustness of the
proposed measure. In particular, when β is near the epidemic threshold βth, the τ value of the CLC
metric is the largest in all the networks except for the Email network.
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The τ value for CLC is smaller than that of LC on the Email network because the community
structure in the Email network is strongly self-similar; consequently, the topologies of the neighbor
nodes are similar to each other [25], which reduces the discrimination ability of the CLC metric. In the
BA network, the τ value for CLC is same as that of LC when β is small and equal to βth. As the β

value increases, the CLC results in a slightly worse performance than the LC. We argue that this occurs
because the local clustering coefficient of the BA network we constructed for this paper is 0.011214; in
other words, it has no obvious clustering characteristics. Therefore, for most nodes, the slope of the
function f(c(v)) is larger and more sensitive to the clustering coefficient. Under the above condition,
this means that nodes of the same degree whose neighborhood structures are similar will have different
influences when calculated by CLC. Therefore, we can conclude that the accuracy of the CLC metric is
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slightly below that of LC in the BA network. In the Blog network, CLC is more efficient than LC across
the entire range of β, and it achieves the best performance when β is close to the epidemic threshold
βth. However, when β is less than 0.015, both CLC and LC perform worse than DC and KS. This result
occurs because the Blog network is heterogeneous, which means that large-degree nodes are apt to link
to small-degree nodes and, therefore, the method that measures node influence by using the number
of its neighbors is better than the one that measures influence through the four-layer neighbors. In the
other five networks, CLC achieves the best performance. To reflect the overall spreading ability of all
nodes, we calculate 〈τ〉 (the average value of τ across the entire range of β). The 〈τ〉 values resulting
from analyzing the eight networks using the six measures are listed in Table 4. The CLC measure
ranks second for Email (〈τ〉CLC is smaller than 〈τ〉LC), third for BA (〈τ〉CLC is smaller than 〈τ〉LC and
〈τ〉CC), and third for Blog (〈τ〉CLC is smaller than 〈τ〉DC and 〈τ〉KS), but in the other five networks, the
CLC metric ranks first. Additionally, we can observe that none of the methods achieve optimal results
on all the networks. Among the eight networks, CLC achieves the top ranking for six measures, and
its average ranking is 1.625, which is better than the other five measures, and its performance is the
most stable.

Table 4. The 〈τ〉 values and ranks for six measures on eight networks.

Network 〈τ〉DC/Rank 〈τ〉BC/Rank 〈τ〉CC/Rank 〈τ〉KS/Rank 〈τ〉LC/Rank 〈τ〉CLC/Rank

Email 0.786259/4 0.662523/6 0.819400/3 0.700200/5 0.881227/1 0.862679/2
Twitter 0.637459/3 0.356691/6 0.417217/5 0.628729/4 0.665546/2 0.684402/1

Facebook 0.650335/3 0.512972/5 0.510590/6 0.648818/4 0.778076/2 0.790055/1
Epinions 0.754799/2 0.700373/5 0.670692/6 0.740910/3 0.734021/4 0.786574/1

Blog 0.903491/2 0.736955/6 0.808483/5 0.903646/1 0.864197/4 0.895490/3
ER 0.729468/5 0.767019/4 0.829537/3 −0.300700/6 0.841899/2 0.843974/1
WS 0.384922/5 0.620022/3 0.516354/4 / 0.686010/2 0.691206/1
BA −0.037630/5 0.512135/4 0.76890/2 / 0.801210/1 0.766298/3

3.3.2. Rank the Most Influential Nodes

In many practical applications, people are interested only in the most influential nodes in the
network. The most influential nodes are those with the strongest average spreading ability Sβ(v),
which is estimated by averaging a node’s spreading ability over the entire range of β using the SIR
model simulation. In this section, we investigate another measurement, τL, which considers only the
Top-L most influential nodes, where L ranges from 20 to 500. The calculation of τL is exactly the same
as the calculation of τ. The results from the five real networks analyzed by the six measures in Figure 3
show that CLC achieves the best τL value on almost the entire range of L in the Email, Twitter and Blog
networks, and it is obviously better than LC. In the Facebook and Epinions networks, CLC performs
slightly better than LC and achieves the best score. To reflect the accuracy of the rankings of the Top-L
nodes for the six measures, we calculated 〈τL〉 (the average value of τL across the entire range of L).
The 〈τL〉 values resulting from the analysis of the five real networks by the six measures are listed in
Table 5, which shows that the 〈τL〉CLC achieved by CLC is larger than that achieved by the other five
centrality measures on all five real networks. Compared with LC, the 〈τL〉 value of CLC increases
by 9.50% on average. Generally, the CLC metric is better at ranking the most influential nodes in the
networks than the other five metrics.
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Table 5. The 〈τ〉L values and ranks for six measures on five real networks.

Network 〈τL〉DC 〈τL〉BC 〈τL〉CC 〈τL〉KS 〈τL〉LC 〈τL〉CLC

Email 0.6440 0.5502 0.6870 −0.0482 0.7229 0.8241
Twitter 0.3190 0.2781 0.2899 0.1292 0.4688 0.4975

Facebook 0.4171 0.1247 0.1818 −0.0770 0.4564 0.5080
Epinions 0.3468 0.3730 0.2653 −0.6165 0.6108 0.6499

Blog 0.5892 0.4174 0.6130 −0.5851 0.6998 0.7674
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3.3.3. Capability of Distinguishing Nodes’ Spreading Ability

To evaluate the performance of a node’s influence measure, we should consider not only its
sorting accuracy and the ability to recognize influential nodes, but also its capability to distinguish the
spreading ability of nodes. For example, K-Shell can effectively identify the most influential nodes in
a network; however, because of its coarse-grained measure, it considers nodes with the same K-Shell
value as having the same influence. Consequently, the τL values obtained by KS are smaller, as shown
in Figure 3. To further measure the effectiveness of metrics, we defined the discriminability metric, D,
to measure how well the node influence measures can distinguish a node’s spreading ability [26]:

D =
Listdi f f

N
, (6)

where Listdi f f is the number of distinct elements in a list that contain the value for all nodes in the
network obtained by a given measure, and N is the number of nodes in the network. The maximum
value, D = 1, indicates that all the nodes in the network are assigned distinct values and can be
identically distinguished, while the minimum value, D = 1

N , indicates that all the nodes are assigned
the same value. Obviously, a larger D indicates a finer ranking of the nodes. The results of D for the
five real networks are shown in Table 6. The CLC measure achieves the largest D values for all five
networks. Hence, we can conclude that our method is fine-grained and more effectively distinguishes
node influence than do the other five measures.

Table 6. D values for six measures on five real networks.

Network DDC DBC DCC DKS DLC DCLC

Email 0.043248 0.819064 0.741395 0.010591 0.963813 0.969991
Twitter 0.071800 0.908400 0.747600 0.02700 0.988400 0.989800

Facebook 0.056202 0.866304 0.300569 0.023768 0.954444 0.95593
Epinions 0.089400 0.897200 0.606200 0.018400 0.942400 0.943500

Blog 0.055857 0.925524 0.584756 0.011055 0.980023 0.980100

4. Conclusions

In this paper, we propose a novel measure based on local centrality with a coefficient (CLC) to
evaluate influential spreaders in social networks. Based on a semi-local central measure (LC), our
method combines the topological connections among neighbors and the number of neighbor nodes.
Moreover, it utilizes the local clustering coefficient of nodes to distinguish the influence of nodes with
the same number of four-layer neighbors, which overcomes a limitation of other centrality measures,
which ignore the impact of neighbors’ topology on a node. Compared with the LC metric, CLC adds
only the calculation of the nodes’ local clustering coefficient; therefore, the computation time increases
only slightly, neatly balancing computational complexity and precision. We applied our method to
both artificial and real networks and adopted three metrics to verify its effectiveness. The experimental
results show that the CLC measure is better than the other five methods tested, and it achieves the
best results for ranking the influence of nodes, identifying the key spreaders and discriminating the
influence of nodes. Furthermore, the method presented in this paper can easily be extended to directed
networks. Because the scale of social networks continues to grow, designing efficient and effective
methods to rank the spreading ability of nodes in complex networks will be a long-term challenge.
Many real networks such as the World-Wide Web are fractal networks. Other types, such as actor
collaboration and cellular networks, consist of self-repeating patterns under different-length scales [27].
The main feature of a fractal network is repulsion between hub nodes, which makes the hub nodes tend
to not connect to other hub nodes [28]. In our measure, some hub nodes will have little contribution
to the influence of their hub neighborhoods due to their large distance in fractal networks and the
similarity between modules will reduce the accuracy of our measure. Therefore, how well our measure



ISPRS Int. J. Geo-Inf. 2017, 6, 35 10 of 11

will perform on real-world fractal networks may be related to their fractal dimensions and the distance
between self-similar modules and is an aspect that still needs further research. In addition, further
investigation could analyze the trust relationships between nodes to determine their effects on node
spreading ability.

Acknowledgments: This work was supported by the following grants: National Natural Science Foundation of
China (No. 61572301), Natural Science Foundation of Shandong Province (No. ZR2013AQ008, No. ZR2013FM008,
and No. ZR2016FP07), Shandong Provincial Key Laboratory of Software Engineering (No. 2013SE02), the Open
Research Fund from Shandong provincial Key Laboratory of Computer Network (No. SDKLCN-2016-01) and
a Project of Shandong Province Higher Educational Science and Technology Program (No. J15 LN24).

Author Contributions: Xiaohui Zhao conceived and designed the experiments; Xiaohui Zhao and Jinlong Wang
performed the experiments; Xiaohui Zhao, Fang’ai Liu and Tianlai Li analyzed the data; and Xiaohui Zhao wrote
the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the
decision to publish the results.

References

1. Mislove, A.E. Online Social Networks: Measurement, Analysis, and Applications to Distributed Information
Systems. Ph.D. Thesis, Rice University, Houston, TX, USA, 2009.

2. Albert, R.; Jeong, H.; Barabasi, A.L. Error and attack tolerance of complex networks. Nature 2000, 406, 542.
[CrossRef] [PubMed]

3. Freeman, L.C. A set of measures of centrality based on betweenness. Sociometry 1977, 40, 35–41. [CrossRef]
4. Krackhardt, D. Assessing the political landscape: Structure, cognition, and power in organizations. Adm. Sci. Q.

1990, 35, 342–369. [CrossRef]
5. Kitsak, M.; Gallos, L.K.; Havlin, S.; Liljeros, F.; Muchnik, L.; Eugene Stanley, H.; Makse, H.A. Identification of

influential spreaders in complex networks. Nat. Phys. 2010, 6, 888–893. [CrossRef]
6. Ren, X.; Lü, L.; Ren, X. Review of ranking nodes in complex networks. Chin. J. 2014, 59, 1175–1188. [CrossRef]
7. Chen, D.; Lü, L.; Shang, M.S.; Zhang, Y.C.; Zhou, T. Identifying influential nodes in complex networks.

Phys. A Stat. Mech. Appl. 2012, 391, 1777–1787. [CrossRef]
8. Wang, X.F.; Li, X.; Chen, G.R. The importance and similarity of nodes. In Network Science: An Introduction;

Liu, Y., Ed.; Higher Education Press: Beijing, China, 2012; pp. 157–185.
9. Liu, Y.; Tang, M.; Zhou, T.; Do, Y. Core-like groups result in invalidation of identifying super-spreader by

k-shell decomposition. Sci. Rep. 2015, 5, 9602–9609. [CrossRef] [PubMed]
10. Liu, Y.; Tang, M.; Zhou, T.; Do, Y. Improving the accuracy of the k-shell method by removing redundant

links: From a perspective of spreading dynamics. Sci. Rep. 2015, 5, 13172–13182. [CrossRef] [PubMed]
11. Ugander, J.; Backstrom, L.; Marlow, C.; Kleinberg, J. Structural diversity in social contagion. Proc. Natl. Acad.

Sci. USA 2012, 109, 5962–5966. [CrossRef] [PubMed]
12. Su, X.P.; Song, Y.R. Leveraging neighborhood “structural holes” to identifying key spreaders in social networks.

Acta Phys. Sin. Chin. Ed. 2015, 64, 20101.
13. Eguíluz, V.M.; Klemm, K. Epidemic threshold in structured scale-free networks. Phys. Rev. Lett. 2002, 89,

108701–108704. [CrossRef] [PubMed]
14. Petermann, T.; de Los Rios, P. Role of clustering and gridlike ordering in epidemic spreading. Phys. Rev. E

Stat. Nonlinear Soft Matter Phys. 2004, 69, 279–307. [CrossRef] [PubMed]
15. Zhou, T.; Yan, G.; Wang, B.H. Maximal planar networks with large clustering coefficient and power-law

degree distribution. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2005, 71, 046141. [CrossRef] [PubMed]
16. Watts, D.J.; Strogatz, S.H. Collective dynamics of small-world networks. Nature 1998, 393, 440–442. [CrossRef]

[PubMed]
17. Guimera, R.; Danon, L.; Diaz-Guilera, A.; Giralt, F.; Arenas, A. Self-similar community structure in a network

of human interactions. Phys. Rev. E 2003, 68, 065103. [CrossRef] [PubMed]
18. Mcauley, J.J.; Leskovec, J. Learning to discover social circles in ego networks. Adv. Neural Inf. Process. Syst.

2012, 25, 539–547.
19. Traud, A.L.; Mucha, P.J.; Porter, M.A. Social structure of Facebook networks. Phys. A Stat. Mech. Appl. 2011,

391, 4165–4180. [CrossRef]

http://dx.doi.org/10.1038/35007245
http://www.ncbi.nlm.nih.gov/pubmed/10766214
http://dx.doi.org/10.2307/3033543
http://dx.doi.org/10.2307/2393394
http://dx.doi.org/10.1038/nphys1746
http://dx.doi.org/10.1360/972013-1280
http://dx.doi.org/10.1016/j.physa.2011.09.017
http://dx.doi.org/10.1038/srep09602
http://www.ncbi.nlm.nih.gov/pubmed/25946319
http://dx.doi.org/10.1038/srep13172
http://www.ncbi.nlm.nih.gov/pubmed/26277903
http://dx.doi.org/10.1073/pnas.1116502109
http://www.ncbi.nlm.nih.gov/pubmed/22474360
http://dx.doi.org/10.1103/PhysRevLett.89.108701
http://www.ncbi.nlm.nih.gov/pubmed/12225235
http://dx.doi.org/10.1103/PhysRevE.69.066116
http://www.ncbi.nlm.nih.gov/pubmed/15244676
http://dx.doi.org/10.1103/PhysRevE.71.046141
http://www.ncbi.nlm.nih.gov/pubmed/15903760
http://dx.doi.org/10.1038/30918
http://www.ncbi.nlm.nih.gov/pubmed/9623998
http://dx.doi.org/10.1103/PhysRevE.68.065103
http://www.ncbi.nlm.nih.gov/pubmed/14754250
http://dx.doi.org/10.1016/j.physa.2011.12.021


ISPRS Int. J. Geo-Inf. 2017, 6, 35 11 of 11

20. Richardson, M.; Agrawal, R.; Domingos, P. Trust Management for the Semantic Web. Lect. Notes Comput. Sci.
2003, 2870, 351–368.

21. Gregory, S. Finding overlapping communities using disjoint community detection algorithms. Complex Netw.
2009, 207, 47–61.

22. Castellano, C.; Pastor-Satorras, R. Thresholds for epidemic spreading in networks. Phys. Rev. Lett. 2010, 105,
3305. [CrossRef] [PubMed]

23. Dorogovtsev, S.N.; Goltsev, A.V.; Mendes, J.F.F. Critical phenomena in complex networks. Rev. Mod. Phys.
2007, 80, 1275–1335. [CrossRef]

24. Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [CrossRef]
25. Liu, Y.; Tang, M.; Zhou, T.; Do, Y. Identify influential spreaders in complex networks, the role of neighborhood.

Phys. A Stat. Mech. Appl. 2016, 452, 289–298. [CrossRef]
26. Gao, S.; Ma, J.; Chen, Z.; Wang, G.; Xing, C.M. Ranking the spreading ability of nodes in complex networks

based on local structure. Phys. A Stat. Mech. Appl. 2014, 403, 130–147. [CrossRef]
27. Song, C.; Havlin, S.; Makse, H.A. Self-similarity of complex networks. Nature 2005, 433, 392–395. [CrossRef]

[PubMed]
28. Song, C.; Havlin, S.; Makse, H.A. Origins of fractality in the growth of complex networks. Nat. Phys. 2006, 2,

275–281. [CrossRef]

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevLett.105.218701
http://www.ncbi.nlm.nih.gov/pubmed/21231361
http://dx.doi.org/10.1103/RevModPhys.80.1275
http://dx.doi.org/10.1093/biomet/30.1-2.81
http://dx.doi.org/10.1016/j.physa.2016.02.028
http://dx.doi.org/10.1016/j.physa.2014.02.032
http://dx.doi.org/10.1038/nature03248
http://www.ncbi.nlm.nih.gov/pubmed/15674285
http://dx.doi.org/10.1038/nphys266
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Local Centrality with a Coefficient to Measure Node Influence 
	Experimental Results 
	The Datasets Used in the Experiments 
	Evaluation Methodologies 
	Experimental Results and Analysis 
	Rank Influence of Nodes 
	Rank the Most Influential Nodes 
	Capability of Distinguishing Nodes’ Spreading Ability 


	Conclusions 

