
 International Journal of

Geo-Information

Article

Linkage of OGC WPS 2.0 to the e-Government
Standard Framework in Korea: An Implementation
Case for Geo-Spatial Image Processing

Gooseon Yoon 1, Kwangseob Kim 2 and Kiwon Lee 3,*
1 Department of Information Systems Engineering, Hansung University, Seoul 136-792, Korea;

gxexe3@naver.com
2 Department of Information and Computer Engineering, Hansung University, Seoul 136-792, Korea;

lovekph@nate.com
3 Department of Electronics and Information Engineering, Hansung University, Seoul 136-792, Korea
* Correspondence: kilee@hansung.ac.kr; Tel.: +82-2-760-4254

Academic Editors: Ozgun Akcay and Wolfgang Kainz
Received: 15 October 2016; Accepted: 16 January 2017; Published: 20 January 2017

Abstract: There are many cases wherein services offered in geospatial sectors are integrated with
other fields. In addition, services utilizing satellite data play important roles in daily life and in
sectors such as environment and science. Therefore, a management structure appropriate to the
scale of the system should be clearly defined. The motivation of this study is to resolve issues,
apply standards related to a target system, and provide practical strategies with a technical basis.
South Korea uses the e-Government Standard Framework, using the Java-based Spring framework,
to provide guidelines and environments with common configurations and functions for developing
web-based information systems for public services. This web framework offers common sources
and resources for data processing and interface connection to help developers focus on business
logic in designing a web system. In this study, a geospatial image processing system—linked
with the Open Geospatial Consortium (OGC) Web Processing Service (WPS) 2.0 standard for real
geospatial information processing, and based on this standard framework—was designed and built
utilizing fully open sources. This is the first case of implementation based on WPS 2.0 running
on the e-Government Standard Framework. Establishing a standard for its use will be important,
and the system built in this study can serve as a reference for the foundational architecture in building
geospatial web service systems with geodata-processing functionalities in government agencies.

Keywords: OGC WPS 2.0; the e-Government Web Framework; geospatial image processing;
open source; ZOO-project

1. Introduction

With advances in computer technology and growth in demand for services utilizing it,
diverse information has become available. For example, geospatial information and geo-based
satellite images are used as base maps in services such as route guidance navigation, portal map
service, facility management, and site suitability analysis, and are used in environmental application
of nearly inaccessible areas and regional analysis through geo-based image processing. In addition,
remotely sensed data and information may be used by stakeholders to make effective decisions in
managing disasters [1]. It is expected that services will emerge in a much improved form as better
means and methods are applied because of information technology development [2]. We should
consider designs that are capable of managing complicated services systemically and expanding them
easily. For engineering issues in geospatial applications, integration, customization, or optimization

ISPRS Int. J. Geo-Inf. 2017, 6, 25; doi:10.3390/ijgi6010025 www.mdpi.com/journal/ijgi

http://www.mdpi.com/journal/ijgi
http://www.mdpi.com
http://www.mdpi.com/journal/ijgi

ISPRS Int. J. Geo-Inf. 2017, 6, 25 2 of 14

with multiple close or loosely coupled technological components on matured or maturing stages
are also important. Accordingly, necessity of international standard interfaces and standardized
frameworks has been increased. This work presents an integrated application based on an open source
strategy with heterogeneous standard sources, such as international standards for geospatial area and
a standard framework for so-called electronic government.

The International Organization for Standardization (ISO), which develops and distributes
internationally accepted standards, and the Open Geospatial Consortium, Inc. (OGC), which leads
geospatial industry standards, are developing a standard for geospatial information. ISO is in
the process of standardizing content related to collecting, processing, analyzing, and presenting
geospatial information via the technical committee (ISO/TC) 211 applicable to Geographic Information
System (GIS) standards [3]. OGC—an organization oriented toward open standards—researches
and establishes technical standards for data compatibility and interoperability technical standards.
The standards include Web Map Service (WMS), Web Feature Service (WFS), Web Coverage Service
(WCS), and Web Processing Service (WPS) [4]. A system developed in compliance with international
standards shows many advantages, such as information integration, quality improvement, consistency,
easy maintenance, and cost reduction in utilization of geospatial information [5,6]. Additionally,
it allows existing and new systems to share and distribute information, thereby improving compatibility
and interoperability. Therefore, applying international standards should be considered in system
design stages to facilitate efficient operation and geospatial service management. Among OGC
standards, WPS—an interface and communication method in which geospatial processing can be
defined and accessed from the Web—has compatibility with other OCG standard web services [7].

An electronic government, e-Government, in the Web environment is currently an important
technical theme in most countries [8–10]. In South Korea, the e-Government Standard Framework
is developed and distributed for free to improve web system quality and help standardize and
ease development, and it is based on the Spring Framework. The Spring Framework provides
a comprehensive programming and configuration model for Java-based application and supports
infrastructure at the application level [11]. The e-Government Standard Framework—which
offers application architecture, basic functions and common components necessary for web
system development—provides features such as Development Environment, Runtime Environment,
Administration Environment, Operation Environment, and Common Components. Through these
functions, the framework resolves dependency on a specific vendor solution and provides standards
that can be linked with commercial solutions, ensuring their interoperability. In addition, it provides
a function for hybrid app development. A hybrid app utilizes elements of both native applications for
a specific platform on a mobile device and web applications for multiple platforms available over the
Internet by any browser. Because common components can receive common modules premade at the
time of building the Web system, rapid development and quality gap reduction relative to different
systems can be predicted. There is also the advantage of increased reusability of developed modules.

As recent web services deal with multiple types of data and a large volume of content,
distributed systems are inclined to be dominant over centralized ones. Furthermore, interoperable
geoprocessing functionalities via WPS interface standards offers user operation to the client by
requesting algorithms or functions in remote servers without installation of external ones that the
user wants. Meanwhile, the e-Government framework is a basic requirement to develop a public web
services system. If geo-based service systems with geodata-processing functions should be operated
in the distributed environments in public sectors, both WPS and the e-Government framework are
crucial factors from the viewpoint of software engineering. This is the case for Korea, but this situation
may occur in other countries that already have the e-Government framework, or plan to establish it.
That is the main motivation of this study.

This study reflects some benefits of standards and technology that are deemed important as
systems become more complicated, and constructs a number of integrated trial system examples
in connection with these merits. Among the reflected standards and technologies are WPS,

ISPRS Int. J. Geo-Inf. 2017, 6, 25 3 of 14

a geospatial standard, and the e-Government Standard Framework. The trial system had the ability to
perform satellite image-processing functionalities and used a request interface based on the WPS 2.0
standard. The ZOO-Project [12], an open source framework to create and chain WPS-compliant
web services, was used as a WPS platform to conform to WPS 2.0. The ZOO-Project provides
various components to utilize WPS and comprises Server, Services, API (application programming
interface), and Client. A geospatial information-processing interface can be used, and its function
is provided via Server and Services. While the WPS interface offers ways to implement geospatial
processing on the Web, appropriate functions should be developed separately for real processing.
For this purpose, the Geospatial Data Abstraction Library (GDAL), a geospatial input/output library,
and the Orfeo ToolBox (OTB), which focuses on satellite image-processing functions, were used.
Both are open sources. The trial system was developed based on the e-Government Standard
Framework. In South Korea, the e-Government Standard Framework is a set of specifications
to guide the implementation of all types of web-based information systems for public services
supported by governments and public enterprises. It uses basic requirements to develop web services.
When government institutions or agencies develop a web-based system to serve geo-based data
services and their derived contents, they should adopt this standard guide. When a development
project is conducted based on this framework, complicated tasks—such as specific data processing in
a certain application field—are partially supported, as is the case with Spring Framework features.
Because common component functions are also available, the burden of development may be
eased once the utilization method is understood. It is possible to deliver various information to
the client—such as function lists, input variables, and status values—through developed modules.
This trial system is a prototype for public services for interoperable processing of geo-based images
among two or more remote servers managed by governments or public sectors. Therefore, it needs the
WPS platform to receive satellite image-processing requests and execute them accordingly. The module
in the trial system follows the WPS 2.0 communication method and is able to implement communication
with other WPS 2.0-compliant servers.

2. OGC WPS 2.0 and Open Source

The OGC, an international standardization body, has established several standards to provide
geospatial services on the Web. These OGC standards, widely used in industry and the academy,
have also had great influence internationally [13–15]. Among them, WPS is a standard referred
to when developing a web system to support geospatial processing. If developed in compliance
with the standard, web systems can interact with other servers and improve system reusability.
In addition, geospatial-processing applications can be improved with enhancement of interoperability
and accessibility of geospatial information [16]. WPS 2.0 is currently the latest version, and it has
been modified with added functions to meet the requirements of enhanced web technology. One of
the major changes is that WPS 2.0 supports synchronous and asynchronous processing, while WPS
1.0 supports synchronous processing only. In conducting geospatial processing on the Web with
the support of asynchronous processing, it is possible to build a system in which a new or the next
geospatial-processing service can be initiated without waiting for completion of a previously executed
geospatial process. WPS 2.0 has six interface definitions on flows, usages, requests, and responses:
GetCapabilities, DescribeProcess, Execute, GetStatus, GetResult, and Dismiss [17].

GetCapabilities is an interface that returns metadata on WPS servers with a form of XML
documents. Metadata include geospatial-processing function lists and WPS interface communication
methods. The DescribeProcess interface returns detailed information on geospatial-processing
functions in XML document form. When requesting DescribeProcess, identifiers should be sent
together for geospatial-processing functions for which detail is desired. The returned detailed
information includes descriptions of the function, input value, and result values. Execute is an interface
that requests the execution of geospatial function processing. This interface does not wait for
completion of the execution request, but it immediately returns a JobID (a job identifier) to XML

ISPRS Int. J. Geo-Inf. 2017, 6, 25 4 of 14

documents. The processing progress status and result value can be identified through the JobID.
Several JobIDs can be created for one function, and each JobID performs geospatial processing
individually. This new feature was added with the structure change, which supports asynchronous
processing. GetStatus, an interface that shows progress status, returns one of four statuses to XML
documents: Running, Succeeded, Failed, and Accepted. GetResult is an interface that returns
geospatial-processing function result values corresponding to a JobID. If the progress status obtained
through GetStatus is “Succeeded”, XML documents containing the result value can be created on
request. Dismiss is an interface that terminates a process corresponding to a JobID. Examples of WPS
standard-compliant open sources include 52◦ North, Deegree, GeoServer, and PyWPS [18].

The ZOO-Project, an open source platform that supports both WPS 1.0 and WPS 2.0, was applied
to the trial system for WPS 2.0 application. The ZOO-Project is developed in C, Python, and JavaScript
and provides a developer-friendly framework for building WPS servers. For this purpose, it offers
components to build and utilize WPS: ZOO-Kernel, ZOO-Services, ZOO-API, and ZOO-Client.
ZOO-Kernel, a CGI (Common Gateway Interface) program, has interfaces and communication
methods following WPS standard, with requests and responses conforming to the standard.
ZOO-Services is a component compatible with ZOO-Kernel, and its main role is to manage and
provide geospatial-processing function as a service. Services offered by ZOO-Services are composed
of configuration files and source codes to be executed. These services can be developed and
configured independently, or they can support interworking with geospatial open sources such
as GDAL, OTB, the Computational Geometry Algorithms Library (CGAL) [19], Geographic Resources
Analysis Support System (GRASS) GIS [20], and System for Automated Geoscientific Analyses (SAGA)
GIS [21]. In the case of separate developments, interoperability is ensured across diverse environments
because many types of development languages (including Python, PHP, Java, and JavaScript) are
supported. When the developed service is registered on ZOO-Services, ZOO-Kernel provides the
corresponding service via WPS request. A WPS server can be built using these two services as
essential components of the ZOO-Project. ZOO-API, a library composed in JavaScript, provides an API
(Application Programming Interface) that creates or executes services to be registered on ZOO-Services
on servers. ZOO-Kernel and the JavaScript engine, SpiderMonkey, are required on the server-side to
use ZOO-API. Lastly, ZOO-Client is a JavaScript API that can be used on the client side. It offers ways
to interact with other WPS servers, including the ZOO-Project. ZOO-API and ZOO-Client, which are
optional, provide web system development methods following WPS. With all the components provided
by ZOO-Project and additional client developments, it is possible to build a geospatial-processing web
system. However, the main focus of this study is building a system following and utilizing WPS 2.0
linked to the e-Government Standard Framework. Furthermore, the system was built considering
linkages to open sources that will support WPS 2.0 in the future. Therefore, only essential components
of the ZOO-Project were used, excluding ZOO-API and ZOO-Client, which were optional components.

Using interfaces and communication methods defined in WPS 2.0 makes it possible to show
process information and build process-handling user interfaces. Process progress status can be
checked in real time after a process execution request, and functions such as killing processes during
processing can be implemented. This functionality is possible because the WPS 2.0 standard supports
asynchronous processing when handling geospatial information, and a system structure capable of
multiprocessing can be built using this feature.

3. The e-Government Standard Framework in South Korea

In South Korea, the e-Government Standard Framework (eGovframework) has been developed
and applied so as to establish a basic environment standard required for development of web service
systems applied to public projects. The eGovframework aims to standardize software and improve
qualities and reusability of web services. It also intends to reduce product quality gaps between
businesses and improve investment efficiency. The major features of the eGovframework include open
standard conformance via open source utilization, submission of standards linkable to commercial

ISPRS Int. J. Geo-Inf. 2017, 6, 25 5 of 14

solutions, implementation of nationwide standardization of web system development, flexibility and
ease of replacement through modularization of each service, support for mobile web and hybrid
apps, and environment provisions for web system development. Use of the eGovframework for
web system development offers many advantages, such as cost reduction through reuse of common
components, resolution of dependency on specific vendor solutions, improved interoperability with
commercial solutions, and easy maintenance. Further, the eGovframework has been distributed for
free to promote its usage in private sectors as well as public projects, and as of June 2016, it has
been applied to 649 public and private information system projects in areas including administration,
housing, disaster prevention, and statistics. As proof of its practicality, the eGovframework has been
rapidly spreading across South Korea and has been applied to government information systems in
various countries: the e-learning system in Saudi Arabia, the urban administration system of Da Nang
city in Vietnam, the medical information platform in Mexico, the electronic customs system in Ecuador,
the e-bidding system in Tunisia, and so forth [22].

The eGovframework is composed of application architecture, Runtime Environment,
Development Environment, Operation Environment, Management Environment, Mobile Device
API, and Common Components, which are required for building web systems. The Runtime
Environment, based on the Spring Framework, is an application environment that provides common
modules necessary for execution. The Spring Framework, an open source web framework based on
Java, offers various services for dynamic web system development. The Runtime Environment is
comprised of 7 service groups—including common foundation, display processing, mobile display
processing and data processing—and provides 38 services in total. The Development Environment is
a component offering an environment required for web system development. A host of environments,
including Data Development Tool, Test Automize Tool, Code Inspection Tool, Template Project
Generation Tool, and Common Component Tool, can facilitate building of automated and optimized
development environment. The Operation Environment provides a monitoring tool, a communication
tool, and a batch operation tool in the Runtime Environment. The Management Environment manages
the version and status of the eGovframework. The Mobile Device API offers various APIs capable of
directly accessing and using mobile device resources in mobile hybrid apps. In addition, it provides
Runtime Environment APIs that support implementation and execution of device applications based on
web resources, and Development Environment APIs that can facilitate device application development
in the Android-based environment. Lastly, Common Components are a collection of developed
components focusing on common reusable functions in building web systems. The Common
Component is designed and developed in accordance with Model, View, and Controller (MVC)
Architecture, based on the eGovframework.

Table 1 shows the compositions and types of Common Components that are composed of Common
Technological Service, Elementary Technological Service, and New Mobile Common Component.

This is a classification of results considering frequency of redundant developments, reusability,
and standardization application. This classification also elicits functions with high development
productivity and efficiency, required for building web systems. Explanations for each function
are as follows: Common Technological Service, a common component that runs on the
eGovframework, comprises user directory/authentication, security, statistics/reporting, collaboration,
user support, system management, system/service integration, and digital asset management,
providing 136 components in total. Elementary Technological Service is a common component that
works in a normal Java environment, regardless of the eGovframework. The Elementary Technological
Service provides 104 components including utilities such as calendar and format/calculation/conversion.
The New Mobile Common Component offers functions optimized for mobile devices, utilizing the User
Experience (UX) support function. Additionally, the New Mobile Common Component, which includes
general common components, provides 11 components, including mobile common technology, support
service, and mobile device support components.

ISPRS Int. J. Geo-Inf. 2017, 6, 25 6 of 14

Table 1. South Korean e-Government Standard Framework (eGovframework) component list.

Component Type Component

Common
Technological

Service

User
Directory/Authentication

General Login, login with authentication token, login policy, etc.

Converted from Mobile Common Component: General Login

Security Services including authentication, permission administration, encryption/decryption, etc.

Statistics/Reporting Services including Statistics on posting, access, report, etc.

Collaboration
Services including Bulletin board, community, directory, etc.

Converted from Mobile Common Component: services including Bulletin board,
community, directory, etc.

User support

Services including user administration, inquiry administration, questionnaire
administration, FAQ, Q&A, etc.

Converted from Mobile Common Component: services including user administration,
inquiry administration, questionnaire administration, FAQ, Q&A, etc.

System Management Services including common code management, menu/log administration, institution code,
batch management, etc.

System/Service Integration Services including Institution/Interface administration, etc.

Digital Asset Management Services including Knowledge, Knowledge Map, Knowledge Evaluation, etc.

Elementary Technological Services
(Common Utilities)

Services including calendar, format/calculation/conversion, validity check for
format/calculation/conversion, etc.

New Mobile
Common

Component

Mobile Common Service Real-time Notification Service, Mobile Chart/Graph, Mobile Photo Album, Synchronize
service, Off-line service

Support Offline web service, MMS service connection, OPEN-API Connection Service

Device support Location information connection, Multimedia control, Mobile Device Identification

Reference: http://www.egovframe.go.kr.

4. Linkage of WPS and the eGovframework

Various model studies based on WPS were reviewed for reference to design an integrated
trial system linking WPS 2.0 to the eGovframework. The system design and WPS utilization case
studies include development of geospatial-processing workflow design tools. First, Open Modeling
Interface (MI), WPS, and Sensor Web Enablement (SWE) were implemented; Second, various geospatial
information analysis model encapsulation methods were developed following the WPS standard;
Third, combining Open MI and WPS, a web service model was formed; Finally, a web service design
for automatic quality evaluation was applied [23–26]. These study cases used WPS-related information
for reference in stages for designing and building systems. Research cases on developing open
sources, such as 52◦ North [27] and PyWPS [28], were also consulted. Subjects of other open source
case studies included models capable of creating thematic maps on the Web by linking WMS, WFS,
and WPS; geospatial information distributed processing implementation utilizing WPS; and design
and development of geospatial automatic interpolation web services [29–31]. Reference cases also
included use of WPS 1.0 and WPS 2.0 together, linking the Spring Framework to WPS, and visualization
of public data and geospatial data based on the eGovframework [32–34].

The integrated trial system, designed by linking WPS 2.0 with the eGovframework and comprised
of the server and client, was built using a number of open sources. Table 2 shows the environments
and open sources used to build the trial system. The Web environment was constructed using Ubuntu,
Apache, and Tomcat, on which the eGovframework-based web system was built. WPS standard
application and satellite processing were implemented using open sources, without its direct
implementation. The ZOO-Project was utilized for WPS standard application, and GDAL and OTB
were used for satellite image processing. GeoServer [35], a geospatial data server, was employed to
manage satellite images and processing results; the client can call geospatial data easily and visualize
it. On the client side, JQuery [36], a JavaScript library, and OpenLayers 3 [37], a web-mapping library,
were used to compose the user interface (UI) and visualize processing results based on data returned
to the WPS interface.

Figure 1 shows the design diagram of the integrated trial system. The client is composed
of WPS 2.0 request modules, modules composing the UI based on returned data, and modules
visualizing satellite images and processing results. The request modules conduct requests through

http://www.egovframe.go.kr

ISPRS Int. J. Geo-Inf. 2017, 6, 25 7 of 14

XML binding in accordance with the request method of the WPS interface. For this purpose, a request
schema appropriate to each interface needs to be built for each module. For building schema and
request, GetStatus and GetResult request modules can be used after an Execute request because
they require JobID values. The UI composition module comprises satellite image-processing lists,
processing function, and progress status on the client screen. The visualization module visualizes
background maps, satellite images registered on GeoServer, and processing results. Processing results
are visualized using GeoServer layer names returned from GetResult requests. All client-side modules
were implemented using jQuery, and, in the case of the visualization module, OpenLayers 3 was
utilized to visualize required geospatial information.

Table 2. Web Processing Service (WPS) 2.0 processing system based on the eGovframework using
open source.

System Environment Name/Version

Server
WPS 2.0 Processing

Operating System Ubuntu/14.04.4 LTS
Web Server Apache/2.4.7

Web Container Tomcat/8.0.36
SDK (Software Development Kit) JDK (Java Development Kit)/7

Standard Web Framework The eGovframework in Korea/3.5.1
WPS Platform ZOO Project/1.5

Geospatial Data Server GeoServer/2.8.3

Satellite Image Processing
Software based on Open Source

Processing Orfeo ToolBox/5.2.1
I/O Libraries GDAL/1.11.2

Client
JavaScript Library jQuery/3.1.0

Web Mapping Library OpenLayers/3.17.1

ISPRS Int. J. Geo-Inf. 2017, 6, 25 7 of 13

Table 2. Web Processing Service (WPS) 2.0 processing system based on the eGovframework using
open source.

System Environment Name/Version

Server
WPS 2.0 Processing

Operating System Ubuntu/14.04.4 LTS
Web Server Apache/2.4.7

Web Container Tomcat/8.0.36
SDK (Software Development Kit) JDK (Java Development Kit)/7

Standard Web Framework The eGovframework in Korea/3.5.1
WPS Platform ZOO Project/1.5

Geospatial Data Server GeoServer/2.8.3
Satellite Image Processing

Software based on Open Source
Processing Orfeo ToolBox/5.2.1

I/O Libraries GDAL/1.11.2

Client
JavaScript Library jQuery/3.1.0

Web Mapping Library OpenLayers/3.17.1

Figure 1. System design based on the eGovframework using open sources for geoprocessing and
manipulation of geo-based images, including the ZOO-project.

The server is composed of a web system based on the eGovframework, the ZOO-Project, and
GeoServer. The Rest Controller receives WPS 2.0 requests from the client on the Web system;
GetCapabilities, DescribeProcess, GetStatus and GetResult requests are made with the GET method
and Execute requests with the POST method. Rest Controller runs services corresponding to the
received requests, connects to the ZOO-Project via the Data Access Object (DAO), and retrieves XML
documents matching the request. The service extracts only necessary information from the XML
documents, sends it to Rest Controller, and returns it to the client. Information extracted per request
includes the satellite image-processing function list, satellite image-processing function information
details, processing result, and JobIDs, which are contained in metadata. The ZOO-Project is designed
to return information requested from the DAO or carry out an Execute request. This function exists

Figure 1. System design based on the eGovframework using open sources for geoprocessing and
manipulation of geo-based images, including the ZOO-project.

ISPRS Int. J. Geo-Inf. 2017, 6, 25 8 of 14

The server is composed of a web system based on the eGovframework, the ZOO-Project, and
GeoServer. The Rest Controller receives WPS 2.0 requests from the client on the Web system;
GetCapabilities, DescribeProcess, GetStatus and GetResult requests are made with the GET method and
Execute requests with the POST method. Rest Controller runs services corresponding to the received
requests, connects to the ZOO-Project via the Data Access Object (DAO), and retrieves XML documents
matching the request. The service extracts only necessary information from the XML documents,
sends it to Rest Controller, and returns it to the client. Information extracted per request includes
the satellite image-processing function list, satellite image-processing function information details,
processing result, and JobIDs, which are contained in metadata. The ZOO-Project is designed to return
information requested from the DAO or carry out an Execute request. This function exists because
the DAO conducts connection requests to the ZOO-Kernel through the ZOO-Project CGI Connector.
The ZOO-Kernel plays a server role through interaction with ZOO-Services, and ZOO-Services enables
responses corresponding to WPS requests through registered services. While services included in
ZOO-Services can be developed either independently or with open sources capable of interworking,
this study provides services linking GDAL, OTB, and GeoServer. Because only open source linkage was
considered in service development, Python was used among the development languages supported
by the ZOO-Project.

As an open source utilized in linkage services, GDAL carries out tasks converting server
satellite images into applicable satellite images, and OTB conducts satellite image-processing using
the converted images. Finally, the processing result is registered on the GeoServer, and the client
visualizes the processing result. The DAO of the Web system can carry out information and Execute
requests on the satellite image-processing function by linking to ZOO-Project. On an Execute request,
the ZOO-Project creates a JOB and executes registered services. The JOB has a JobID, progress status of
service, and result values and can respond to service status or result requests.

5. A Trial System with Geospatial Image-Processing Function

A trial satellite image-processing system was built based on the diagram designed in Figure 1.
The eGovframework-based web system, which can be provided with a common component

function, offers a development environment based on Eclipse [38]. In the development environment,
it is possible to build an eGovframework-based web project. The project can add a common component
function, which is shown in Figure 2. When common components are added, required functions can be
selected and added; in the figure, the mobile common function and user authentication functions were
added. When the common component function is added, the eGovframework package is created in the
Java package, which includes packages related to mobile common functions and the eGovframework.
By utilizing added packages, an ability to construct a web environment capable of running in a mobile
environment and an authentication function, such as login, can be applied to the Web system. As the
result of the application, Figure 3 shows a login combo box of the Web system and the entry panel
accessed from a mobile device. Because of the user authentication common component, the login
page is loaded when the Web system is accessed. Likewise, adding the mobile common component
function causes the loading of a login page dedicated to mobile devices when accessed from the mobile
web. Therefore, the common component function enables developers to add necessary functions
immediately without the need for developing necessary functions on a web system.

Figure 4 shows the client UI screen constructed through WPS 2.0 requests. Figure 4a presents
the satellite image-processing function list. When the client requests a function list, the Web system
conducts the GetCapabilities service and receives XML documents containing metadata. The Web
system refines the documents, extracts lists of satellite-processing functions and returns them to
the client. Based on this, the satellite image-processing function list is visualized. Figure 4b is
a modal view to implement the satellite image-processing function. When the data requested
are necessary for modal view composition, the Web system runs the DescribeProcess service.
After running the service, XML documents are received that contain detailed information of the

ISPRS Int. J. Geo-Inf. 2017, 6, 25 9 of 14

satellite image-processing function. The Web system extracts only necessary information to conduct
the satellite image-processing function, and transfers it to the client. The client creates a modal view,
based on the information received.

ISPRS Int. J. Geo-Inf. 2017, 6, 25 8 of 13

because the DAO conducts connection requests to the ZOO-Kernel through the ZOO-Project CGI
Connector. The ZOO-Kernel plays a server role through interaction with ZOO-Services, and ZOO-
Services enables responses corresponding to WPS requests through registered services. While services
included in ZOO-Services can be developed either independently or with open sources capable of
interworking, this study provides services linking GDAL, OTB, and GeoServer. Because only open
source linkage was considered in service development, Python was used among the development
languages supported by the ZOO-Project.

As an open source utilized in linkage services, GDAL carries out tasks converting server satellite
images into applicable satellite images, and OTB conducts satellite image-processing using the converted
images. Finally, the processing result is registered on the GeoServer, and the client visualizes the
processing result. The DAO of the Web system can carry out information and Execute requests on
the satellite image-processing function by linking to ZOO-Project. On an Execute request, the ZOO-
Project creates a JOB and executes registered services. The JOB has a JobID, progress status of service,
and result values and can respond to service status or result requests.

5. A Trial System with Geospatial Image-Processing Function

A trial satellite image-processing system was built based on the diagram designed in Figure 1.
The eGovframework-based web system, which can be provided with a common component

function, offers a development environment based on Eclipse [38]. In the development environment,
it is possible to build an eGovframework-based web project. The project can add a common component
function, which is shown in Figure 2. When common components are added, required functions can
be selected and added; in the figure, the mobile common function and user authentication functions
were added. When the common component function is added, the eGovframework package is
created in the Java package, which includes packages related to mobile common functions and the
eGovframework. By utilizing added packages, an ability to construct a web environment capable of
running in a mobile environment and an authentication function, such as login, can be applied to the
Web system. As the result of the application, Figure 3 shows a login combo box of the Web system and
the entry panel accessed from a mobile device. Because of the user authentication common component,
the login page is loaded when the Web system is accessed. Likewise, adding the mobile common
component function causes the loading of a login page dedicated to mobile devices when accessed
from the mobile web. Therefore, the common component function enables developers to add necessary
functions immediately without the need for developing necessary functions on a web system.

Figure 2. Application of common components for the eGovframework in South Korea.
Figure 2. Application of common components for the eGovframework in South Korea.ISPRS Int. J. Geo-Inf. 2017, 6, 25 9 of 13

Figure 3. Automatic loading of additional common components by user authentication.

Figure 4 shows the client UI screen constructed through WPS 2.0 requests. Figure 4a presents
the satellite image-processing function list. When the client requests a function list, the Web system
conducts the GetCapabilities service and receives XML documents containing metadata. The Web
system refines the documents, extracts lists of satellite-processing functions and returns them to the
client. Based on this, the satellite image-processing function list is visualized. Figure 4b is a modal
view to implement the satellite image-processing function. When the data requested are necessary
for modal view composition, the Web system runs the DescribeProcess service. After running the
service, XML documents are received that contain detailed information of the satellite image-
processing function. The Web system extracts only necessary information to conduct the satellite
image-processing function, and transfers it to the client. The client creates a modal view, based on
the information received.

Figure 5 shows the progress status and results of the satellite image-processing function. Click
event of the Execute button in the satellite image-processing modal view initiates an Execute request.
Then, the WPS server receives JobID values and implements satellite image-processing based on
input values in the modal view. The received JobID values are used to receive progress status and
results of the satellite image processing function. Figure 5a shows the current progress status of the
satellite image-processing function. When the progress status information on the Web system is
requested, it is retrieved and returned through the GetStatus service. To show processing status
continuously, progress status information is requested periodically until the satellite image-
processing function is completed. Upon completion of processing, it is indicated as complete, and the
processing result information is requested. In the Web system, the GetResult service is carried out to
fetch a processing result. The processing result is a layer name registered on GeoServer. Using the
GeoServer layer name, the client brings the processing result, visualizes it on the client, and shows it
as in Figure 5b. Figure 5c indicates the satellite image multiprocessing stages and processing result.
The screen image on the left, which displays the satellite image-processing progress status, shows

Figure 3. Automatic loading of additional common components by user authentication.

ISPRS Int. J. Geo-Inf. 2017, 6, 25 10 of 14

ISPRS Int. J. Geo-Inf. 2017, 6, 25 10 of 13

that two processing functions have been activated. The satellite image-processing functions under
activated states are Cloud Detection [39] and Gradient Magnitude functions [40]. In the UI showing
processing progress status, the progress status on top indicates the processing function executed first.
The UI shows that the Cloud Detection function is still running, but the Gradient Magnitude function
is completed, displaying the processing result on the client. The image on the right indicates that the
Cloud Detection function is completed and shows the processing result. This proves that support for
asynchronous processing enables implementation of such a multiprocessing function. This result also
shows that another function can be implemented without having to wait for the completion of the
previously executed processing function.

Figure 4. Configuration of the user interface on the client side: (a) select algorithm—GetCapabilities
request; (b) algorithm modal view—DescribeProcess request.

Figure 5. Application of the progressing algorithm: (a) running process—GetStatus request; (b)
completed process and result—GetResult request; (c) multiprocessing and results.

Figure 4. Configuration of the user interface on the client side: (a) select algorithm—GetCapabilities
request; (b) algorithm modal view—DescribeProcess request.

Figure 5 shows the progress status and results of the satellite image-processing function.
Click event of the Execute button in the satellite image-processing modal view initiates an Execute
request. Then, the WPS server receives JobID values and implements satellite image-processing based
on input values in the modal view. The received JobID values are used to receive progress status
and results of the satellite image processing function. Figure 5a shows the current progress status
of the satellite image-processing function. When the progress status information on the Web system
is requested, it is retrieved and returned through the GetStatus service. To show processing status
continuously, progress status information is requested periodically until the satellite image-processing
function is completed. Upon completion of processing, it is indicated as complete, and the processing
result information is requested. In the Web system, the GetResult service is carried out to fetch
a processing result. The processing result is a layer name registered on GeoServer. Using the GeoServer
layer name, the client brings the processing result, visualizes it on the client, and shows it as in Figure 5b.
Figure 5c indicates the satellite image multiprocessing stages and processing result. The screen image
on the left, which displays the satellite image-processing progress status, shows that two processing
functions have been activated. The satellite image-processing functions under activated states are
Cloud Detection [39] and Gradient Magnitude functions [40]. In the UI showing processing progress
status, the progress status on top indicates the processing function executed first. The UI shows that
the Cloud Detection function is still running, but the Gradient Magnitude function is completed,
displaying the processing result on the client. The image on the right indicates that the Cloud Detection
function is completed and shows the processing result. This proves that support for asynchronous
processing enables implementation of such a multiprocessing function. This result also shows that
another function can be implemented without having to wait for the completion of the previously
executed processing function.

ISPRS Int. J. Geo-Inf. 2017, 6, 25 11 of 14

ISPRS Int. J. Geo-Inf. 2017, 6, 25 10 of 13

that two processing functions have been activated. The satellite image-processing functions under
activated states are Cloud Detection [39] and Gradient Magnitude functions [40]. In the UI showing
processing progress status, the progress status on top indicates the processing function executed first.
The UI shows that the Cloud Detection function is still running, but the Gradient Magnitude function
is completed, displaying the processing result on the client. The image on the right indicates that the
Cloud Detection function is completed and shows the processing result. This proves that support for
asynchronous processing enables implementation of such a multiprocessing function. This result also
shows that another function can be implemented without having to wait for the completion of the
previously executed processing function.

Figure 4. Configuration of the user interface on the client side: (a) select algorithm—GetCapabilities
request; (b) algorithm modal view—DescribeProcess request.

Figure 5. Application of the progressing algorithm: (a) running process—GetStatus request; (b)
completed process and result—GetResult request; (c) multiprocessing and results.
Figure 5. Application of the progressing algorithm: (a) running process—GetStatus request;
(b) completed process and result—GetResult request; (c) multiprocessing and results.

6. Discussion

In comparison with WPS 1.0, improved features in the standard interface WPS 2.0 were observed
when the processing system using WPS 2.0 was implemented. The ZOO platform offers WPS
communication through CGI. When a service is provided using CGI, the server may become vulnerable
due to excessive loads caused by multiple connections. Because this can cause real service trouble,
other communication methods should be presented. Existing open sources, excluding the ZOO
platform, comply with WPS 1.0, while technical implementation for WPS 2.0 is underway or is not yet
planned. In addition, WPS 2.0 research is trailing far behind those on WPS 1.0; performance studies on
WPS 2.0 are required. Information and communication sectors provide a variety of technologies and
platforms. Understanding current trends and measuring performance in various infrastructures can
maximize utilization.

The link to the user authentication function with WPS 2.0 is one of the common component
functions provided by the eGovframework-based system. Therefore, functions required for a web
system can be provided without the need for independent development, enabling a highly scalable
structure to be built. Also, this structure enables system development, testing, and management
through various components offered by the eGovframework. Because the eGovframework is provided
through a virtual machine, which is a feature of Java, basic hardware specifications should be good
enough to implement services. It is convenient that the standard framework common components
can be added immediately according to the specific functions required. However, some unwanted
components can be added when common components are added due to their interdependency,
which affects system quality and maintenance. The organization behind the eGovframework provides
a lightweight framework; therefore, a light version could be considered to solve this issue. When the
eGovframework is utilized, areas of improvement need to be verified through performance and code
quality tests.

ISPRS Int. J. Geo-Inf. 2017, 6, 25 12 of 14

7. Conclusions

Information and communication technologies will continue to progress, promising users more
convenient services in various sectors. However, more time needs to be spent on management as
systems grow more complicated. The same applies to systems in the geospatial sectors, and solutions
should be sought to provide and manage geospatial services effectively. For this purpose, in this
study, a trial system was built linking WPS 2.0, an international standard related to geospatial
processing, to the eGovframework developed in South Korea. The objective was to suggest plans
to provide geospatial services effectively. The trial system, a web system capable of online satellite
image processing, used an open source method. Because WPS 2.0 was applied in building the
trial system, the system has a structure capable of implementing consistent interfaces and sharing
functions with other systems when providing geospatial processing functions on the Web. In addition,
with asynchronous processing capability, flexible processing is possible in terms of getting functions.
The ability to use and comply with international standards when providing geospatial processing
on a Web system has been confirmed by using the ZOO-Project platform in order to comply with
WPS 2.0. This system has a structure that can be modified to link open sources once WPS-related open
sources support WPS 2.0 in the future. At present, many geospatial service systems are available on
the Web, but this trial system is the first with WPS 2.0 and the eGovframework based on no-cost full
open sources. The geo-based image operation in this system is an example demonstrating linkage
of applied technologies. Other functionalities or algorithms for further geodata processing can be
added to this design and architecture. This is an implementation case for Korea. However, this case
can be a useful example for other countries that already have the e-Government framework or plan
to establish it, because WPS and e-Government framework are crucial elements if geo-based service
systems with geodata-processing functions are to be operated in the distributed environments and in
the public sectors.

Acknowledgments: This research was supported by the National Land Space Information Research Program
from the Ministry of Land, Infrastructure and Transport, Korea (No. 14NSIP-B080144-01).

Author Contributions: Kiwon Lee conceptualized the research objectives, drafted the manuscript and provided
revisions. Gooseon Yoon and Kwangseob Kim, under Kiwon Lee’s supervision, performed data processing.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Aye, Z.C.; Sprague, T.; Cortes, V.J.; Prenger-Berninghoff, K.; Jaboyedoff, M.; Derron, M.-H. A collaborative
(web-GIS) framework based on empirical data collected from three case studies in Europe for risk
management of hydro-meteorological hazards. Int. J. Disaster Risk Reduct. 2016, 15, 10–23. [CrossRef]

2. Shekhar, S.; Feiner, S.K.; Aref, W.G. Knowing where you are in space and time promises a deeper
understanding of neighbor ecosystems and the environment. Commun. ACM 2016, 59, 72–81. [CrossRef]

3. ISO/TC 211 Geographic Information/Geomatics. Available online: http://www.iso.org/iso/home/
standards_development/list_of_iso_technical_committees/iso_technical_committee.htm?commid=54904
(accessed on 30 September 2016).

4. Open Geospatial Consortium. Available online: http://www.opengeospatial.org/ (accessed on 30 September 2016).
5. Lee, K.; Kang, H-K. ISO and OGC Standards for Geo-Spatial Image Information and Suggestions for Their

Applications. Korean J. Remote Sens. 2010, 26, 451–464.
6. Klug, H.; Kmoch, A. A SMART groundwater portal: An OGC web services orchestration framework for

hydrology to improve data access and visualisation in New Zealand. Comput. Geosci. 2014, 69, 78–86.
[CrossRef]

7. Schut, P. OpenGIS Web Processing Service; Open Geospatial Consortium Inc.: Wayland, MA, USA, 2007; p. 88.
8. E-Government, GIS, and Good Governance. Available online: http://transformgov.org/en/Article/105412/

(accessed on 22 November 2016).
9. Tsai, N.; Choi, B.; Perry, M. Improving the process of E-Government initiative: An in-depth case study of

web-based GIS implementation. Gov. Inf. Q. 2009, 26, 368–376. [CrossRef]

http://dx.doi.org/10.1016/j.ijdrr.2015.12.001
http://dx.doi.org/10.1145/2756547
http://www.iso.org/iso/home/standards_development/list_of_iso_technical_committees/iso_technical_committee.htm?commid=54904
http://www.iso.org/iso/home/standards_development/list_of_iso_technical_committees/iso_technical_committee.htm?commid=54904
http://www.opengeospatial.org/
http://dx.doi.org/10.1016/j.cageo.2014.04.016
http://transformgov.org/en/Article/105412/
http://dx.doi.org/10.1016/j.giq.2008.11.007

ISPRS Int. J. Geo-Inf. 2017, 6, 25 13 of 14

10. Cordella, A.; Tempini, N. E-government and organizational change: Reappraising the role of ICT and
bureaucracy in public service delivery. Gov. Inf. Q. 2015, 32, 279–286. [CrossRef]

11. Spring. Available online: https://projects.spring.io/spring-framework/ (accessed on 10 October 2016).
12. ZOO-Project. Available online: http://www.zoo-project.org (accessed on 2 March 2016).
13. Lopez-Pellicer, F.J.; Béjar, R.; Florczyk, A.J.; Muro-Medrano, P.R.; Zarazaga-Soria, F.J. A Review of the

Implementation of OGC Web Services across Europe. Int. J. Spat. Data Infrastruct. Res. 2011, 6, 168–186.
14. Li, W.; Wang, S.; Bhatia, V. PolarHub: A large-scale web crawling engine for OGC service discovery in

cyberinfrastructure. Comput. Environ. Urban 2016, 59, 195–207. [CrossRef]
15. Han, W.; Di, L.; Yu, G.; Shao, Y.; Kang, L. Investigating metrics of geospatial web services: The case of a CEOS

federated catalog service for earth observation data. Comput. Geosci. 2016, 92, 1–8. [CrossRef]
16. Zhao, P.; Foerster, T.; Yue, P. The Geoprocessing Web. Comput. Geosci. 2012, 47, 3–12. [CrossRef]
17. Mueller, M.; Pross, B. OGC WPS 2.0 Interface Standard; Open Geospatial Consortium Inc.: Wayland, MA,

USA, 2015.
18. Swain, N.R.; Latu, K.; Christensen, S.D.; Jones, N.L.; Nelson, E.J.; Ames, D.P.; Williams, G.P. A review of

open source software solutions for developing water resources web applications. Environ. Model. Softw. 2015,
67, 108–117. [CrossRef]

19. The Computational Geometry Algorithms Library. Available online: https://www.cgal.org/ (accessed on
21 December 2016).

20. Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS)—Home.
Available online: https://grass.osgeo.org/ (accessed on 21 December 2016).

21. System for Automated Geoscientific Analyses (SAGA) Geographic Information System (GIS).
Available online: http://www.saga-gis.org/ (accessed on 21 December 2016).

22. eGovFrame Portal. Available online: http://www.egovframe.go.kr (accessed on 30 September 2016).
23. Yue, P.; Zhang, M.; Tan, Z. A geoprocessing workflow system for environmental monitoring and integrated

modelling. Environ. Model. Softw. 2015, 69, 128–140. [CrossRef]
24. Yue, S.; Chen, M.; Wen, Y.; Lu, G. Service-oriented model-encapsulation strategy for sharing and integrating

heterogeneous geo-analysis models in an open web environment. ISPRS J. Photogramm. 2016, 114, 258–273.
[CrossRef]

25. Castronova, A.; Goodall, J.L.; Elag, M.M. Models as web services using the Open Geospatial Consortium
(OGC) Web Processing Service(WPS) standard. Environ. Model. Softw. 2013, 41, 72–83. [CrossRef]

26. Xavier, E.M.A.; Ariza-Lopez, F.J.; Urena-Camara, M.A. Web service for positional quality assessment:
The WPS TIER. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2015. [CrossRef]

27. 52◦ North Initiative for Geospatial Open Source Software GmbH—Home. Available online: http://52north.
org/ (accessed on 21 December 2016).

28. PyWPS Home. Available online: http://pywps.org/ (accessed on 21 December 2016).
29. Pebesma, E.; Cornford, D.; Dubois, G.; Heuvelink, G.B.M.; Hristopulos, D.; Pilz, J.; Stohlker, U.; Morin, G.;

Skoien, J.O. INTAMAP: The design and implementation of an interoperable automated interpolation web
service. Comput. Geosci. 2011, 37, 343–352. [CrossRef]

30. Rautenbach, V.; Coetzee, S.; Iwaniak, A. Orchestrating OGC web services to produce thematic maps in
a spatial information infrastructure. Comput. Environ. Urban 2013, 37, 107–120. [CrossRef]

31. Giuliani, G.; Nativi, S.; Lehmann, A.; Ray, N. WPS mediation: An approach to process geospatial data on
different computing backends. Comput. Geosci. 2012, 47, 20–33. [CrossRef]

32. Yoon, G.; Lee, K. WPS-based satellite image processing on web framework and cloud computing environment.
Korean J. Remote Sens. 2015, 31, 561–570. [CrossRef]

33. Yoon, G.; Lee, K. Testing application of Web Processing Service (WPS) standard to satellite image processing.
Korean J. Remote Sens. 2015, 31, 245–254. [CrossRef]

34. Kim, K.; Lee, K. Visualization of Geo-spatial data and public data using mobile operating environment in
the eGovernment standard framework. J. Korea Spat. Inf. Soc. 2015, 23, 9–17. [CrossRef]

35. GeoServer. Available online: http://geoserver.org/ (accessed on 21 December 2016).
36. jQuery. Available online: http://jquery.com/ (accessed on 21 December 2016).
37. OpenLayers 3—Welcome. Available online: https://openlayers.org (accessed on 21 December 2016).
38. Eclipse—The Eclipse Foundation Open Source Community Website. Available online: https://eclipse.org/

(accessed on 21 December 2016).

http://dx.doi.org/10.1016/j.giq.2015.03.005
https://projects.spring.io/spring-framework/
http://www.zoo-project.org
http://dx.doi.org/10.1016/j.compenvurbsys.2016.07.004
http://dx.doi.org/10.1016/j.cageo.2016.04.005
http://dx.doi.org/10.1016/j.cageo.2012.04.021
http://dx.doi.org/10.1016/j.envsoft.2015.01.014
https://www.cgal.org/
https://grass.osgeo.org/
http://www.saga-gis.org/
http://www.egovframe.go.kr
http://dx.doi.org/10.1016/j.envsoft.2015.03.017
http://dx.doi.org/10.1016/j.isprsjprs.2015.11.002
http://dx.doi.org/10.1016/j.envsoft.2012.11.010
http://dx.doi.org/10.5194/isprsannals-II-3-W5-257-2015
http://52north.org/
http://52north.org/
http://pywps.org/
http://dx.doi.org/10.1016/j.cageo.2010.03.019
http://dx.doi.org/10.1016/j.compenvurbsys.2012.08.001
http://dx.doi.org/10.1016/j.cageo.2011.10.009
http://dx.doi.org/10.7780/kjrs.2015.31.6.6
http://dx.doi.org/10.7780/kjrs.2015.31.3.4
http://dx.doi.org/10.12672/ksis.2015.23.1.009
http://geoserver.org/
http://jquery.com/
https://openlayers.org
https://eclipse.org/

ISPRS Int. J. Geo-Inf. 2017, 6, 25 14 of 14

39. Feature Extraction in OTB. Available online: https://www.orfeo-toolbox.org/SoftwareGuide/
SoftwareGuidech14.html#x43-23800014.8 (accessed on 21 December 2016).

40. Basic Filtering in OTB. Available online: https://www.orfeo-toolbox.org/SoftwareGuide/SoftwareGuidech8.
html (accessed on 21 December 2016).

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.orfeo-toolbox.org/SoftwareGuide/SoftwareGuidech14.html#x43-23800014.8
https://www.orfeo-toolbox.org/SoftwareGuide/SoftwareGuidech14.html#x43-23800014.8
https://www.orfeo-toolbox.org/SoftwareGuide/SoftwareGuidech8.html
https://www.orfeo-toolbox.org/SoftwareGuide/SoftwareGuidech8.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	OGC WPS 2.0 and Open Source
	The e-Government Standard Framework in South Korea
	Linkage of WPS and the eGovframework
	A Trial System with Geospatial Image-Processing Function
	Discussion
	Conclusions

