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Abstract: Landslides, as geological hazards, cause significant casualties and economic losses.
Therefore, it is necessary to identify areas prone to landslides for prevention work. This paper
proposes an improved information value model based on gray clustering (IVM-GC) for landslide
susceptibility mapping. This method uses the information value derived from an information value
model to achieve susceptibility classification and weight determination of landslide predisposing
factors and, hence, obtain the landslide susceptibility of each study unit based on the clustering
analysis. Using a landslide inventory of Chongqing, China, which contains 8435 landslides, three
landslide susceptibility maps were generated based on the common information value model (IVM),
an information value model improved by an analytic hierarchy process (IVM-AHP) and our new
improved model. Approximately 70% (5905) of the inventory landslides were used to generate the
susceptibility maps, while the remaining 30% (2530) were used to validate the results. The training
accuracies of the IVM, IVM-AHP and IVM-GC were 81.8%, 78.7% and 85.2%, respectively, and the
prediction accuracies were 82.0%, 78.7% and 85.4%, respectively. The results demonstrate that all
three methods perform well in evaluating landslide susceptibility. Among them, IVM-GC has the
best performance.

Keywords: landslide; susceptibility assessment; GIS; improved information value model; Chongqing;
gray clustering

1. Introduction

Landslides, as geological hazards causing serious casualties, property loss, and environmental
damage, restrict sustainable development [1,2]. To minimize economic losses and loss of human life,
landslide-prone areas should be identified. A landslide susceptibility map is urgently needed.

Numerous models and approaches for landslide susceptibility mapping have been developed
throughout the world over the past decades [3–7]. The most used methods are based on soft computing
or statistical techniques, e.g., the fuzzy logic method [8,9], artificial neural network model [10,11],
logistic regression model [12,13], cellular automata methods [14], and analytic hierarchy process [15,16].

The information value based method has been widely applied as a statistical data-driven method
recommended by experts [17] to assess landslide susceptibility [18,19]. Xu et al. [18] used GIS and the
information value model to evaluate debris flow susceptibility. Chen et al. [19] made a landslide
susceptibility map using the information value model in the Chencang District of Baoji, China.
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Zhu et al. [20] compared the information value model with the weights-of-evidence method in
landslide susceptibility mapping. The results demonstrate that the information value model had
higher prediction accuracy. Chen et al. [21] made a comparison between the information value model
and logistic regression model in landslide susceptibility mapping, which suggests that the results of
the information value model were more coincident with actual landslide events. The higher prediction
accuracy of the information value model in landslide susceptibility mapping is partly because the
relative weights of different classes of each landslide predisposing factor can be determined objectively.
In addition, different factors have different influences on the occurrence of landslides. However, the
traditional information value model regards all landslide predisposing factors at the same level of
importance and assigns equal weight to each factor. Thus, this model cannot reflect the differences
between the contributions of various landslide predisposing factors. To improve the information value
model, several methods have been proposed. Jiang et al. [22] combined the information value model
with an analytic hierarchy process to assess landslide susceptibility. An information value model
integrated with Shannon’s entropy was proposed by Sharma et al. [23]. However, for these methods,
the weights of landslide predisposing factors are determined through human intervention, which
increases uncertainties in the results.

This paper proposes an improved information value model based on gray clustering. Since the
effects of various predisposing factors on landsliding are different. It is vital to understand the
differences in effect and hence to weight the importance of different factors. This model objectively
determines both the relative weights of different classes within each predisposing factor and the
weights of predisposing factors for landslides. The proposed model is evaluated by comparing its
landslide susceptibility mapping results with those of the traditional information model and the
improved model combined with the analytic hierarchy process. This study provides new insight
for landslide susceptibility mapping that can help governments to conduct landslide prevention
and mitigation.

2. Study Area

The study area of Chongqing is located in the southwestern part of China, between the longitudes
105◦11′ E and 110◦11′ E and latitudes 28◦10′ N and 32◦13′ N. This area is characterized by a complex
geological structure, soft surface layer, deep valleys, and steep slopes. The basic tectonic framework of
this area originated from Indosinian—Yanshan movement and Himalayan movement. Affected by
the Huayingshan fault zone, Qiyaoshan fault zone, and Changshou—Zunyi fault, a series of tectonic
folds and faults developed in this area. Chongqing is located in the eastern part of Sichuan Basin.
The eastern Chongqing is connected to the Qinba Mountains and Wuling Mountains, and the Western
Chongqing is linked with the Mid-Sichuan Hilly Region. This area has a distinct topographical relief
that is controlled by geological structures. The mountain alignment is broadly consistent with the
tectonic line. West Chongqing has mainly low mountainous and hilly regions. The Jialing River
and Yangtze River run through the whole region. The climate of this area is subtropical monsoonal,
with abundant precipitation and storms. In recent years, increasing human activities in this region,
especially for the construction of the Three Gorges Reservoir, caused more impact on the natural
terrain. Consequently, landslides became the most extensive and serious geological hazard in the area.

3. Data

3.1. Landslide Inventory Data

In this study, a landslide inventory with a total of 8435 landslide events before 2014 was provided
by the Chongqing Institute of Geology and Mineral Resources (Figure 1). All landslide events are
represented by point features with attributes of latitude, longitude, and area. The minimum area of
landslides was 3 m2, and the maximum area was 3,080,000 m2.

Landslides in the inventory are mainly distributed along the faults, road network, and
hydrographic network. The inventory is composed of rotational slides, translational slides, and
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debris flows and so on. These landslides affect a total area of 194,442,814 m2. According to
the landslide volume, these landslides can be divided into four classes, including small-sized
landslides (<10 × 104 m3), medium-sized landslides (10 × 104–100 × 104 m3), large-sized landslides
(100 × 104–1000 × 104 m3), and huge-sized landslides (>1000 × 104 m3). The number of small-sized
landslides, medium-sized landslides, large-sized landslides, and huge-sized landslides is 7052, 1172,
160, and 51, respectively. Landslide disasters in Chongqing are dominated by small-sized landslides
(83.6%), followed by medium-sized landslides (13.9%). Large-sized and huge-sized landslides are
extremely rare.
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The main predisposing factors of landslides in Chongqing include rainfall, earthquakes, erosion
of slope toes by rivers, and human activities. Most landslides in the study area are caused by rainfall,
followed by landslides caused by earthquakes and erosion. Some studies have indicated that the
rainfall threshold was 150 mm/day in the study area [24]. Moreover, a great number of construction
projects initiated by local governments were also responsible for the landslide occurrence.

3.2. Landslide Predisposing Factors

In this paper, we utilized eight landslide predisposing factors to construct landslide prediction
methods, including elevation, slope gradient, aspect, rainfall, distance from the faults, distance from
the road network, distance from the hydrographic network, and the normalized difference vegetation
index (NDVI).

Elevation has great effects on climate, hydrology, geology, and soil, which are factors related to the
occurrence of landslides. Slope gradient is a main driving force of landsliding. Theoretically, landslides
are more likely to occur on steep slopes [25]. However, some studies have reported that landslides
are most likely to occur when the slope gradient is moderate [26]. This is due to a lack of material
foundation for landsliding at large slope gradients [27]. Aspect influences the distribution of water
and heat resources and, hence, affects soil, rock, and vegetation types [28]. Rainfall is an important
triggering factor of landslides by directly or indirectly reducing the shear strength of rock-soil through
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physical and chemical effects on rock-soil. Therefore, the mean annual precipitation (MAP) is used
as the indicator. Proximity of a fault is also a main predisposing factor for landslides. It is well
known that landslides tend to occur in the surrounding area of a fault due to fractures in the rock
mass [29,30]. The buffer distance from the faults is used as the indicator. Road construction also results
in the oversteepening of side slopes. Therefore, there is a high probability of landslide occurrence
along a road. The distance of a slope to drainage structures is another important factor for slope
stability. Streams may adversely affect stability by eroding the slopes or saturating the lower part of
material [31,32]. Therefore, we chose the distance from the hydrographic networks as a predisposing
factor. NDVI is an important index denoting a region’s vegetation cover, and it is an important factor
for landslide occurrence and movement [33]. Plant roots can hold the soil to mitigate the effect of
rainfall [34]. Theoretically, the possibility of landslide occurrence gradually decreases with increasing
NDVI value [35].

The 30-m-resolution global digital elevation model generated from the stereoscopic data collected
by the advanced spaceborne thermal emission and reflection radiometer global digital elevation model
(ASTER GDEM) was utilized to provide elevation information. Based on ASTER GDEM, a slope
gradient and an aspect map were generated. The hydrographic network was also extracted from
ASTER GDEM by computing flow accumulation. The geological structure data extracted from a
geological map of Chongqing was in vector format on a scale of 1:500,000. The road network vector
data was retrieved from the topographic map of China. The rainfall data, including daily precipitation
at rainfall observation stations in 2013 and 2014 and geographical coordinates of these observation
stations, was provided by the Chongqing Institute of Geology and mineral resources. The NDVI
data were provided by International Scientific & Technical Data Mirror Site, Computer Network
Information Center, Chinese Academy of Sciences. (http://www.gscloud.cn) at a resolution of 500 m
and resampled to a resolution of 30 m. Landslide predisposing factors maps are shown in Figure 2.
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4. Methodology

For the data set, each 30 × 30 m grid cell was used as the study unit. The 8435 recorded landslides
were randomly divided into two subsets. The 70% (5905) of inventory landslides were used for
model training, and the remaining 30% (2530) were used for model validation. The three models,
i.e., the information value model, the improved information value model based on analytic hierarchy
process and the improved information value model based on gray clustering, were used to assess
landslide susceptibility. Finally, landslide susceptibility was divided into the following five classes:
very low, low, moderate, high, and very high using Jenks natural breaks optimization. Jenks natural
breaks optimization is a data clustering method designed to determine the best arrangement of values
into different classes. This is done by seeking to minimize each class’ average deviation from the class
mean, while maximizing each class’ deviation from the means of other groups. In other words, the
method seeks to reduce the variance within classes and maximize the variance between classes [34].
Details of the three models are provided in the following subsections.

4.1. Information Value Model (IVM)

IVM is a statistical analysis method that was developed from information theory. In this model,
information values of predisposing factors were used to characterize the possibility of landslides
occurrence. The information value I(xi, H) of each landslide predisposing factor xi(i = 1, 2, . . . , n) can
be expressed as follows [21,36,37]:

I(xi, H) = ln
Ni/N
Si/S

(1)

where H represents the likelihood of landsliding, S is the total number of study units from the study
area, N is the total area of landslides in the study area which is the sum of area of all landslide points
in the study area, Si is the number of the study units with the presence of predisposing factor xi, and
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Ni is the total area of landslides with the presence of predisposing factor xi which is the sum of area of
the landslide points with the presence of predisposing factor xi.

Therefore, the total information I of each study unit can be calculated as the sum of the information
values of all predisposing factors [38].

I = ∑N
I=1 I(xi, H) = ∑N

I=1 ln
Ni/N
Si/S

(2)

when I < 0, the possibility of landslide occurrence is lower than average; when I = 0, the possibility
of landsliding is equal to average; and when I > 0, the possibility of landsliding is higher than
average [39]. The larger the information value, the greater the possibility of landsliding.

The method is composed of the following steps: (1) Preprocessing landslide data and landslide
predisposing factors data. Generating the slope and aspect distribution map by the use of DEM data
and hydrology tool of ArcGIS. Thorough buffer area analysis of hydrographic network, road network,
and faults generating the corresponding buffer maps. The rainfall should be interpolated to draw the
rainfall distribution map; (2) Classifying landslide predisposing factors, then calculating information
values of landslide predisposing factors according to Equation (1); (3) Overlaying the information
values distribution maps of all landslide predisposing factors to calculate total information by the use
of the map algebra tool, ArcGIS; and (4) Reclassifying the total information using Jenks natural breaks
optimization to generate a landslide susceptibility map.

4.2. The Improved Information Value Model Based on Analytic Hierarchy Process (IVM-AHP)

IVM can be improved using an analytic hierarchy process. The construction of the improved
model consists of the following steps [15,40–42]:

1 For the establishment of the hierarchy, with 1–9 and its reciprocal as the scale of the importance
of predisposing factors on landslide occurrence (Table 1), the relative importance of predisposing
factors is compared to construct a pairwise comparison matrix [43].

2 The largest eigenvalue and corresponding eigenvector of the comparison matrix are calculated.
The eigenvector is normalized to represent the weights of predisposing factors [44–46].

3 The consistency of the matrix is checked. Consistency ratio (CR) is used to calculate the
consistency as Equation (3)

CR =
CI
RI

(3)

where RI is the mean random index that has been defined by Saaty [47] (Table 2). CI is the
consistency index that is defined as

CI = (λmax − N)/(N − 1) (4)

where λmax is the largest eigenvalue and N is the order of the comparison matrix. When the value
of CR is less than 0.1, the pairwise comparison satisfies the consistency requirements [48,49].
Otherwise, the comparison matrix must be reconstructed, which means that we should return to
the first step [50].

4 The total weighted information value of each study unit is obtained using the information values
derived from the IVM according to Equation (5):

Iω =
n

∑
i=1

ωi Ii =
n

∑
i=1

ωi ln
Ni/N
Si/S

(5)

In this equation, ωi(i = 1, 2, . . . , n) is the weight of each predisposing factor. Then, the total
weighted information value can be reclassified using Jenks natural breaks optimization to generate
the landslide susceptibility map.
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Table 1. The scale and definition of pairwise comparison matrix.

Scale Meaning

1 The two factors assume equal significance.
3 The former factor is slightly more important than the latter.
5 The former factor is obviously more important than the latter.
7 The former factor is intensely more important than the latter.
9 The former factor is extremely more important than the latter.

2,4,6,8 Indicate the intermediate value of adjacency determination.
1,1/3, . . . ,1/9 It is opposite from the above.

Table 2. Random consistency index (RI).

The Order of the Matrix (n) 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.52 0.89 1.12 1.26 1.36 1.41 1.46 1.49

4.3. The Improved Information Value Model Based on Gray Clustering (IVM-GC)

In this paper, the model (IVM) described in Section 4.1 is improved based on gray clustering.
The information value derived from the IVM is used to obtain the relative weights of different classes
within each landslide predisposing factor and to determine the weights of these factors.

In landslide susceptibility mapping, study units are clustering objects that are denoted
by i(i = 1, 2, . . . , n) and landslide predisposing factors as clustering indexes are expressed as
j(j = 1, 2, . . . , m). The value of the jth predisposing factor at the ith study unit is expressed as yij.
Gray classes k(k = 1, 2, . . . , s) are regarded as landslide susceptibility classes. The n is the total number
of study units. The m is the number of landslide predisposing factors, which is 8 for this paper. The s is
the number of landslide susceptibility classes, which is 5 in this study. Gray clustering for the landslide
susceptibility mapping has the following steps [51–53]:

1 Using a min-max normalization method, the data are normalized to eliminate the influence of
dimension. Among all yij values, the maximum value yM and the minimum value ym are used to
normalize yij [52]:

xij =
yij − ym

yM − ym
(6)

2 The whitening weight functions of predisposing factors are determined. The
f k
j (·)(1, 2, . . . , m; k = 1, 2, . . . , s) is the whitening weight function of the kth susceptibility

class of the jth predisposing factor [52].

1© The lower whitenization weight function (Figure 3a) is [−,−, xk
j (3), xk

j (4)]

f k
j (x) =


0 x /∈ [0, xk

j (4)]
1 x ∈ [0, xk

j (3)]
xk

j (4)−x

xk
j (4)−xk

j (3)
x ∈ [xk

j (3), xk
j (4)]

(7)

2© The moderate whitenization weight function (Figure 3b) is [xk
j (1),

k
j (2),−, xk

j (4)]

f k
j (x) =


0 x /∈ [xk

j (1), xk
j (4)]

x−xk
j (1)

xk
j (2)−xk

j (1)
x ∈ [xk

j (1), xk
j (2)]

xk
j (4)−x

xk
j (4)−xk

j (2)
x ∈ [xk

j (2), xk
j (4)]

(8)
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3© The upper whitenization weight function (Figure 3c) is [xk
j (1),

k
j (2),−,−]

f k
j (x) =


0 x /∈ [1, xk

j (7)]
x−xk

j (1)

xk
j (2)−xk

j (1)
x ∈ [xk

j (1), xk
j (2)]

xk
j (4)−x

xk
j (4)−xk

j (3)
x ∈ [xk

j (2), 7]

(9)

3 The clustering weight ηj(j = 1, 2, . . . , m), which reflects the influence of each landslide
predisposing factor on landslide occurrence, is calculated by Equation (10):

ηj =
λj

∑m
j=1 λj

(10)

where λj is the sum of the positive information values of the jth landslide predisposing factor.

The
m
∑

j=1
λj is the total positive information value of all predisposing factors.

4 The clustering coefficient of the study unit i(i = 1, 2, . . . , n) for the susceptibility class
k(k = 1, 2, . . . , s) is expressed as

σk
i =

m

∑
j=1

f k
j
(

xij
)
·ηj, (i = 1, 2, . . . , n; k = 1, 2, . . . , s) (11)

where f k
j (·)(j = 1, 2, . . . , m; k = 1, 2, . . . , s) is the clustering weight functions in step (2),

and xij(i = 1, 2, . . . , n; j = 1, 2, . . . , m) is the normalized value of the jth predisposing factor at the
ith study unit. The clustering weight ηj(j = 1, 2, . . . , m) is obtained in step (3).

All the clustering coefficients of the ith study unit constitute a clustering vector:

σi =
(

σ1
i , σ2

i , . . . , σk
i

)
(12)

5 According to the clustering vector, the susceptibility class that the study unit i(i = 1, 2, . . . , n)
belongs to can be determined. The study unit i belongs to the class k∗ if

max
{

σk
i

}
= σk∗

i (13)

i.e., k∗ equals the value of k whose clustering coefficient σk
i (k = 1, 2, .., s) is the largest.
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4.4. Receiver Operating Characteristics Curve

As a useful tool to study binary problems, such as the manifestation or not of landslides, the ROC
curve has been widely used to evaluate the performance of a landslide susceptibility model [54,55].
The curve is created by plotting the true positive rate (TPR) against the false positive rate (FPR) at
various threshold settings [56]. The false-positive values along the x-axis are the proportion of areas
classified as landslide prone zones but are actually not. In contrast, the true-positive values along the
y-axis are the proportion of landsliding zones classified as landslide prone areas [54]. The landslide
susceptibility model is evaluated using the area under the ROC curve (AUC) [55]. The value of AUC
ranges from 0.5 to 1. The model with the largest AUC is regarded as the best. An AUC close to 1
suggests that the model produces a good result [54]. In contrast, an AUC value close to 0.5 implies a
poor result. It is generally accepted that a model has a high accuracy if the AUC of this model is larger
than 0.7 [57].

4.5. Wilcoxon Signed-Rank Test

The Wilcoxon signed-rank test is a nonparametric test equivalent to the dependent t-test. As the
Wilcoxon signed-rank test does not require normality for the data, it can be used when normality has
been violated, and the use of the dependent t-test is inappropriate. It is used to compare two sets of
scores that come from the same participants [58]. In this paper, it was used to compare the spatial
pattern of landslide susceptibility zones extracted by the three models to check if the prediction results
of the three models are significantly different.

5. Results

Using 70% of the inventory landslides, three landslide susceptibility maps were generated using
the information value model (IVM), the improved information value model based on analytic hierarchy
process (IVM-AHP), and the new improved information value model based on gray clustering
(IVM-GC). Eight landslide predisposing factors were selected for landslide susceptibility mapping,
including elevation, slope gradient, aspect, rainfall, distance from the faults, distance from the road
network, distance from the hydrographic network, and NDVI.

5.1. Application of IVM

According to existing research [18,19,59] or Jenks natural breaks optimization, each landslide
predisposing factor was divided into five classes, except for aspect, which was divided into nine
classes. Using Equation (1), the information value of each class of landslide predisposing factor was
calculated (Table 3).

In terms of elevation, as indicated in Table 3, the 100–200 m class had the largest information value
of 1.342, followed by 0.134 at 200–300 m. The remaining classes were negative. Therefore, landslides
were prone to occur between 100 and 300 m.

As for slope gradient, most landslides occurred between 10◦ and 35◦. The maximum information
value of 0.494 was found in the range of 10◦–20◦, which was the range that landslides were most likely
to occur.

For aspect, the information values varied from −0.226 to 0.387. The maximum was found on the
northwest exposure and the minimum was on the flat areas. Therefore, the probability of landslide
occurrence was the largest in the northwest exposure and least in the flat areas.

For the distance from the hydrographic network, the largest information value was 0.441 at the
interval of <1000 m. The information value of the distance from the hydrographic network between
1000 and 2000 m was the second largest at 0.338. The ranges 2000–3000 m and 3000–4000 m had the
information values of −0.134 and −0.436, respectively. The >4000 m class had the smallest information
value. From these results, it was clearly shown that landslides were more likely to occur when the
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distance from the hydrographic network was less than 1000 m. The possibility of landslide occurrence
in the >4000 m class was the least.

Table 3. Information values of landslide predisposing factors.

Factors Classes S Si N (m2) Ni (m2) Information Value

Elevation (m)

<100

91,742,514

34870

194,442,814

10,000 −2.000
100–200 1,881,984 15,268,296 1.342
200–300 11,248,389 27,243,885 0.134
300–400 13,415,534 24,224,773 −0.161

>400 65,161,737 127,695,860 −0.078

Slope (◦)

<5

97,142,514

21,255,201

194,442,814

61,756,040 −0.723
5–10 15,192,929 50,152,780 −0.167

10–20 26,833,085 28,313,446 0.494
20–35 22,263,969 18,211,939 −0.021
>35 6,197,330 36,008,609 −0.791

Aspect

flat

91,742,514

6,516,635

194,442,814

11,020,541 −0.226
N 10,122,858 19,136,376 −0.114

NE 9,950,028 15,932,679 −0.280
E 11,597,215 20,868,205 −0.164

SE 10,623,819 24,829,903 0.098
S 10,264,151 22,362,211 0.028

SW 10,242,032 23,933,420 0.098
W 11,903,490 23,506,192 −0.071

NW 10,522,286 32,853,287 0.387

HN(m)

<1000

91,742,514

18756180

194,442,814

21,854,389 0.441
1000–2000 16874652 27,238,852 0.338
2000–3000 15277373 93,206,512 −0.134
2000–4000 13293720 46,189,180 −0.436

>4000 27540589 5,953,881 −0.483

GS(m)

<600

91,742,514

14,191,634

194,442,814

36,917,262 0.205
600–1200 13,521,155 30,214,238 0.053

1200–1800 12,484,448 28,170,867 0.063
1800–2400 10,829,816 21,343,112 −0.073

>2400 40,715,461 77,797,335 −0.104

Rainfall
(mm/year)

<1000

91,742,514

1,796,974

194,442,814

805,970 −1.553
1000–1100 19,094,273 15,677,811 −0.948
1100–1200 23,399,541 63,459,465 0.247
1200–1250 13,970,214 36,727,659 0.216

>1250 33,481,512 77,771,909 0.092

RN (m)

<200

91,742,514

7,154,638

194,442,814

28,164,897 0.619
200–400 6,111,950 20,653,079 0.467
400–600 5,541,588 12,571,499 0.068
600–800 5,114,563 11,107,819 0.024

>800 67,819,775 121,945,520 −0.164

NDVI

<0.55

91,742,514

1,616,676

194,442,814

6,651,753 0.663
0.55–0.65 4,747,365 15,649,391 0.442
0.65–0.75 29,448,345 71,658,598 0.138
0.75–0.85 45,379,633 90,242,403 −0.064

>0.85 10,550,495 10,240,669 −0.781

GS: distance from faults, HN: distance from hydrographic network; RN: distance from road network; S: the
total number of the study units of the study area; N: the total area of landslides in the study area; Si : the number
of the study units with the presence of predisposing factor xi ; Ni : the total area of landslides with the presence
of predisposing factor xi .

For the distance from the faults, intervals 0–600 m and 600–1200 m had the information values of
0.205 and 0.053, respectively. The information values for the 1800–2400 m and >2400 m classes were
negative. This indicated that landslides were more likely to occur when the distance to the faults was
less than 1800 m. There was the least possibility of landslide occurrence in the >1800 m range.

The information value of rainfall ranged from −1.553 to 0.247. In the study area, rainfall between
1100 and 1200 mm/year had the largest information value of 0.247, which suggested that the probability
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of landslide occurrence in this interval was greater than for any other intervals. The information value
of rainfall between 1200 and 1250 mm/year was the second largest (0.216). This result was inconsistent
with common knowledge that the information value should gradually increase with increasing rainfall.
This phenomenon may be due to sudden rainstorms, which also contributed greatly to the occurrence
of landslides [60].

As for the distance from the road network, the largest information value was 0.619 at the interval
of 0–200 m. Beyond 800 m, the information value was the least at −0.164, indicating the lowest
landslide frequency.

With respect to NDVI, the <0.55 class had the largest information value of 0.663 and the >0.85
class had the smallest information value of −0.781. The information value gradually decreased with
increasing NDVI value.

Landslide susceptibility was determined based on the total information, which was the sum of the
information values of all landslide predisposing factors. Based on Jenks natural breaks optimization,
the total information was divided into five classes, including very low, low, moderate, high, and very
high susceptibility. Then, the landslide susceptibility map of the Chongqing study area was generated
(Figure 4).

ISPRS Int. J. Geo-Inf. 2017, 6, 18  11 of 19 

 

optimization, the total information was divided into five classes, including very low, low, moderate, 
high, and very high susceptibility. Then, the landslide susceptibility map of the Chongqing study 
area was generated (Figure 4). 

 
Figure 4. The landslide susceptibility map of Chongqing based on information value model. 

Figure 4 shows that low susceptibility areas were mainly distributed in the southwest and 
northeast of the study area. High susceptibility areas were distributed in a banded pattern, along the 
same directions as most roads, hydrographic networks and faults. Low susceptibility areas occupied 
32.96% of the study area, which was the largest proportion among all classes, while very low, 
moderate, high, and very high susceptibility areas accounted for 14.36%, 30.37%, 16.45,% and 5.86% 
of the study area, respectively. 

5.2. Application of IVM-AHP 

Table 4 shows the pairwise comparison matrix and weights of landslide predisposing factors 
determined by the analytic hierarchy process. As indicated in Table 4, slope gradient had the 
maximum weight, i.e., the largest influence on landslide occurrence. The weight of aspect was the 
minimum, meaning that aspect had the least influence on occurrence of landslides. The weight of 
elevation, distance from the faults, distance from the hydrographic network, distance from the road 
network, rainfall, and NDVI were 0.082, 0.155, 0.059, 0.041, 0.258, and 0.035, respectively. 

The consistency of the pairwise comparison matrix was tested using a consistency ratio	(CR). 
The consistency index	(CI) and CR	values were 0.116 and 0.082, respectively, which indicated that 
the pairwise comparison matrix satisfied the consistency requirement. Using the information values 
of each class of landslide predisposing factor derived from the IVM, the weighted information values 
were obtained using Equation (5) and then the landslide susceptibility map was generated (Figure 
5). As shown in Figure 5, low susceptibility areas were mainly distributed in the southwest and 
northeast of the study area. High susceptibility areas were distributed in a belt pattern, which was 
similar to the results of the information value model shown in Figure 4. Low susceptibility areas 
occupied the highest proportion, reaching 34.93%, while very low susceptibility areas took up only 
3.31%. Moderate, high and very high susceptibility areas accounted for 28.70%, 21.56% and 11.49% 
of the study area, respectively. 
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Figure 4 shows that low susceptibility areas were mainly distributed in the southwest and
northeast of the study area. High susceptibility areas were distributed in a banded pattern, along the
same directions as most roads, hydrographic networks and faults. Low susceptibility areas occupied
32.96% of the study area, which was the largest proportion among all classes, while very low, moderate,
high, and very high susceptibility areas accounted for 14.36%, 30.37%, 16.45,% and 5.86% of the study
area, respectively.

5.2. Application of IVM-AHP

Table 4 shows the pairwise comparison matrix and weights of landslide predisposing factors
determined by the analytic hierarchy process. As indicated in Table 4, slope gradient had the maximum
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weight, i.e., the largest influence on landslide occurrence. The weight of aspect was the minimum,
meaning that aspect had the least influence on occurrence of landslides. The weight of elevation,
distance from the faults, distance from the hydrographic network, distance from the road network,
rainfall, and NDVI were 0.082, 0.155, 0.059, 0.041, 0.258, and 0.035, respectively.

Table 4. The pairwise comparison matrix.

Factors Slope Aspect Elevation GS HN RN Rainfall NDVI Weights

Slope 1 9 6 4 7 7 2 7 0.351
Aspect 1/9 1 1/6 1/7 1/3 1/3 1/9 1/3 0.019

Elevation 1/6 6 1 1/3 3 2 1/5 3 0.082
GS 1/4 7 3 1 6 5 1/3 3 0.155
HN 1/7 3 1/3 1/6 1 3 1/7 4 0.059
RN 1/7 3 1/2 1/5 1/3 1 1/5 2 0.041

Rainfall 1/2 9 5 3 7 5 1 5 0.258
NDVI 1/7 3 1/3 1/3 1/4 1/2 1/5 1 0.035

GS: distance from faults; HN: distance from hydrographic network; RN: distance from road network.

The consistency of the pairwise comparison matrix was tested using a consistency ratio (CR).
The consistency index (CI) and CR values were 0.116 and 0.082, respectively, which indicated that the
pairwise comparison matrix satisfied the consistency requirement. Using the information values of
each class of landslide predisposing factor derived from the IVM, the weighted information values
were obtained using Equation (5) and then the landslide susceptibility map was generated (Figure 5).
As shown in Figure 5, low susceptibility areas were mainly distributed in the southwest and northeast
of the study area. High susceptibility areas were distributed in a belt pattern, which was similar
to the results of the information value model shown in Figure 4. Low susceptibility areas occupied
the highest proportion, reaching 34.93%, while very low susceptibility areas took up only 3.31%.
Moderate, high and very high susceptibility areas accounted for 28.70%, 21.56% and 11.49% of the
study area, respectively.ISPRS Int. J. Geo-Inf. 2017, 6, 18  12 of 19 
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5.3. Application of IVM-GC

Based on the information values of the landslide predisposing factors derived from the IVM,
the landslide susceptibilities were divided into the following five classes for each predisposing factor:
very low, low, moderate, high, and very high. A larger information value indicates a higher possibility
of landslide occurrence, i.e., the class of higher landslide susceptibility. Table 5 shows the landslide
susceptibility classification of predisposing factors. It clearly indicates that 100–200 m elevation,
10–20◦ slope gradient, <600 m distance from the faults, <200 m distance from the road network,
1100–1200 mm/year rainfall, <1000 m distance from the hydrographic network, the northwest exposure
aspect, and <0.55 NDVI had the highest landslide susceptibility, i.e., the very high class. In contrast,
<100 m elevation, <5◦ slope gradient, >2400 m distance from the faults, >800 m distance from the
road network, <1000 mm/year rainfall, >4000 m distance from the hydrographic network, flat aspect,
and >0.85 NDVI fell into the very low susceptibility class.

Table 5. The susceptibility classification of landslide predisposing factors.

Factors
Landslide Susceptibility Classification

Very High High Moderate Low Very Low

Elevation (m) 100–200 200–300 >400 300–400 <100
Slope (◦) 10–20 20–35 5–10 >35 <5
GS (m) <600 600–1200 1800–2400 1200–1800 >2400
RN (m) <200 200–400 400–600 600–800 >800

Rainfall (mm/year) 1100–1200 1200–1250 >1250 1000–1100 <1000
HN (m) <1000 1000–2000 2000–3000 3000–4000 >4000
Aspect NW SE S,SW,W N,NE,E flat
NDVI <0.55 0.55–0.65 0.65–0.75 0.75–0.85 >0.85

GS: distance from faults, HN: distance from hydrographic network, RN: distance from road network.

After normalizing the data, the clustering weights of landslide predisposing factors were
calculated using Equation (10). The results shown in Table 6 indicate that the clustering weight
(0.222) of the elevation was the maximum, while the distance from the faults had the lowest clustering
weight (0.048). The weights of slope gradient, distance from road network, rainfall, distance from
hydrographic network, aspect, and NDVI were 0.074, 0.177, 0.083, 0.117, 0.092, and 0.187, respectively.

Table 6. The weight of each predisposing factor.

Elevation Slope GS RN Rainfall HN Aspect NDVI

0.222 0.074 0.048 0.177 0.083 0.117 0.092 0.187

GS: distance from faults, HN: distance from hydrographic network, RN: distance from road network.

Subsequently, for each study unit, by calculating the clustering coefficient, the clustering vector
was generated. The susceptibility class that each study unit belonged to was finally determined with
Equation (13) and the resulting landslide susceptibility map of Chongqing is shown in Figure 6.

As shown in Figure 6, low susceptibility areas occupied 39.78% of the study area, followed by
23.44% for moderate susceptibility areas. Very low, high, and very high susceptibility areas accounted
for 14.77%, 17.81% and 4.20% of the study area, respectively. In addition, low susceptibility areas
were mainly distributed in the southwest and northeast of the area. High susceptibility areas were
distributed in a banded pattern, similar to the result of information value model shown in Figure 4.
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5.4. Model Validation

In this study, the generated susceptibility maps were evaluated using a receiver operating
characteristics (ROC) curve. In addition, Wilcoxon signed-rank test was used to check if the spatial
pattern of the landslide susceptibility zones generated by the three models were similar.

5.4.1. Receiver Operating Characteristics Curve

In this study, using the ROC curve, the success rate and prediction rate were calculated to assess
the model accuracy and prediction ability of the three models. The success rate was obtained by
comparing the 5905 landslides used for model training with the generated landslide susceptibility map
(Figure 7). As shown in Figure 7, the x-axis represented the proportion of areas classified as landslide
prone zones that are actually not. The y-axis represented the proportion of landslide zones classified as
landslide prone areas. The AUC values of the IVM, IVM-AHP, and IVM-GC were 0.818, 0.787, and 0.852,
respectively. Therefore, the model accuracies of the IVM, IVM-AHP, and IVM-GC were 81.8%, 78.7%
and 85.2%, respectively. IVM-GC had a better performance in model construction than the IVM and
IVM-AHP. The remaining 2530 (30%) landslides were compared with the landslide susceptibility map
to calculate the prediction rate (Figure 8). The AUC value of the IVM was 0.820, the AUC value of
the IVM-AHP was 0.787, and the AUC value of the IVM-GC was 0.854. Therefore, the prediction
accuracies of the IVM, IVM-AHP and IVM-GC were 82.0%, 78.7% and 85.4%, respectively. IVM-GC
had the largest AUC value, while IVM-AHP had the smallest AUC value. Thus, IVM-GC had a better
prediction capability than the IVM and IVM-AHP.

By comparing the results shown in Figures 7 and 8, the AUC value of IVM-GC was the largest,
followed by IVM, and IVM-AHP had the lowest value in both Figures 7 and 8. It was shown that the
success rate curve was similar to the prediction rate curve. In addition, the AUC values of the three
models were all larger than 0.7, which suggested that the three models performed well for evaluating
the landslide susceptibility of Chongqing. Among them, the AUC of IVM-GC is the largest, which
indicated that IVM-GC was a relatively good method for landslide susceptibility mapping in the study
area in comparison to the other two models.
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5.4.2. Wilcoxon Signed-Rank Test

Using SPSS Statistics 22 software, the p-value was calculated to determine statistically significant
differences (p-value < 0.05). By comparing the landslide susceptibility classification of IVM with
the landslide susceptibility classification of IVM-GC in the same location, the p-value was 0.131.
A comparison between the landslide susceptibility classification of IVM and IVM-AHP had a p-value
of 0.458. For the comparison between the landslide susceptibility classification of IVM-GC and
IVM-AHP, the p-value was 0.544. All p-values of the three comparison results were larger than 0.05.
Therefore, we conclude that the landslide susceptibility mapping results of the three models had no
statistically significant differences.

6. Discussion

For each landslide predisposing factor, information values vary among different classes (Table 3).
The class with the largest information value has the highest possibility of landslide development.
Each of the predisposing factors makes its own contribution to landslide occurrence, and, hence,
landslides are caused by a combination of predisposing factors. According to the results of the
information values shown in Table 3, the combination of landslide predisposing factors, including
100–200 m elevation, 10◦–20◦ slope gradient, <600 m distance from the faults, <200 m distance from
the road network, 1100–1200 mm/year rainfall, <1000 m distance from the hydrographic network,
the northwest exposure aspect, and <0.55 NDVI, had the largest total information value and made the
greatest contribution to landslide occurrence. With respect to the correlation of the variables, we have
checked whether the factors used are independent from each other by utilizing a multicollinerarity test.
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The results show that there is a certain multicollinearity among these factors. However, some studies
indicated that multicollinearity does not affect the goodness of fit and the goodness of prediction [61].

In this paper, landslide susceptibility was reclassified into the following five classes: very low,
low, moderate, high, and very high. Landslide susceptibility maps were produced using the following
three different methods: IVM, IVM-AHP, and IVM-GC. In these maps, high susceptibility areas
were basically distributed along the northeast to southwest direction in the study area. The high
susceptibility areas were close to the geological structure, road network and hydrographic network
and were mostly located in moderate slope gradient areas, where the information values were higher.

AUC was selected to evaluate the success rate and prediction rate of the three landslide
susceptibility models. Theoretically, the model with the largest AUC value is the best. Based on
the validation results, all three models performed well for evaluating landslide susceptibility, since
their AUC values were all larger than 0.7. In addition, both success rate and prediction rate of IVM-GC
are the largest, compared to IVM and IVM-AHP. Therefore, IVM-GC had a better performance than
the other two models in the study area. IVM regards all landslide predisposing factors the same level
of importance and assigns an equal weight to each factor. The criteria to construct the comparison
pairwise of predisposing factors depend on the experience of researcher, which is subjective and is the
main disadvantage of IVM-AHP. Moreover, IVM-GC inherits the advantages of the information value
model, which can obtain the relative weights of different classes for each landslide predisposing factor,
and appropriately determine the weights of the predisposing factors. However, the classification of
each predisposing factor was based on literature and may not be the best for this case. Therefore, in
future research, the effects of predisposing factor classification on landslide susceptibility assessment
should be studied and an objective classification method should be advanced. There are many
earthquake-induced landslides in Northwestern Chongqing; however, due to the limitation of the
data, we did not use earthquakes as a predisposing factor in our model. Thus, earthquakes should
be considered in future research [62]. In addition, landslide susceptibility should be performed
considering the different landslide typologies and a separation between landslide triggering conditions.
Moreover, the study unit of this paper was 30 × 30 m, which was not sufficiently linked to the
topography and geomorphology. In contrast, the slope unit is more related to the geomorphology,
which is defined as a unit between the ridge and valley. Hence, future studies should use the slope unit
as the study unit. Furthermore, landslide areas were not used to validate the landslide susceptibility
models, which could be a source of uncertainty. Further studies should take this into account.

The Wilcoxon signed-rank tests indicated that the landslide susceptibility mapping results of the
three models had no statistically significant differences in the spatial pattern of landslide susceptibility
zones. This suggests that the prediction results of the three models were similar because these models
were all based on the information value.

7. Conclusions

This paper proposes an improved information value model based on gray clustering for landslide
susceptibility assessment. Using slope gradient, aspect, rainfall, elevation, distance from the road
network, distance from the hydrographic network, distance from the faults, and NDVI as landslide
predisposing factors, landslide susceptibility maps of Chongqing, China were generated based on
three models, i.e., IVM, IVM-AHP, and IVM-GC.

The resultant landslide susceptibility maps show that the high susceptibility areas are mainly
distributed along the northeast to southwest direction in the study area. The Wilcoxon signed-rank tests
indicated that the spatial pattern of the landslide susceptibility zones generated by the three models
had no statistically significant differences. ROC was used to evaluate these models by comparing the
success rate and prediction rate. By calculating the AUC values of the success rate and the prediction
rate curves, all three models performed well in evaluating the landslide susceptibility of Chongqing.
Among them, IVM-GC had the best performance for landslide susceptibility mapping in the study
area. IVM-GC not only inherits the advantages of the information value model, which can obtain the
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relative weights of different classes of each landslide predisposing factor but can also appropriately
determine the weights of predisposing factors.

In our newly improved IVM-GC model, however, the classification of each predisposing factor
was based on relevant literature and may not be the best for this case. Therefore, further studies should
explore the effects of predisposing factor classification on landslide susceptibility assessment, and
an objective classification method should be advanced. In addition, earthquakes should be used as
a predisposing factor in our model and the different landslide typologies and a separation between
landslide triggering conditions should be considered. Furthermore, the slope unit, which is more
related to the topography and geomorphology, should be used as the study unit for future research.
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