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Abstract: Point cloud processing is an essential task in many applications in the AEC domain, such
as automated progress assessment, quality control and 3D reconstruction. As much of the procedure
used to process the point clouds is shared among these applications, we identify common processing
steps and analyse relevant algorithms found in the literature published in the last 5 years. We start by
describing current efforts on both progress and quality monitoring and their particular requirements.
Then, in the context of those applications, we dive into the specific procedures related to processing
point clouds acquired using laser scanners. An emphasis is given to the scan planning process, as it
can greatly influence the data collection process and the quality of the data. The data collection phase
is discussed, focusing on point cloud data acquired by laser scanning. Its operating mode is explained
and the factors that influence its performance are detailed. Data preprocessing methodologies are
presented, aiming to introduce techniques used in the literature to, among other aspects, increase
the registration performance by identifying and removing redundant data. Geometry extraction
techniques are described, concerning both interior and outdoor reconstruction, as well as currently
used relationship representation structures. In the end, we identify certain gaps in the literature that
may constitute interesting topics for future research. Based on this review, it is evident that a key
limitation associated with both Scan-to-BIM and Scan-vs-BIM algorithms is handling missing data
due to occlusion, which can be reduced by multi-platform sensor fusion and efficient scan planning.
Another limitation is the lack of consideration for laser scanner performance characteristics when
planning the scanning operation and the apparent disconnection between the planning and data
collection stages. Furthermore, the lack of representative benchmark datasets is hindering proper
comparison of Scan-to-BIM and Scan-vs-BIM techniques, as well as the integration of state-of-the-art
deep-learning methods that can give a positive contribution in scene interpretation and modelling.

Keywords: point cloud; BIM; AEC; progress monitoring; quality assessment; 3D reconstruction; laser
scanning

1. Introduction

Building information modelling (BIM) is being widely adopted by the Architecture,
Engineering and Construction (AEC) industry to improve project execution performance
in several ways such as by improving collaboration among stakeholders, by providing
accurate visualization through a standardized format, through the generation of detailed
and organized construction data, as well as by creating updated project progress informa-
tion. Typically, an as-designed BIM is created in the design and pre-construction phases
of a project to present a digital representation of the infrastructure. However, due to
changes that can take place during the construction or building management phases, the
as-designed BIM often diverges from the real construction model. Laser scanners can
generate 3D point clouds that precisely capture the as-built surfaces of the buildings and
can then be used to update the BIM models. In this domain, point cloud data are also
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used for a variety of purposes such as the construction progress monitoring and quality
inspection of infrastructures.

1.1. Applications
1.1.1. Progress Monitoring

The progress monitoring executed on construction projects is an important opera-
tion to gain knowledge of any divergences between the as-designed and as-built states,
allowing corrective measures to be taken in a timely manner. In fact, two main factors
found to cause the excess of time and costs in construction projects are the inefficient
and imprecise monitoring of progress [1]. The adoption of technologies developed in
promising fields such as Computer Vision (CV) have contributed to the enhancement of
automation in the progress monitoring process, solving the issues brought by the tradi-
tional manual methods [1]. The goal of increasing automation is to maximize accuracy and
minimize human involvement in on-site monitoring. Furthermore, the analysis of as-built
information obtained using state of the art technologies such as LIDAR, photogramme-
try and BIM is able to generate accurate progress information that is not dependent on
user experience.

These developments have focused mainly on exterior construction environments,
with significantly fewer studies on interior construction. The challenges faced in each
environment are distinct, as there are notable structural and contextual differences. The
exterior construction environment mainly consists of exterior columns, beams and walls,
while in the interior there are mainly electrical elements, plumbing, fire protection, finishes
and plasterboard walls [2]. Such differences lead to distinct challenges in each environment,
which make it necessary to develop specific approaches for each one.

The use of laser scanned models for progress monitoring purposes has attracted
significant attention from the research community. Usually, an as-built model is created
by merging multiple 3D point clouds obtained from a laser scanner and processing them.
Similarly to what is shown in Figure 1, the acquired point cloud or as-built model is
overlayed on the as-designed model of the structure built so far in order to be able to assess
the current status of the construction project. Colour coding (green and red) is commonly
used to visually identify the parts of the structure that are on schedule. Progress estimation
can then be estimated by calculating the ratio between actual work performed and planned
work. This measure can then be used to update the as-designed schedule. Maalek [3]
presented a framework that labelled a point cloud by recognizing geometric primitives and
establishing relationships between objects, comparing the extracted objects to the ones in
the BIM according to the schedule. Zhang [4] introduced a progress measurement method
that automates processes such as data acquisition, object identification, and periodic status
comparison for monitoring progress in horizontal construction projects. Kim [5] studied
how to improve progress estimation considering recent trends in construction projects.
Meyer [6] presented a methodology that not only accounted for the uncertainty present
in indoor as-built point clouds (using the Dempster–Shafer evidence theory), but also
considered the uncertainty of the indoor model that served as a reference. They used
voxelization to label the state of each voxel and performed change detection by comparing
the states in distinct measurement epochs. Recently, some authors proposed using mobile
laser scanner (MLS) technology and 4D BIM [7,8], which allow near real-time construction
progress monitoring. Thorough literature reviews in this application area were performed
by Alizadehsalehi [9] and Elqasaby [10].
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Figure 1. A registered point cloud is overlayed on the BIM using INESC TEC’s VR progress monitor-
ing platform. The highlighted segment is classified as belonging to the floor.

1.1.2. Quality Assessment

Faults that happen during construction are expensive and preventable, both in the
economic and human aspect. Active project quality control demands accurate and frequent
assessment of the status of the construction, determination of crucial spatio-temporal
and material-quality-related discrepancies and a pondered evaluation of whether these
deviations constitute faults. In the construction industry, it is still usual to rely on human
visual inspections, which are costly both in terms of time and human resources and are
subject to error. Over recent years, the development of techniques that enable active quality
control on construction sites has been driven by innovative sensing technologies and new
project modelling tools. As seen for progress monitoring, processing point cloud data
produced by remote sensing (e.g., laser scanning) allows the systematic evaluation of
construction sites.

Determining the quality of a completed structure requires the analysis of the position-
ing errors of the structure relative to the construction tolerances [11]. In literature, this is
known as scan-vs-BIM and is considered a challenging task due to (1) the site complexity
and difficulty in gathering representative data, (2) the existence of registration errors due
to sensors characteristics and (3) the existence of noise, drift and georeferencing errors
associated with the actual data [11]. To tackle these challenges, some authors perform
geospatial analysis after aligning as-built with as-designed data, and then calculate the
distances between them [12,13]. Bassier et al. [11] applied an ICP-based algorithm and
calculated the error vectors with considering drift and noise in the data, as well as clutter
and georeferencing errors. The resulting error vectors are used to visualise each object’s
position errors by superimposing a coloured point cloud (according to the error range) over
the BIM model.

1.2. Integrating BIM and Point Clouds

BIM involves generating and handling digital representations of physical and opera-
tional features of a building or infrastructure. It comprehends the use of 3D models, general
information and workflows to assist on the design, construction, and post-construction
phases of a project. BIM adoption alone enables greater project efficiency, but this gain
may be enhanced if integrated with other emerging technologies such as virtual reality
for improved design understanding, laser scanning for acquiring as-built information
or autonomous systems for automated monitoring. However, BIM integration remains
challenging due to data transfer and interoperability issues. Hence, this section aims to
address the main practical problems and solutions to effectively be able to integrate BIM
with other technologies, in particular point clouds.
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1.2.1. BIM File Formats

BIM interoperability depends on the use of a standardized file format that can be
easily transferred between distinct applications. The most commonly adopted format
at the moment is the Industry Foundation Classes (IFC) [14]. IFC is a standard format
for data exchange that enables project data sharing across different types of BIM-related
software. It is an open standard developed by an industry alliance named buildingSMART
International. It defines a common language for sharing project data, in particular defining
a schema and a data structure for representing building models in a software-neutral and
vendor-neutral format. The IFC data format contains geometric data and other information
such as the relationship between the model’s elements. Its adoption across different
software applications in the BIM ecosystem then guarantees compatibility between the
tools used in BIM-related processes.

1.2.2. Integration and Interoperability

By combining one another’s characteristics, point clouds and BIM can effectively
function together in the same environment. While BIM models give a thorough digital
representation of the construction project, point clouds offer accurate and detailed as-built
information on existing structures. Still, the successful integration and interoperability of
the two technologies is dependent on a set of prerequisites that are described next.

Loading BIM Models and Point Clouds on a Common Environment

The digital environment should have the capability to import and process both the
BIM models and the point cloud data. While the BIM models are typically exchanged in the
IFC format, point clouds are distributed in a variety of formats, with the biggest distinction
being if these are text or binary-based. Text-based formats define each point in a different
line, with its coordinates and attributes being separated by a given delimiter (e.g., comma),
and each digit being represented as a character mapped according to a coded character
set (e.g., ASCII, Unicode). Binary systems store the same information directly in binary
code, requiring a predetermined file format specification. The main benefit of text files
is the accessibility and readability provided by the standardized text abstraction used to
represent the data, as they can easily be natively read. Nevertheless, when compared to
binary files, the former are larger and take more time to read. Common point cloud ASCII
file types are XYZ and ASC. As for the binary formats, these typically include PCD (point
cloud library) and LAS. Several other regularly used file types, such as PLY and E57, are
capable of both ASCII and binary formats.

Alignment

Point cloud and BIM alignment, also known as registration, is an essential step in Scan-
vs-BIM applications. The BIM software should have a mechanism to perform automated
point cloud registration, which involves matching common features (e.g., points, edges,
planes, segmented objects, etc.) present in both the point cloud and BIM model. The goal is
to align both structures in a common coordinate system.

Comparison

Change detection procedures typically used for progress monitoring or quality as-
sessment involve comparing the as-built point cloud with the as-designed BIM model.
After proper registration, the BIM software should overlay the point cloud onto the BIM
model to allow the identification of these differences. This enables efficient project man-
agement during the life-cycle of the building. Furthermore, it should support different
levels of detail for manipulating the point clouds due to the limited processing capacity
available, which will have an impact on the level of accuracy of the comparison with
the BIM model.
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Conversion

Scan-to-BIM applications perform 2.5 or 3D reconstruction by processing the point
cloud, extracting its main features and modelling the BIM elements. Hence, the BIM
software should include procedures to manipulate the as-built point cloud, interpret it
and extract geometric primitives from it. The converted BIM model, composed by all the
detected elements, can then be used for design, analysis, and management purposes.

Visualization and Analysis

In addition to the BIM model and point cloud, the result of the conversion or compar-
ison should be visually represented for analysis. Nevertheless, automated mechanisms
(like the ones described in the next section) should be implemented to process and extract
relevant information from the data.

Compatibility

Compatibility between BIM and point clouds is specially enhanced if both utilize open
standards for data exchange. BIM software and point cloud processing tools should adhere to
industry-standard formats like IFC and E57 to guarantee a interoperable coherent solution.

By fulfilling these prerequisites, BIM and point clouds can be effectively integrated,
enabling accurate as-built representation, change detection, visualization, and analysis
within the BIM environment. This interoperability facilitates efficient collaboration among
stakeholders and improves decision-making throughout the building life-cycle.

1.3. Methodology

Several Scan-vs-BIM and Scan-to-BIM techniques have been proposed in recent years,
as this has been active research topic in both AEC and CV domains. A search for related
keywords in the Web of Science platform allows the retrieval of relevant information
regarding the related scientific work carried out. Figure 2 summarizes the publication
statistics, regarding the time frame from 2018 to 2023. These keywords included per-
mutations of “scan-vs-BIM”, “scan-to-BIM”, “indoor reconstruction”, “outdoor reconstruc-
tion”, “construction progress monitoring”, “construction quality assessment”, “point cloud”
and “laser scanner” without including “heritage” or “HBIM”. An upwards trend can
be observed if the years affected by the pandemic are disregarded, demonstrating the
growing importance attributed to Scan-to-BIM and Scan-vs-BIM methodologies in the
AEC domain.

Figure 2. Number of publications since 2018 related to the mentioned keywords, retrieved from the
Web of Science platform.
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In this review, selected studies include articles from 29 journals and conferences,
including 70 journal papers, 5 conference papers, and 1 lecture note. In the journal category,
Remote Sensing has contributed the most to this field of study, with 14 articles, followed
by Automation in Construction with 12 articles, ISPRS Journal of Photogrammetry and
Remote Sensing with 9 articles, and ISPRS International Journal of Geo-Information with
5 articles. The complete list of journals is available in Table 1.

Table 1. List of journals where reviewed studies were published. Both CiteScore and SCImago
Journal Rank (SJR) 2022 metrics were retrieved from the Scopus database.

Journal No. of Papers CiteScore SJR

Remote Sensing 14 7.9 1.136
Automation in Construction 12 16.7 2.443
ISPRS Journal of Photogrammetry and Remote Sensing 9 19.2 3.308
ISPRS International Journal of Geo-Information 5 6.2 0.738
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 3 7.8 1.264
Sensors 4 6.8 0.764
Infrastructures 3 4.3 0.527
Journal of Construction Engineering and Management 2 8.0 1.152
Advanced Engineering Informatics 2 11.8 1.709
Applied Sciences 2 4.5 0.492
Journal of Computing in Civil Engineering 2 12.1 1.349
IEEE Transactions on Pattern Analysis and Machine Intelligence 1 30.4 4.447
IEEE Transactions on Circuits and Systems for Video Technology 1 11.2 1.491
IEEE Geoscience and Remote Sensing Letters 1 6.4 1.284
IEEE Transactions on Geoscience and Remote Sensing 1 10.9 2.404
Sustainability 1 5.8 0.664
Geo-spatial Information Science 1 7.5 0.971
International Journal of Remote Sensing 1 7.0 0.732
Computer Graphics Forum 1 5.3 0.950
Arabian Journal for Science and Engineering 1 5.2 0.480
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences 1 1.8 0.274

Measurement 1 9.0 1.106
Measurement Science and Technology 1 3.9 0.478

2. Procedural Review

Generically speaking, creating an as-built BIM using laser scanners is typically exe-
cuted with the following methodology illustrated in Figure 3: (1) data acquisition, which
involves performing laser scans in specific locations to produce dense point clouds of the
target building; (2) data preprocessing, where the previously acquired point clouds are
filtered to remove irrelevant features and combined into a single point cloud in a common
coordinate system; and (3) modelling the BIM by processing the point cloud to extract
geometric features, transforming the point cloud into a semantically rich BIM. Although
in Scan-vs-BIM applications the actual as-built BIM does not need to be created, they still
share most of of this methodology. Given the complexity and importance of each of the
mentioned phases, these will be described in more detail in the next sub-sections.
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Figure 3. Generic procedure for processing point cloud data in Scan-to-BIM and Scan-vs-BIM applications.

2.1. Scan Planning

A single laser scan will not be able to capture all the geometric features of a building
because:

• There are occlusions on a construction yard due to ongoing activities, machinery,
workers, and construction materials;

• Some buildings may have complex surfaces displaying curves and irregular shapes;
• Completed components may hide other building components (e.g., ceiling pipes);
• Certain building components may not be scheduled to be built at the time that the

scan was performed;
• Laser scanners have limitations such as range and accuracy and may not be capable of

capturing all details, resulting in missing or erroneous data.

Issues like these are tackled by scan planning algorithms, which is an active research
field in CV. According to the literature, this is known as the next-best-view (NBV) problem
and it is focused on finding the minimum number of viewpoints (the position and orien-
tation of the sensor) where the sensor can be placed with the objective of maximizing the
sampling of all the surfaces of an object [15]. In the CV domain, several NBV planning
methodologies have been presented to address this problem. These usually involve two
main steps:

• Representing and determining the visibility of a target structure’s surface from distinct
viewpoints, similarly to what is demonstrated in Figure 4;

• Selecting viewpoints which optimize sensor coverage with a minimum number
of views.

In the AEC industry, these methodologies have been adopted, although to a limited
extent. Traditionally, most users follow a manual approach where TLS locations are selected
based on their personal experience and knowledge of the area. In practice, the existence of
redundant scans reduces efficiency and wastes resources. Moreover, even if a large number
of locations is selected, it is not certain that the a complete coverage of the target structure
will be achieved. For this reason, the inclusion of these techniques is relevant in the field
as some authors argue. Frias [16] proposed a 2D scan planning approach that used the
BIM as an input. It starts by extracting the floor plans from the BIM model according to
the planned construction status, defines the indoor navigable space accounting for a safety
distance to building elements and then estimates the optimal number and position of the
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scans through a visibility analysis. Both the scan positions and the route that establishes
the order of scan execution are optimized. Later, Frias [17] considered the joint use of
TLS and MLS mapping systems, addressing specific MLS constraints such as maximum
acquisition time and the closed-loop requirement. It starts by identifying key scan positions
and then by generating a navigable graph to enable route computation considering the
MLS constraints. Revuelta et al. [18] designed a technique for outdoor surveying based
on genetic algorithms that also considers the limitations of the sensor and calculates the
best viewpoints based on an input floor plan. Likewise, Dehbi [19] proposed an approach
for determining viewpoints for the acquisition of 3D indoor models based on a building
floor plan without requiring a BIM model. Qiu [20] optimized scan locations using a
genetic algorithm considering user-defined data quality requirements, without having a
model or floorplan. They initially perform a low resolution scan of the building to obtain a
preliminary overview, and then use their algorithm to obtain optimized scan locations that
satisfy the requirements and minimize scanning time. For more information, Aryan [15]
presents a review on the subject.

Figure 4. Example of visibility determination in a complex floor plan. The red dots are the selected
scanner positions.

2.2. Data Collection

Data collection must ensure that the target structure surfaces are sampled with the
specified data quality, and within the allocated schedule. Data quality and efficiency are
important to reduce problems later on, during the processing stage.

2.2.1. Point Cloud Data

A point cloud is a set of points where each one has its own set of x, y and z coordinates
defining its position, and in some cases, additional attributes (intensity, RGB colour or
timestamp), representing the features of the sampled 3D environment. Joining different
point clouds and defining a common coordinate frame enables the geometry of the sampled
environment to be captured. Figure 5 shows a publicly available point cloud with 3D and
RGB information. LiDAR and photogrammetry are the two most common remote sensing
techniques to generate point clouds. Although this study focus on processing point clouds
obtained using laser scanners, some of the processing methodologies can also be applied to
the latter.
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Point cloud quality can be assessed by analysing its accuracy, precision, point density
and resolution. While accuracy alludes to the proximity of the measured value to the true
value, precision refers to the repeatability of the sensor readings on the same position.
Point density is defined as the number of points per square meter, while resolution refers
to the level of detail of the points in the cloud. Not all applications have the same quality
requirements. Still, the quality of the point cloud can be affected by other elements such as
the environmental conditions, type of sensors used, the geometry of the scan, etc.

Gathering massive amounts of point cloud data creates other issues due to the limited
data storage and processing capabilities of existing systems. Processing quickly generates a
large amount of intermediate data, and this is one of the issues tackled later on.

Figure 5. A point cloud representation of the public dataset CITA_Byg72 [21].

2.2.2. Sensors
Laser Scanners

Laser scanners have been acknowledged by many as the best sensor to acquire 3D
features with accuracy, speed and resolution. It produces accurate 3D representations of
objects by using light detection and ranging (LIDAR). Light is emitted by a diode at a
specific frequency. Then, a mirror rotates around the light source, pointing the laser beam
horizontally and vertically. This rotating laser beam will reflect on the visible surfaces
within range in the environment.

Typically, two types of laser scanners are used:

• Phase-based scanners: they measure the change of phase of the emitted light to
calculate distance;

• Time-of-flight (TOF) scanners: they measure the time the light takes to travel from the
scanner to the reflective surface and back, and since the speed of light is known, the
distance can be easily determined.

Phase-based scanners are typically used in industry or interior modelling to produce
detailed BIMs of existing buildings. The advantage of this technology is the scanning speed,
since they can be up to 10 times faster than most TOF scanning systems. On the other
hand, its major limitation is the shorter range. The main advantage of TOF scanners is
their longer range, but they are slower and have less resolution compared to phase-based
scanners. These scanners are usually used for topographic surveys.

In the AEC domain, laser scanners are one of the most used tools to capture 3D features
of constructions. Significant work as been developed in the area of automatic 3D as-built
reconstruction using 3D point clouds acquired by TLS (known as scan-to-BIM). Wu [22]
presented a comprehensive survey categorizing the main applications of TLS in the AEC
domain, including 3D model reconstruction, object recognition, deformation measurement,
quality assessment and progress tracking.
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Laser Scanner versus Photogrammetry

Cameras are cheap, easy to use, and offer fast data acquisition. On the other hand,
one of its main issues is the reduced accuracy of photogrammetry when compared to
laser scanners. Due to the cost, cameras are widely adopted in the AEC domain for 3D
reconstruction, documentation and project management. The main advantage of using
cameras, as opposed to laser scanners, is that they can be used in a more flexible manner
(small, cheap and easy to replace).

Photogrammetric methods, used to extract 3D geometric information from pho-
tographs, are sensitive to surfaces with low features or windows. This method requires
each element to be visible from at least two different points of view (e.g., using a stereo
camera). This often leads to missing or misaligned data in the final point cloud, blocking the
detection of building elements. Ingman [23] compared the performance of low cost sensors,
namely a RGB-D camera, a TLS and one panoramic camera, evaluating them against a
higher end TLS. They found that while all systems produced relatively accurate results,
the TLS displayed better performance in terms of geometric reconstruction and capturing
finer details, with the panoramic camera being the worst and the RGB-D camera being
somewhere in between in terms of cost and quality. Table 2 presents a brief comparison
between both methodologies.

Table 2. Comparison of photogrammetry and laser scanning platforms.

Parameter Photogrammetry Laser Scanning

Instrument cost Cheap Expensive
Accuracy High (needs advanced processing algorithms) High

Acquisition time Short Long
3D information Needs to me estimated Direct measurement

Data volume Depends on the resolution of the images Depends on point density
Sensitivity to environmental conditions Requires sufficient lighting Works during night or day

2.2.3. Laser Scanning Platforms

In the literature, studies usually involve one of three main laser scanner systems: (1) ter-
restrial laser scanning, (2) mobile laser scanning (MLS) or (3) airborne laser scanning (ALS).
Laser scanners differ in terms of their resolution and spatial coverage. Table 3 presents
a brief comparison based on their characteristics and target applications. Rashdi [24]
presented a complete review comparing LIDAR systems based on distinct platforms.

Table 3. Comparison of laser scanning systems on different platforms [24].

Parameters TLS MLS ALS
Point density Dense (>100 pt/m2) Dense (>100 pt/m2) Up to 50 pt/m2

Scanning range Point shape Stripe shape Surface shape

Accuracy High accuracy
(mm level) High accuracy (cm level) High accuracy (<15 cm)

Scanning perspective Side view Side view Top view

Sensors Laser scanner GNSS, IMU, laser scanner GNSS, IMU, laser scanner

Advantages Provides the highest
level of detail

Provides faster data, reduces
acquisition time Suitable for large area

Disadvantages Not suitable for
large infrastructure

Absolute accuracy is low because the
satellite signals are blocked by buildings Expensive for small project sites

Applications Small area 3D
reconstruction

HD mapping, urban monitoring,
road mapping

Terrain mapping, vegetation monitoring,
power line detection, bathymetric

applications in shallow water
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Limitations

As mentioned, laser scanners are commonly used sensors for generating point clouds.
Nevertheless, they have certain limitations that influence their operation and suitability to
the target scenario where they are supposed to acquire data:

• They require line-of-sight to the target surface to be sampled, meaning they cannot
collect information about occluded surfaces;

• Limited maximum range, beyond which point density is reduced and the measure-
ments are subject to greater error;

• The vertical laser beam angle aperture is limited, so the area outside will not be sampled;
• Data acquisition can be relatively slow considering a rotating laser scanner; higher

velocity typically involves inferior angle resolution;
• May be affected by noise due to light scattering on reflective surfaces, which cause

reflections and distortions leading to decreased accuracy and the appearance of artefacts;
• 3D laser scanners are quite expensive to acquire when compared to other imaging sensors.

Furthermore, since laser scanners need direct line-of-sight to the target surface to be
sampled, it cannot sample buried or underground structures. For this reason, they are lim-
ited to sampling visible surfaces where the laser light can reflect on. However, other sensors
can be used to sample buried or underground structures. Ground-penetrating radar (GPR)
is a commonly used technology for this purpose. It sends electromagnetic waves through
the ground and detects variations in subsurface materials and structures. The depth of
penetration depends on the frequency of the GPR system and those materials. By analysing
the reflected signals, GPR is able to report data about buried structures or geological fea-
tures. Regarding the measurements, GPR typically displays less accuracy and resolution
compared to laser scanners. As for underwater, sonar systems are widely adopted.

Considering their operating procedures and target environments, the laser scanner and
the GPR are complementary sensors. While laser scanning provides detailed information
about surfaces above ground, GPR can detect underground structures. By combining both
techniques, a more comprehensive understanding of a partially buried structure can be
achieved [25].

2.2.4. Dealing with Measurement Errors

Currently, TLS systems have an effective range from a few tens to a few hundred
meters. Range errors are typically between sub-millimetre to several millimetres, while
range noise is in the order of a few hundred micrometres and angle uncertainty is on the
order of tens of arc-seconds. It is important to understand that these errors exist in order to
account for them during the scan planning and point-cloud-processing steps. Furthermore,
periodic performance evaluation is essential to guarantee the reliability of the acquired data
and the suitability of data to high precision applications. Muralikrishnan [26] performed
a complete review on laser scanner measurement error sources and also evaluated its
performance, focusing on specifying these error sources. He identified instrument errors,
laser–surface interaction errors, errors due to environmental conditions and errors due to
an inefficient scanning strategy. Figure 6 presents a summary of the factors influencing a
scanner measurement.

Recently, more attention has been dedicated in the literature to this topic in order to
improve the performance on target applications. Aryan [15] evaluated data quality using
diverse criteria such as completeness, accuracy, resolution, and registrability. Furthermore,
they established a relationship between data quality and scanning error and the need for
improved scan planning. Huang [27] proposed a methodology to calculate an effective
scan range using mathematical reasoning, being able to reach a balance between scanning
range and data size by estimating the appropriate angular resolution. Meyer [6] presented
a methodology for change detection considering both the BIM uncertainty and the un-
certainties of point clouds. The authors explicitly accounted for uncertainties using the
Dempster–Shafer evidence theory.
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Figure 6. Factors influencing a TLS measurement.

2.3. Data Pre-Processing

Pre-processing a point cloud involves filtering and registration of its raw data points.
As mentioned earlier, raw data points acquired by laser scanners contain noise, affecting
the posterior processing of the points according to the target application. Furthermore,
point clouds can become massive, and this can have a great impact on the capability of a
machine to process it and extract relevant information. Also, by considering multiple scan
locations, collected point clouds need to be aligned using an alignment method known
as point cloud registration, which also allows the definition of a common coordinate
reference system.

In this section, two important pre-processing steps are described, namely data reduc-
tion techniques to manage the size of the point cloud and then registration methodologies
to join two different point clouds.

2.3.1. Data Reduction

Given that point clouds can contain millions of points, its size can range from a few
hundred megabytes to a few gigabytes depending on its resolution. Hence, combining
point clouds together during registration can result in a file size that is difficult to store and
manipulate by modern systems. Then, there is a decision to be made: either combine the
point clouds and use a more complete set or still combine them but extract the relevant
geometric information from it. By removing redundant information, there is an obvious
advantage in terms of processing time. Therefore, a method is required to evaluate and
extract the geometric information contained in a point cloud data set.

Data reduction procedures can be grouped into two main categories, mesh-based
simplification and point-based simplification. Polygon meshes are intermediate repre-
sentations built from the point clouds, and although they are the industry standard for
visualization, they are not the focus in this study. On the other hand, point-based simplifi-
cation is achieved through point cloud density reduction, since point density determines
the sampling level, and therefore the level of detail that a point cloud is able to hold from a
target surface. Two main methods are commonly used for point cloud density reduction:

• Voxelization: divides the point cloud into small cubes (known as voxels), each contain-
ing a subset of the points. Density reduction is achieved by keeping only one point per
voxel. This point can be chosen according to different principles, such as the centroid
of the voxel or the proximity to the centre of the voxel.

• Minimum distance between points: removes points that are below a given minimum
distance to each other. This value can be chosen based on the desired point density
and level of detail. It can also be used with voxelization to further reduce density.
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Voxelization is usually the faster method, as it involves a simple spatial partitioning
operation. Nevertheless, it can lead to a loss of detail and accuracy, especially if the voxel
size is too large [28]. On the other hand, the minimum distance method is able to better
preserve the original shape of the surface (critical for heritage buildings), but it can be
slower and more computationally intensive. Figure 7 illustrates this concept. The issue
here is choosing the correct voxel size so distinctive structural features are retained on the
simplified dataset.

Figure 7. Data reduction using an occupancy grid. The space is partitioned in cubes, and points
inside are replaced with its centroid.

Nevertheless, due to the importance of point cloud reduction, researchers have pro-
posed other point-based simplification algorithms. Wu [29] presented a simplification
approach, which starts by dividing the point cloud into subsets and extracting features
from each subset. Next, first- and second-order graph filters are used to sample the point
cloud in each subset. Although this method is able to reduce memory usage compared to
more traditional approaches, computational complexity is too high. Table 4 categorizes
data reduction methods used in recent literature.

Table 4. Data reduction procedures used in selected literature.

Method References

Mesh-based simplification [30]
Point-based simplification—voxelization [6,11,13,31–39]
Point-based simplification—minimum distance [7,35,40]

2.3.2. Point Cloud Registration

While collecting point cloud data for a specific application, multiple scans are usually
performed. Each scan will generate its own point cloud, and the points of each point cloud
will be represented in the scanner’s local coordinate frame. Furthermore, the registration
procedure is not only used to align point clouds obtained from adjacent scans, but also to
adjust as-built point clouds to model-derived point clouds for model change detection pur-
poses (essential for Scan-vs-BIM applications, as discussed in Section 1.1). The registration
process deals with combining multiple point cloud datasets together with the objective of
aligning themselves with each other and sharing a common global coordinate system.

Registration methodologies can be classified as being coarse or fine [41]. Coarse
registration methods can use correspondences based on point, line and surface features
to align the point clouds. Identification of suitable registration features is then critical for
performing an accurate registration, since it is feature-based and does not directly register
the point clouds. For example, corresponding points illustrating specific features on each
point cloud can be manually chosen, and the coarse registration method will align the point
clouds by minimizing the distances between the chosen points [8].
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On the other hand, fine registration methods consider the entire point clouds [41].
The Iterative Closest Point algorithm (ICP) [42] and its variants [43] are the most used
approaches in literature for performing fine registration. Here, the alignment of the point
clouds is adjusted iteratively until the distances between points in one point cloud and their
closest points in the other point cloud are minimized. No points need to be pre-selected for
the performing the registration procedure using ICP, as it is automatic.

When registering point clouds, researchers and data analysts frequently employ
coarse-to-fine registration strategies [8,12,44]. Cheng [41] presented a complete review on
point cloud registration algorithms, including most used methods for both coarse and fine
registration. Table 5 categorizes registration methods used in recent literature.

Table 5. Registration algorithms used in selected literature.

Method References

Coarse registration—point features [3,5,7,8,13,23,45]
Coarse registration—line features [37]
Coarse registration—surface features [37,38,46]
Coarse registration—PCA [12,47]
Fine registration—ICP [7,8,11–13,23,45,48]

2.4. Geometry Extraction and Modeling

Creating high-quality, 3D building models from point clouds has been an active re-
search topic on the computer graphics, remote sensing, and AEC communities in multiple
aspects. BIM adoption is rising and it is being used for enhancing procedures for construc-
tion planning and facility management. Contrary to the simple geometric representation
of a building, a BIM model defines semantically annotated, volumetric building elements
such as walls and floors, and explicitly defines how these elements are interconnected.

As designing accurate models may be a time-consuming task, current research has
focused on developing automated methodologies for creating BIM models from acquired
point clouds. Existing methodologies can be classified into three categories:

1. Planar primitive detection: the structure is modelled by arranging planar polygons
identified on the point cloud;

2. Volumetric primitive fitting: the structure is modelled using simple volumetric primi-
tives, imposing some sort of architectural regularization;

3. Mesh-based reconstruction: a mesh is modelled from the point cloud providing
limited semantic classification of the scene components.

To choose what type of methodology to apply will depend on the type of structure
being sampled, in its features and specific architectural details. Table 6 categorizes feature
extraction methods used in recent literature. Bassier [49] studied the impact of geometry
representations on the classification of building components. They demonstrated through
experiments improved feature discriminativeness and distinctness for the mesh-based
features due to the reduced amounts of noise and holes compared to point clouds. Further-
more, the significant data reduction which is achieved during the meshing allows for more
complex features to be computed from the segments while maintaining performance.

Table 6. Feature extraction techniques adopted in the selected literature.

Method References

Planar primitive detection [3,31,32,36–40,45,47,50–58]
Volumetric primitive fitting [59,60]
Mesh-based reconstruction [5,11,30,37,57,58,61–63]

Next, an overview of the state of the art on outdoor and indoor modelling will be
performed. Table 7 categorizes the target environments addressed in recent literature.
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Table 7. Environments addressed in selected literature.

Method References

Indoor [2,6,11,16,19,23,31–37,39,40,47,49,50,52,55,57,58,60,62–67]
Outdoor [4,5,8,18,38,45,48,51,53,54,56,59,61,67–71]

2.4.1. 3D Reconstruction of Outdoor Environments
Façade Modeling

High resolution building geometry such as windows, doors and protrusions are ex-
tracted from point cloud data for performing façade reconstruction. This reconstruction
is typically executed through bottom-up or top-down modelling procedures. Bottom-up
methods use points and edges to identify features in the data. Typically, authors try to
identify façade elements such as windows and doors in point cloud data. Zolanvari [51]
used a slicing method to extract features from façades and roof. It starts by using the
RANSAC algorithm to detect planes, then slices them horizontally or vertically, identi-
fies holes as the gaps in those slices and extracts its boundaries. Fan [56] presented a
façade layout graph model method, which segments façade components using RANSAC
and extracts the outlines of windows and doors by detecting its edges and the direction
of inliers.

One of the disadvantages of bottom-up modelling is its dependence on data quality.
These approaches are relatively sensitive to erroneous or incomplete data because geometric
primitives are extracted and modelled directly from point cloud data. So, an effort was
made to make them more robust to such issues. Top-down reconstruction algorithms
deal with uncertain or missing data by integrating knowledge about the appearance and
arrangement of the structure and then using it to synthesize the areas where information is
missing. Zeng [59] applied a deep neural network (DNN) and a set of rules to determine the
2D shape of the house (considering a set of predefined shapes), estimate its size, classify the
roof type and estimated height and determine the area occupied by secondary structures
(i.e., garage) so arbitrary polygons are fitted to it, optimizing the reconstruction process.
Klimkowska [72] presented a complete review on façade reconstruction with an emphasis
on building opening detection. The authors indicate the lack of benchmark datasets for
different architectural styles as the main reason for the lack of development in this area.

Roof Modeling

Polyhedral modelling is one of the most used bottom-up rooftop modelling techniques
in literature [68]. These techniques uses primitive extraction and then group these primi-
tives according to the determined roof topology. Namouchi [61] introduced a method for
reconstructing piecewise horizontal roofs, separated by vertical discontinuities, by perform-
ing roof clustering using the Cut-pursuit algorithm on a point adjacency graph and then
extracting the boundaries of those clusters using Delaunay Triangulation. Awrangjeb [73]
proposed a technique that analyses the intersection lines between segmented roof primi-
tives, detecting and inserting any missing planes. Albano [68] compared a cluster-based roof
segmentation approach that uses fuzzy c-means clustering with a region growing segmen-
tation approach combined with random sample consensus (RANSAC) method, with the
latter displaying slightly better performance despite the greater processing time. Dey [53]
proposed an outlier detection algorithm to optimize the roof plane extraction process.
Hu [71] segmented the roof point clouds into individual planes by minimizing an energy
function and determined the roof topology by analysing the planar primitive’s adjacency.

In recent research, many authors have performed building extraction and roof shape
classification using deep learning techniques [48,69]. Although these techniques were able
to detect buildings with success, in most cases here there was low planimetric accuracy and
individual roof plane extraction was not considered [53].
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Typically, roof modelling is performed using data acquired by ALS due to the quality
and availability of the point cloud data. For this reason, and for the sake of completeness,
it was decided to include the above research. TLS and MLS systems, considered in this
study, are mostly used to scan the building’s façades as they are not able to capture the top
of the building (considering their perspective from the street). Chen et al. [55] proposed a
roof point extraction methodology, considering data that have been obtained with a TLS.
They applied a region growing algorithm to a subset of points previously removed by a
density filtering algorithm (during façade point extraction, as density of points in it should
be higher than in other locations due to the viewing angles being less steep). To some
extent, the lack of information about the top of the buildings is solved by using an ALS
to scan the rooftops, acquiring data that can possibly be used to reconstruct the building
structure without the façade features. Nevertheless, when insufficient information on the
roof is available, assumptions are also typically made regarding its shape.

Building Volume Reconstruction

Volume reconstruction can be interpreted as a process of polygon fitting. It is difficult
to scan every part of a building, therefore certain assumptions need to be made to compose
a solid polyhedron model. When reconstructing outdoor structures, two common assump-
tions made by designers are geometric regularity and occlusion-free data. In particular,
the very restrictive Manhattan-world (MW) assumption [74] (also used for interior mod-
elling) has been adopted to represent buildings as box-like structures. The main feature of
MW-based buildings is the existence of three mutually orthogonal directions.

Less regular geometries can also be used for more generic volume reconstruction (at
the expense of a higher number of planar primitives) by using binary space partitioning
(BSP) or tetrahedral space partitionings. Space partitioning is used to extract the outer
surface from the mesh containing the point set. Recently, Xia [70] studied primitive ex-
traction methods and stated that they can achieve globally optimal results, even with
low quality data. Wang [54] introduced a technique based on closed constraints to obtain
a watertight building surface model. Its pipeline starts by generating candidate planes
from an input point cloud, followed by the selection of candidate planes constituting a
closed sequence, and finally by optimizing the complete surface model based on the energy
function minimization. Zeng [59] used deep neural networks to apply shape grammar
rules to reconstruct the 3D building’s geometric model. Song [75] executed curved building
reconstruction by converting the building point cloud into contours, recognizing the basic
geometric primitives that compose the model from those contours and then refining those
models by deforming the individual primitives.

In other approaches, researchers build their work on the retrieval of coarse building
geometries that seem tailored for retrieving urban morphologies rather than for façade
retrofitting. For a complete review about this topic, check Wang [76].

2.4.2. 3D Reconstruction of Indoor Environments

Applying outdoor reconstruction methods to indoor scenes is not practical as indoor
scenes impose different challenges than outdoor scenes. The outside of a building can often
be described by a single or a few cuboids, and the amount of clutter hiding part of the
geometry is rather low. In contrast, interior space often has a more complex geometry and
a higher quantity of clutter. Two common simplifications indoor reconstruction techniques
make to reduce the complexity of the problem are assuming that walls are vertical [52]
and the Manhattan-World assumption [60]. Many existing techniques generate boundary
representation (B-rep) models from point clouds by performing planar segmentation [65].
These techniques extract the geometry of building elements contained in individual spaces
(e.g., rooms or corridors) such as walls, ceilings, floors and doors, ignoring adjacency
relations among those spaces and multiple-space reconstruction.

Based on specific assumptions, semantic information can be added to the 3D models
by interpreting the extracted geometry.
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Wang [50] used a learning framework of the associative Markov networks (AMNs) to
assign each 3D point a label from a class set (floor, walls, ceiling, other objects). They then
use this labeling to perform indoor modeling. Previtali [32,33] proposed a methodology
to detect openings on MW indoor scenes based on a voxel-based visibility analysis to
distinguish occluded from empty regions in wall surfaces. Ray-tracing labelling was
applied to generate an occupancy map. After voxelizing the scene, the occupancy of each
voxel was assessed and then a ray-tracing algorithm was executed to evaluate if each empty
voxel was empty or occluded. Chen [35] used deep learning to detect and classify building
elements. They used a graph to represent the point cloud, where nodes are points and edges
are connections between points located within a given maximum distance. The objects
are segmented using a Multi-Layer Perceptron classifier, discarding edges that connect
different objects. Then, the building components are classified using a deep neural network
on each set of segmented points.

Several recent methods approach the full 3D reconstruction problem, lifting the re-
strictive Manhattan-World and 2.5D assumptions. Wang [50] presented a semantic line
framework-based modelling building method using a MLS. It extracts line structures from
a labelled point cloud to obtain a initial description of the building line framework, then
optimizes it using a deep learning model. It detects slanted floor, ceilings and walls, as well
as doors and windows. Shi [34] presented an approach that starts by extracting planar sur-
faces using RANSAC, using these primitives to identify walls (if vertical), ceiling and floor
(based on average height). Then, a region growing algorithm is used to cluster the floor into
different rooms. Ochmann [52] considered a model of volumetric, interconnected vertical
walls (in addition to room segmentation) fitted to the observed point cloud. Tran [36]
started by identifying planar surfaces, using them to decompose 3D space into a set of
irregular 3D cells as they believe these should represent different building elements or
spaces. Then, their shape-grammar-based reconstruction procedure used both the available
geometric information and the knowledge about structural arrangement of the elements to
build a model. Han [58] segments the structural elements from the point cloud (represented
by planes and cylinders) and reconstructs these structures in sequence. First, the floorplan
is generated by slicing the floor plane into 2D cells using the detected wall planes, and
then selecting cell edges using Integer Linear Programming. Next, the wall structures are
modelled by lifting each edge on the floorplan to a height determined by the ceiling planes
by means of a global optimization, obtaining the final 3D model.

When scanning a large indoor environment with a TLS, a large number of scanning
positions may be required in order to sample all the surfaces. Furthermore, when data need
to be georeferenced, additional localization data need to be registered together with the
point cloud to allow a successful registration afterwards. Overall, the complete manual
sampling procedure will require more time and work to be accomplished. Recent studies
focus on the combination of point clouds and trajectories from MLS systems to enable auto-
matic 3D reconstruction of indoor environments. MLS is usually arranged as a handheld
or backpack system and the data acquisition procedure only involves walking around the
target environment. When indoors, these systems are usually Simultaneous Localisation
and Mapping based-systems, without requiring access to a global navigation satellite sys-
tem (GNSS) to have a position estimate. Wu [30] performed Poisson mesh reconstruction
using a point cloud with normal information. To reduce memory usage, the mesh was
divided using a building principal direction extracted from the MLS trajectory, and then it
was simplified using plane segmentation. One of the issues identified was the changing of
the mesh boundaries after simplification. Li [64] analysed synchronized point cloud data
and the scanner’s trajectory in order to detect doors. They also performed both point cloud
and trajectory segmentation based on those detections, although only 2D coordinates of
those detections were considered. This method can be applied to real time scene mapping.
Cui [47] considered a MW prior and performed multi-room segmentation by analysing
the cell’s visibility (obtained from segmented plane discretization) along the trajectory and
running a clustering algorithm on related points. Doors and windows were also detected,
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and a volumetric model of the walls was presented. Nikoohemat [40] presented a pipeline
that enables detection of stairs, ramps, slanted ceilings and floors and volumetric walls.
Furniture was included just to enable identification of occupied areas. They establish the
connectivity of all scanned spaces aiming to build a navigation graph that supports path
planning in emergency applications and also provide heuristics to check the consistency of
the created as-built model. Yang [39] considered both TLS and MLS data in a pipeline that
started by producing a 3D occupancy probability grid map to represent the certainty with
which a voxel is occupied by obstacles. Then, rooms were segmented by filling free space
with spheres, building a topological graph to map adjacency relations among neighbouring
spheres and then segmented its subgraphs. The wavefront growth algorithm is used to
obtain the final segmentation result.

2.4.3. Relationship Representation

Establishing relationships between elements is an essential task for as-built modelling.
Geometric information represents the size and the location of building elements, while
topological information describes their spatial connectivity.

Three classes of spatial relationships relevant to BIMs can be identified:

• Aggregation relationships: one element is a part of another;
• Topological relationships: one element is inside or outside another, or next to it;
• Directional relationships: one element is above or below another.

Usually, these relationships are modelled using a tree, a graph structure or a matrix.
A tree-based hierarchical representation can be used to model aggregation relationships,
where its nodes represent geometric primitives and arcs establish the relationships between
them. Graph-based representations use arcs to represent aggregation, topological and
directional relationships, and for this reason are said to be a generalization of the hierar-
chical approach. Techniques that use semantic networks for object recognition use graphs
to define the semantic network and the topological and directional relationships in the
environment. Table 8 categorizes the relationship models adopted in recent literature.

Table 8. Relationship model.

Model References

Tree [33,71,75]
Graph [31,35,36,39,40,52,54,56,58,61,63,71,73]
Matrix [45,63]

Some authors use shape grammar rules [36,60] for the extraction of topological rela-
tions among building elements. Shape grammar modelling is a volumetric primitive fitting
approach that fits cuboid shapes into spaces enclosed by cloud points. Topological relations
including adjacency, connectivity, and containment, are established by iteratively merging
the cuboids and applying the grammar rules.

3. Future Research Directions and Initiatives

In recent years, there has been some strong innovation in the AEC domain. There is a
solid interest from this industry for increased digitalization through the adoption of more
capable sensor technology, as well as for BIM integration. This study focused on detailing
common processes addressed by Scan-to-BIM and Scan-vs-BIM applications. Furthermore,
this literature review provides a brief state-of-the-art on the techniques related to each of
those processes. This analysis enabled the identification of research topics with potential
for further improvements in this domain, and these will be presented in this section.

3.1. Multi-Platform Sensor Fusion

In this study, a brief comparison was performed between sensors typically used in this
domain, namely laser scanners and RGB cameras. Since each of those has limitations, it is
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straightforward to understand that by integrating different technologies these limitations
can be mitigated. Nevertheless, few studies have been found that integrate distinct imaging
technologies with typical localization systems (GNSS for outdoors and SLAM for indoors) to
collect georeferenced data on construction sites. These technologies can be complementary
to each other and used for different tasks within the construction site: e.g., cameras can be
used to identify clutter and construction materials, and then a TLS or MLS can capture the
geometry features of the building, while having precise localization information. Regarding
point clouds alone, combining them when they are obtained from different sources (TLS,
MLS, ALS, photogrammetry) increases the data heterogeneity in terms of perspective,
resolution, range, density and accuracy, making this integration advantageous. Another
important subject, which is actively explored in the robotics domain but not in AEC, is the
explicit consideration of sensor uncertainty in the registration and geometry extraction
algorithms. Existing sensor fusion approaches from the robotics domain, considering
sensor uncertainty models, can be applied here to increase data consistency and overall
application performance.

3.2. Enhanced Scan Planning

It is clear that the probability of achieving successful point cloud registration, more
accurate and complete feature extraction and 3D reconstruction increases by using equip-
ment with certain characteristics, advanced algorithms, and enough processing power to
avoid compromises. However, one should not expect the same performance improvement
if scanning locations are not carefully chosen. Although current research addressed this
planning problem to some extent, there is no study that guides a user on how to collect
proper data so that the performance of the mentioned processes is maximized. Furthermore,
while the current research presented interesting solutions for the 2D scan planning problem,
there is still a need for planning methodologies that consider both 3D BIM information
and sensor measurement models (accounting for range, accuracy, resolution and sensor
footprint for example) allowing the acquisition of more accurate data. Another subject that
is typically addressed by the robotics community is online planning given modifications to
the original assumptions that were considered when planning before being in the field. The
AEC domain faces specific issues such as the existence of clutter, construction materials and
workers in the construction site, as well as differences between as-designed and as-built
models, which may be impossible to account for beforehand. Hence, there is a need for
methods that are able to replan scanning positions and change the original plan in real time
during the data acquisition stage.

3.3. Incorporating Machine Learning Techniques

In the CV domain, deep learning techniques have been widely used to learn about
important features on images and enable real time detection and classification of objects,
object segmentation, as well as pose and position estimation. Techniques developed in that
domain can be applied to AEC applications in order to facilitate detection and tracking of
clutter and structural elements (such as doors, windows, furniture), contributing also for
reducing the impact of occlusions due to the presence of those elements. Nevertheless, key
processes such as convolution operations are not adequate when paired with unorganized
point clouds, although it is possible to take advantage of spatial subdivision procedures.
Another difficulty in tackling this subject is the need for an extensive database of annotated
training data, which is a laborious task, although the model training process could be
skipped if a pre-trained model is used.

3.4. Integrated BIM Ecosystem

Recently, BIM has attracted a lot of attention, and there has been a push from local
governments to implement BIM platforms at the national level. Hence, it is only natural to
evaluate its integration with other state of the art technologies such as innovative sensor
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platforms, virtual reality and cloud computing, aiming to further automate procedures and
create new interfaces that can be used to increase the project’s efficiency and productivity.

3.5. Benchmarking

Throughout this literature review, it was found that many authors use their own
dataset or scenario for experimenting and validating the proposed procedures. This makes
it difficult, if not impossible, to perform proper benchmarking against other state-of-the-art
methodologies. Perhaps one of the reasons this happens is that the 3D reconstruction topic
misses proper benchmarking datasets. An interesting 3D reconstruction benchmarking
initiative that ended in 2021, named “ISPRS benchmark on indoor modelling”, enabled
a direct comparison of different techniques for generating 3D indoor models from point
cloud data by providing a public dataset and an evaluation framework. After the results
were published in 2021 [77], the dataset became inaccessible. Still, the authors of this
initiative concluded that the performance of each methodology varied across the datasets,
demonstrating the importance of having distinct datasets to perform this assessment.
Therefore, it is essential to create these benchmarking datasets, with different features and
degrees of complexity.

The authors expect that the identification of these topics will inspire research groups
around the world to study them and propose solutions that surpass the current state of
the art.

4. Conclusions

Laser scanners are one of the most used sensing platforms in the AEC domain, gen-
erating large amounts of data usually in the form of unstructured point clouds. This
makes the data processing procedure challenging, due to the existence of redundant data,
noise, measurement errors, clutter, and so on. As technology advances, researchers have
developed advanced algorithms for data reduction and point cloud registering, as well
as automatic approaches for BIM reconstruction. This review paper has presented the
latest point cloud processing and feature extraction algorithms related to Scan-to-BIM and
Scan-vs-BIM procedures in detail.

Furthermore, current limitations and future research directions have been discussed
to provide some insights on the topics within which there may be further innovations in
this domain. One of the main challenges identified in literature is dealing with missing
data due to occlusion in the scene. This can effectively be reduced by performing multi-
platform sensor fusion and efficient scan planning. Imaging sensors such as RGB cameras
may be used to acquire high resolution images from the scene, and allow identification,
classification and segmentation of any objects causing occlusions. Efficient scan planning
methodologies accounting for laser scanner characteristics and real-time performance are
still lacking. The ability to adapt the scan locations while the sampling operation is being
executed by analysing the quality of the data in real time is very valuable in terms of
maximizing the efficiency of the process. Furthermore, the integration of localization
systems, such as a GNSS while outdoors or a SLAM-based system when indoors, can
greatly simplify the dynamic scan planning and data acquisition process discussed above.
Current MLS systems can partially cover this gap, but they do not display the same level of
performance as a TLS. Therefore, there is a need for planning methodologies that consider
both 3D BIM information and sensor measurement models, enabling data acquisition with
higher accuracy.

There as been an increasing interest in integrating deep learning methodologies into
the point cloud processing and modelling pipeline. Although some studies addressed
here have already used these techniques for different purposes, these have already been
widely developed and applied by the CV community in other domains to enable real time
detection and classification of objects, object segmentation, as well as pose and position
estimation. In order to take advantage of this experience, annotated training datasets
representing objects and structures common in the AEC domain are still required. Fur-
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thermore, benchmarking datasets for comparing the performance of different Scan-to-BIM
and Scan-vs-BIM approaches are currently missing, and this may be one of the reasons
researchers still use their own datasets in isolation.

In future studies, the authors will focus on developing new scan-planning algorithms
using heterogeneous sensing platforms, which can be used to increase the overall efficiency
of the posterior modelling task.
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The following abbreviations are used in this manuscript:

AEC Architecture, Engineering and Construction
ALS Aerial Laser Scanner
BIM Building Information Modelling
BSP Binary Space Partitioning
CAD Computer Aided Design
CV Computer Vision
GNSS Global Navigation Satellite System
ICP Iterative Closest Point
INS Inertial Navigation System
LIDAR Light Detection and Ranging
MLS Mobile Laser Scanner
MW Manhattan World
NBV Next Best View
RANSAC Random Sample Consensus
TLS Terrestrial Laser Scanner
TOF Time of Flight
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