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Abstract: Crowd flow prediction plays a vital role in modern city management and public safety
prewarning. However, the existing approaches related to this topic mostly focus on single sites or
road segments, and indoor regional crowd flow prediction has yet to receive sufficient academic
attention. Therefore, this paper proposes a novel prediction model, named the spatial–temporal
attention-based crowd flow prediction network (STA-CFPNet), to forecast the indoor regional crowd
flow volume. The model has four branches of temporal closeness, periodicity, tendency and external
factors. Each branch of this model takes a convolutional neural network (CNN) as its principal
component, which computes spatial correlations from near to distant areas by stacking multiple CNN
layers. By incorporating the output of the four branches into the model’s fusion layer, it is possible
to utilize ensemble learning to mine the temporal dependence implicit within the data. In order to
improve both the convergence speed and prediction performance of the model, a building block
based on spatial–temporal attention mechanisms was designed. Furthermore, a fully convolutional
structure was applied to the external factors branch to provide globally shared external factors
contexts for the research area. The empirical study demonstrates that STA-CFPNet outperforms other
well-known crowd flow prediction methods in processing the experimental datasets.

Keywords: indoor regional crowd flow prediction; crowd flow trajectories; deep learning; spatial-
temporal attention mechanism; feature fusion method

1. Introduction

With the advancement of urbanization, the population of regional central cities swells,
and “urban diseases”, such as traffic congestion, fuel consumption and environmental
pollution, gradually emerge, bringing enormous pressure to urban management and pos-
ing severe challenges to urban sustainable development. To solve the existing problems
in urban development, China has constructed smart cities on a wide scale. This study
aimed to estimate and predict crowd flow volume, which has great theoretical and prac-
tical significance for improving the ability of urban management departments to deal
with emergencies.

Therefore, relevant scholars in this field have carried a large quantity of studies for
the purpose of predicting the crowd flow volume using several types of methods, such as
statistics-based methods, traditional machine learning methods, deep learning methods
and reinforcement learning methods. However, the majority of existing studies focus on
the prediction of outdoor crowd flow volume, emphasizing population mobility between
different functional urban areas in the city [1], and few academics pay attention to indoor
regional crowd flow prediction.

The maturity of indoor positioning technology advances the development of indoor
location-based services (LBSs) and promotes the cultivation of typical application scenarios
such as personalized route recommendation, indoor service resource allocation and the
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formulation of emergency response plans in large and complex indoor scenes. As such,
advances in this research area could open new application fields for surveying and map-
ping geographic information technology. More than 80% of daily life is spent indoors [2],
and various application scenarios of indoor LBSs are also structured around indoor activ-
ity. Therefore, the estimation and prediction of indoor regional crowd flow volume has
strong practical application value for improving the application system of indoor LBSs and
strengthening indoor LBS provisions. For example, museums can predict the future crowd
flow volume according to historical data and adjust the distribution location and opening
time of each exhibition hall in advance, allowing institutions to mostly avoid unnecessary
safety accidents caused by excessive congestion in exhibition halls as a result of a large flow
of crowd. In another example, an indoor LBS system can dynamically adjust the operation
state of the sensors, as well as the temporal and spatial distribution of the crowd flow
volume, to assist a sensor network for the purpose of realizing the dynamic management
of power consumption. That is, when the crowd flow volume of the local area is large, the
sensor power consumption can be increased or reduced.

The principal challenges of indoor regional crowd flow prediction can be summarized
as follows:

1. Since it is impossible to deploy many sensors indoors to effectively monitor the crowd
flow volume, there is an urgent need to establish a method that can accurately express
the indoor regional crowd flow volume.

2. The crowd flow volume of a certain indoor region is influenced by adjacent regions.
Thus, indoor regional crowd flow prediction cannot ignore the spatial correlation
between different indoor regions.

3. Indoor regional crowd flow prediction is a typical time series prediction problem, and
its calculation result is affected by time dependence. For instance, indoor regional
crowd flow volumes during adjacent periods display little difference, and the indoor
regional crowd flow volumes during the same period every day may be similar.
Therefore, it is necessary to capture closeness and periodicity, as well as tendency
between indoor regional crowd flow volumes during different periods.

4. External factors, such as weather conditions, holiday arrangements, activities, etc.,
may change the indoor regional crowd flow volume. Thus, in the process of indoor
regional crowd flow prediction, external factors must be considered.

In view of the above challenges, this paper proposes a model named the spatial–
temporal attention-based crowd flow prediction network (STA-CFPNet) to predict indoor
regional crowd flow volume. Our contributions can be summarized as follows:

1. We propose a deep-learning-based crowd flow prediction model for indoor regions,
known as STA-CFPNet. STA-CFPNet feeds on indoor trajectory data and can capture
spatial correlation and time dependence by stacking multiple convolutional neural
network (CNN) blocks. In addition, the external factor learning branch is proposed in
order to add external factors to STA-CFPNet to improve the prediction accuracy.

2. We introduce a modeling and expression method for application to indoor regional
crowd flow volume. This method converts the indoor space into spatial latticed grids
and produces crowd flow matrices that represent the cumulative number of trajectory
segments passing through the grid per unit time. This micro-granularity can truly
reflect the indoor regional crowd flow situation.

3. We design a spatial–temporal attention block (STATT) with the residual structure
and add it to the temporal closeness, periodicity and tendency branches of STA-
CFPNet, enabling the model to learn spatial correlations and time dependence more
efficiently. Additionally, this reduces the difficulty of model fitting and accelerates the
convergence speed of the model.

4. We propose an encoding method that can encode external factors affecting the indoor
regional crowd flow volumes as vectors. By inputting these vectors into the external
factor learning branch of STA-CFPNet composed of multiple convolutional layers, it
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is possible to obtain the randomness features implicit in the indoor regional crowd
flow volumes so that the prediction accuracy of STA-CFPNet can be enhanced.

2. Related Work

With the development of positioning technology, we can obtain greater amounts of
data containing location information. The question of how to apply these data has attracted
widespread attention from scholars. Crowd flow prediction based on positioning data
has been widely studied, serving as a research focus in recent years. In this section, we
discuss two mainstream crowd flow prediction methods: statistics-based methods and
deep-learning-based methods.

Traditional statistics-based methods, such as autoregressive integrated move average
(ARIMA), seasonal ARIMA (SARIMA) [3], KARIMA [4] and ARIMAX [5], were proposed
in order to predict traffic flow by considering both spatial and temporal features. Although
statistics-based methods display simple model structures and are easily explained, they are
incapable of considering aspects such as individual randomness and nonlinearity, as well
as being inapplicable to large-scale scenarios [6]. These concerns limit the application of
statistics-based methods in the field of crowd flow prediction.

In recent years, with the rapid development of deep learning, deep-learning-based
methods have been widely employed in crowd flow prediction due to their ability to
describe complicated, nonlinear data correlations. These deep-learning-based methods
can be divided into two categories: outdoor crowd flow and indoor crowd flow prediction
models. Most studies focus on outdoor crowd flow prediction based on regular grid-based
regions, for example, ref. [7] proposed ST-ResNet to forecast crowd flow volume in each
and every region of a city, which can comprehensively consider multiple complex factors.
Other research [8] proposed a deep-learning-based multi-branch model named traffic flow
forecasting network (TFFNet). This not only captures spatial correlation and temporal
dependence, but also considers external factors in order to predict city-wide traffic flow.
One article [9] proposed a deep attentive adaptation network model named ST-DAAN to
transfer spatial–temporal knowledge for urban crowd flow prediction. In addition, a global
spatial attention mechanism was designed to capture spatial dependencies, which is useful
in efforts to improve prediction accuracy. Another study [10] proposed an adversarial
learning framework for multi-step urban crowd flow prediction. This can not only capture
the spatial–temporal correlation of the crowd flow data sequence, but is able to learn the
external context features in a fine-grained manner. In addition, some outdoor crowd flow
prediction models were proposed to solve the prediction task for irregular regions. For
example, ref. [11] proposed a crowd flow prediction model for irregular regions. This
method not only extracts hierarchical spatial–temporal correlation, but also captures dy-
namic and semantic information among the regions. A number of authors [12] built a
multi-view graph convolutional network (MVGCN) for the crowd flow forecasting prob-
lems in irregular regions. MVGCN not only captures spatial correlations and many types
of temporal properties, but it also assesses external factors and meta features. Furthermore,
some research has been conducted for indoor crowd flow prediction. For example, ref. [13]
proposed a Wi-Fi-positioning-based multi-grained spatiotemporal crowd flow prediction
framework named CrowdTelescope. This framework adopted spatiotemporal graph neural
networks (GNNs) to predict crowd flow using Wi-Fi connection records. One study [14]
presented a transformer-based multi-scale indoor mobility model named WiFiMod that is
capable of capturing the mobility periodicity and correlation across various scales, as well
as long-term mobility dependencies, in order to obtain robust accuracy in indoor mobility
prediction. One author [15] proposed a sequence-to-sequence crowd flow prediction deep
learning network named DeepIndoorCrowd. This can not only capture historical temporal
and future temporal, but can also consider the semantic features of indoor stores in the
predictions. Based on the complex architecture, outdoor crowd flow prediction models
utilizing deep learning can obtain abundant information on different scales, achieving
better results than statistics-based methods. However, due to differences between the
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spatial scales of outdoor and indoor spaces, outdoor crowd flow prediction models cannot
be directly applied to the task of indoor regional crowd flow prediction. Additionally,
the existing indoor crowd flow prediction models lack comprehensive consideration of
spatial–temporal information and external factors that affect indoor crowd flow volume.

Therefore, inspired by previous research, this paper proposes a deep-learning-based
prediction model for indoor regions. This model not only takes spatial correlation, time
dependence and external factors into account, but it also designs the STATT block to
enhance the data features that are beneficial for the model training. The model will be
described in detail below.

3. Materials and Methods
3.1. Modeling and Expression of Indoor Regional Crowd Flow Volume

As a deep learning model, CNNs display efficient data feature extraction, strong
nonlinear expression and robust generalization ability. They have been widely deployed in
fields such as speech analysis, image recognition, object detection, etc. In this study, we
constructed STA-CFPNet based on CNNs. Since the input of CNNs is usually in vector,
matrix, or tensor form, we must divide the indoor space into regular grids and transform it
into a crowd flow matrix. At the same time, it is necessary to split the trajectory data into
equal time intervals, at which point it is possible to obtain the crowd flow volume per time
interval of each grid unit. In this study, we selected 2 m as the side length of the grid unit
and set the division granularity of the time axis as 15 min [16].

As it is impossible to deploy a variety of sensors indoors to effectively monitor the
crowd flow volume, we utilized an indoor positioning dataset collected from a four-story
shopping mall in Beijing with the support of the National Natural Science Foundation
of China (grant number 42071343). This dataset records the Wi-Fi positioning data of
customers’ mobile phones in the shopping mall from 1 May 2019 to 31 May 2019. The
example positioning data are shown in Table 1. Connecting the positioning data of the
same user ID within the specified time, it is possible to obtain the indoor trajectory data.
This study deployed indoor trajectory data to calculate the indoor regional crowd flow
volume. The computational process unfolds as follows:

1. Based on the relationship between trajectory data and grid units, we calculate the
cumulative number of trajectory segments passing through the grid unit in unit time
as the indoor crowd flow volume. As shown in Figure 1a, two trajectory data intersect
area Rij to form three trajectory segments; thus, the indoor crowd flow volume of area
Rij is recorded as 3.

2. It should be noted that, due to the long sampling interval of positioning data, the
indoor trajectories cannot demonstrate the actual movement of customers well. To
improve the accuracy of indoor crowd flow volume, we carry out Hermite interpola-
tion on positioning data in advance. As shown in Figure 1b, when using the Hermite
method, three trajectory data intersect area Rij to form four trajectory segments; thus,
the indoor crowd flow volume of area Rij is recorded as 4.

3. On this basis, we acquire the crowd flow volume of the whole indoor space, as shown
in Figure 1c.

Table 1. Example of indoor positioning data.

Time Stamp Floor ID User ID X Y

1 May 2019 09:30:20 F1 789433A1*** 13***91.7 4***74.3
1 May 2019 09:33:54 F2 509122U0*** 13***55.0 4***77.4

. . . . . . . . . . . . . . .
1 May 2019 18:42:35 F4 289738G6*** 13***47.9 4***06.3

*** indicates omissions.
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For a grid unit Rij, the “area” that lies at the ith row and the jth column of the indoor

space, the cumulative crowd flow volume xij
t at time interval tth is defined as follows:

xij
t = ∑Trk∈S

∣∣{k ≥ 1
∣∣Trk ∩ Rij ̸= ∅

}∣∣, (1)

where S is a group of trajectories, Trk is a trajectory in S and Trk ∩ Rij ̸= ∅ is a set of
trajectory segments obtained when trajectory Trk intersects area Rij, |·| is the total number
of trajectory segments in the above set.

By calculating the indoor regional crowd flow volume using the above method, it is
possible to obtain the state sequence comprising crowd flow matrices. For the convenience
of data processing, the value of the crowd flow volume was scaled to the range of [0,
1]. Taking the trajectory data on the first floor of a shopping mall on 1 May 2019, in the
experimental dataset as an example, the plan view of the first floor of the shopping mall is
shown in Figure 2. A total of 96 crowd flow matrices were acquired during a 15 min time
interval, and each matrix contained 2400 grid units, as shown in Figure 3. The closer the
color in the picture is to a cool tone (i.e., blue), the smaller crowd flow volume is. On the
contrary, the closer the color is to a warm tone (i.e., yellow), the greater the crowd flow
volume is.
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Indoor regional crowd flow volumes within a certain area have closeness, periodicity
and tendency in terms of time. As shown in Figure 4a, the numerical difference between
crowd flow volumes in adjacent periods during business hours is small. However, with the
arrival of morning and evening peak times, the crowd flow volumes change greatly. From
Figure 4b,c, it is possible to observe that the values of crowd flow volumes during the same
period of each day or week are similar. However, with the influence of working days and
rest days, as well as other factors such as weather conditions and holiday arrangements,
crowd flow volumes produce fluctuations.
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The space and time of indoor regional crowd flow volume do not only display cor-
relation and dependence, but also reveal outliers and randomness. Thus, it is necessary
to learn the spatial correlation and time dependence of crowd flow volume from multi-
ple perspectives by extracting and selecting several characteristics of crowd flow volume.
Simultaneously, we must fully consider the outliers and randomness that may affect the
inherent spatial–temporal pattern of crowd flow volume. By effectively fusing spatial
correlation, time dependence and some external factors, the prediction performance of
indoor regional crowd flow prediction model can be significantly enhanced.

3.2. Indoor Regional Crowd Flow Prediction Model

The results of the spatial–temporal correlation analysis show that indoor regional
crowd flow volume is spatially correlated, time dependent and random under the influence
of external factors. To establish the inherent spatial–temporal patterns in indoor activities,
we modeled the correlation, dependence and randomness in the crowd flow matrix from
multiple perspectives, such as space, time, external factors, etc.

Since indoor regional crowd flow volume can be expressed as a two-dimensional
matrix with a grid structure, CNNs can be directly applied in order to extract spatial
correlation features. By stacking several CNN blocks, spatial correlation can be captured on
multiple scales, enabling the spatial pattern to be learnt from local to global levels. Crowd
flow volume displays similarities during adjacent periods and shows inherent periodicity
over a long temporal duration. Considering the influence of periodicity in the model can
allow researchers to effectively improve prediction accuracy and reduce the difficulty of
model fitting. Therefore, we construct independent branches for the extraction of temporal
closeness, periodicity and tendency features. External factors, such as weather conditions
and holiday arrangements, will disturb short-term crowd flow prediction tasks and increase
the randomness in the process of model training. Thus, it is necessary to embed features
through independent model branches and provide globally shared external factors contexts
for spatial–temporal pattern learning branches.



Electronics 2024, 13, 172 7 of 21

Electronics 2024, 13, x FOR PEER REVIEW 6 of 22 
 

 

 
Figure 3. Visualization of indoor regional crowd flow volume in experimental area. 

Indoor regional crowd flow volumes within a certain area have closeness, periodicity 
and tendency in terms of time. As shown in Figure 4a, the numerical difference between 
crowd flow volumes in adjacent periods during business hours is small. However, with 
the arrival of morning and evening peak times, the crowd flow volumes change greatly. 
From Figure 4b,c, it is possible to observe that the values of crowd flow volumes during 
the same period of each day or week are similar. However, with the influence of working 
days and rest days, as well as other factors such as weather conditions and holiday ar-
rangements, crowd flow volumes produce fluctuations. 

 
(a) 

 
(b) 

Electronics 2024, 13, x FOR PEER REVIEW 7 of 22 
 

 

 
(c) 

Figure 4. Variation curve of indoor regional crowd flow volume in experimental area. (a) Variation 
curve of crowd flow volume on 1 May 2019; (b) variation curve of crowd flow volume from 1 to 7 
May 2019; (c) variation curve of crowd flow volume from 1 to 31 May 2019. 

The space and time of indoor regional crowd flow volume do not only display corre-
lation and dependence, but also reveal outliers and randomness. Thus, it is necessary to 
learn the spatial correlation and time dependence of crowd flow volume from multiple 
perspectives by extracting and selecting several characteristics of crowd flow volume. 
Simultaneously, we must fully consider the outliers and randomness that may affect the 
inherent spatial–temporal pattern of crowd flow volume. By effectively fusing spatial cor-
relation, time dependence and some external factors, the prediction performance of in-
door regional crowd flow prediction model can be significantly enhanced. 

3.2. Indoor Regional Crowd Flow Prediction Model 
The results of the spatial–temporal correlation analysis show that indoor regional 

crowd flow volume is spatially correlated, time dependent and random under the influ-
ence of external factors. To establish the inherent spatial–temporal patterns in indoor ac-
tivities, we modeled the correlation, dependence and randomness in the crowd flow ma-
trix from multiple perspectives, such as space, time, external factors, etc. 

Since indoor regional crowd flow volume can be expressed as a two-dimensional 
matrix with a grid structure, CNNs can be directly applied in order to extract spatial cor-
relation features. By stacking several CNN blocks, spatial correlation can be captured on 
multiple scales, enabling the spatial pattern to be learnt from local to global levels. Crowd 
flow volume displays similarities during adjacent periods and shows inherent periodicity 
over a long temporal duration. Considering the influence of periodicity in the model can 
allow researchers to effectively improve prediction accuracy and reduce the difficulty of 
model fitting. Therefore, we construct independent branches for the extraction of temporal 
closeness, periodicity and tendency features. External factors, such as weather conditions 
and holiday arrangements, will disturb short-term crowd flow prediction tasks and in-
crease the randomness in the process of model training. Thus, it is necessary to embed 
features through independent model branches and provide globally shared external fac-
tors contexts for spatial–temporal pattern learning branches. 

Based on the above analysis, we constructed an integrated learning model composed 
of four model branches: temporal closeness, periodicity, tendency and external factors. 
Subsequently, we fused the outputs of multiple branches to acquire the predicted value 
of crowd flow volume for a certain period in the future. Finally, we used the back-propa-
gation method to train the model, finding that the model performed best using the vali-
dation dataset. 

We dubbed the indoor crowd flow prediction model proposed in this paper as STA-
CFPNet. By adding STATT to the three branches of temporal closeness, periodicity and 
tendency, the model can strengthen the data features, which are conducive to spatial 

Figure 4. Variation curve of indoor regional crowd flow volume in experimental area. (a) Varia-
tion curve of crowd flow volume on 1 May 2019; (b) variation curve of crowd flow volume from
1 to 7 May 2019; (c) variation curve of crowd flow volume from 1 to 31 May 2019.

Based on the above analysis, we constructed an integrated learning model com-
posed of four model branches: temporal closeness, periodicity, tendency and external
factors. Subsequently, we fused the outputs of multiple branches to acquire the predicted
value of crowd flow volume for a certain period in the future. Finally, we used the back-
propagation method to train the model, finding that the model performed best using the
validation dataset.

We dubbed the indoor crowd flow prediction model proposed in this paper as STA-
CFPNet. By adding STATT to the three branches of temporal closeness, periodicity and
tendency, the model can strengthen the data features, which are conducive to spatial
correlation and time dependence learning. Additionally, this model can be used to reduce
the difficulty of subsequent block fitting and accelerate the overall convergence speed
of the model. For external factors, the branch centered around feature embedding and
extraction, based on a fully convolutional structure, can be used learn the globally shared
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external factors contexts for the research area. This allows for the realization of the feature
expression of randomness during any time period, and effectively improves the ability to
fit randomness in the model. To fuse the output feature maps of multiple model branches,
we integrate the feature fusion module at the output of the model, aiming to dynamically
combine the feature maps of multiple model branches using the model training process
and add a nonlinear activation function.

The architecture of STA-CFPNet is shown in Figure 5. The branches C, P and Q at the
bottom of Figure 5 are used to learn the spatial–temporal patterns implied in the crowd
flow matrix. We divide the time axis into three segments: distant history, near history and
recent. Then, we extract XC, XP and XQ three tensors composed of crowd flow matrix
sequences as the inputs of each model branch:

XC =
[
XTi−1, XTi−2, · · · , XTi−lc

]
, (2)

XP =
[

XTi−p, XTi−2×p, · · · , XTi−lp×p

]
, (3)

XQ =
[

XTi−q, XTi−2×q, · · · , XTi−lq×q

]
, (4)

where lc, lp and lq are the length of XC, XP and XQ, respectively, and p and q are two
measurement units of periodicity and the tendency to express the length of time intervals,
respectively.
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The Ext branch is used for feature embedding and the extraction of external factors.
The model input XE for the Ext branch is relatively simple provided that weather condi-
tions, holiday arrangements, business status and other external factors are encoded into
distinguishable vectors. For example, we can use “one-hot encoding” to encode each
external factor and then splice the individual vectors.

After passing the output feature maps X′C, X′P, X′Q and X′E of each branch through
the “fuse and activate” module, the final output X′Ti

of the crowd flow prediction model is
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obtained. Then, the loss between predicted value X′Ti
and true value XTi can be calculated

using the “loss function”. Afterward, we utilize the optimization algorithm to back-
propagate the model and adjust the model parameters until a convergence state is reached,
allowing the acquisition of the prediction model with the best performance in terms of the
verification dataset.

3.2.1. Spatial–Temporal Pattern Learning Branch Architecture

By continuously sliding along the input feature map, the convolution kernel of the
CNN performs a linear weighting operation between the sliding window on the feature
map and the corresponding elements on the convolution kernel. This allows researchers
to extract the local spatial features of the input feature map. Compared with the fully
connected layer, the CNN layer possesses the characteristics of a local connection, weight
sharing and hierarchical expression. A local connection indicates that an element on the
output feature map is only related to the local area on the input feature map. Weight
sharing means that the weight coefficients of the convolution kernel are globally shared on
the same input feature map. Hierarchical expression means that feature representations
can be extracted on multiple scales by stacking multiple CNN layers.

Operating based on the analysis given above, we use the structure of stacking multiple
CNN layers to extract the spatial correlation features hidden in the crowd flow matrix. Their
model input structures are similar for the temporal closeness, periodicity and tendency
model branches. Therefore, we adopted the same model structure for C, P and Q model
branches. The architecture of a spatial–temporal pattern learning branch is shown in
Figure 6.
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The branch is divided into five stages, in which Stage 0 and Stage 5 are convolution
layers, and the sizes of the convolution core are [64, 3, 3] and [N, 3, 3], respectively. Their
primary functions include feature extraction and channel adjustment. Conv1 adjusts the
number of feature map channels from C to 64, and Conv2 adjusts the number of feature
map channels from 512 to N. ResNet Stages 1–4 are residual blocks proposed in [17]. The
convolution kernels in the residual units are [64, 3, 3], [128, 3, 3], [256, 3, 3] and [512,
3, 3], respectively, which can increase the depth of the model branch and extract spatial
features on multiple scales. Compared with the ResNet50, ResNet101 and ResNet152
models proposed in [17], the depth of the model used in this study is relatively shallow.
Conv1, ResNet Stages 1–4 and Conv2 form the backbone of the spatial–temporal pattern
learning branch. The model input size is [C, H, W] and the output size is [N, H, W], where
H and W are the height and width of the feature map, respectively, C is the length of the
crowd flow matrix sequence, and N is the number of channels in the output feature map,
which is determined on the basis of the specific needs of the crowd flow prediction task. For
example, the cumulative flow prediction can be 1, and the inflow and outflow prediction
can be 2.

According to the calculation principle of multi-channel convolution, a convolution
kernel performs linear weighting operations with the sliding window on the input feature
map, and then perform tensor addition operations on each channel of the output feature
map, thereby achieving feature extraction in the spatial dimension and feature fusion in the
channel dimension. By stacking multiple layers of CNNs, spatial–temporal pattern learning
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from low to high layers can be achieved. However, the traditional CNN architecture design
is too general to effectively pay attention to the data characteristics beneficial to spatial–
temporal pattern learning and model the spatial correlation and time dependence implied
in the crowd flow matrix. When operating on the premise of limited model depth, it
is especially difficult to achieve good results in the task of crowd flow prediction. An
attention mechanism was first applied in the research fields of machine translation [18]
and image classification [19]. Inspired by the human visual attention mechanism, we
designed a special attention learning branch to make the network pay attention to the
data characteristics that offer benefits to the machine learning task in the training process,
reducing the complexity of the model learning process and improving the convergence
speed of the model training process.

There exists a significant spatial correlation between the crowd flow volume Vi
mn of

area Rmn during period Ti and the surrounding areas. The correlation is strong between
the areas close to each other, while elsewhere, it is weak. To characterize this spatial
correlation, the model learns a location mask matrix of area Rmn during period Ti from
the surrounding areas. Meanwhile, the values of crowd flow volume V j

mn in area Rmn
express time dependence during several adjacent periods Tj, a value which gradually
decreases with the evolution of time. The model may learn a channel mask vector in the
training process to characterize the importance of crowd flow volume during each period.
In order to mine the hidden spatial–temporal dynamic patterns of people during indoor
activities, this paper proposes a STATT block for the learning of location mask matrix and
channel mask vector, which can calibrate the features of input data and shallow feature
maps, strengthening the data features beneficial to spatial correlation and time dependence
learning, reducing the fitting difficulty of subsequent blocks and improving the overall
convergence speed of the model. The architecture of the STATT block is shown in Figure 7.
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The STATT block is designed to display a residual structure. It is possible to calibrate
the input feature map in the residual part of the block, use the skip connection to perform
tensor addition with the output of the residual part, and finally obtain the output feature
map of the block. The input and output size of the block are both [C, H, W].

In order to acquire the location mask matrix XMask ∈ RC×H×W , we first learn three
feature mapping functions FTr

(
·, WQ

)
, FTr(·, WK) and FTr(·, WV) in order to map the input

feature map X ∈ RC×H×W to the hidden layer feature space, obtaining XQ ∈ RC×H×W ,
XK ∈ RC×H×W and XV ∈ RC×H×W . Then, we expand the feature maps of the above
hidden layer feature space along the latter two dimensions to obtain X′Q ∈ RC×(H×W),
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X′K ∈ RC×(H×W) and X′V ∈ RC×(H×W). In order to calculate the correlation between any
two positions ⟨i, j⟩ on the feature map X, it is necessary to use a correlation calculation
function FCorr

(
·, WQ, WK

)
to obtain the correlation matrix XCorr ∈ R(H×W)×(H×W) and

normalize the matrix along the second dimension. Then, it is necessary to multiply the
hidden layer feature map X′V and the correlation matrix XCorr and assign the position
attention coefficient to each position on the feature map to obtain the output of this stage
X′′V ∈ RC×(H×W). Based on the above calculation process, it is possible to obtain the location
mask matrix XMask as long as X′′V is reshaped to the size of the input feature map of the
STATT block.

FTr
(
·, WQ

)
, FTr(·, WK), FTr(·, WV) and FCorr

(
·, WQ, WK

)
can be formally expressed as:

FTr
(
·, WQ

)
= σ

(
WQX + bQ

)
, (5)

FTr(·, WK) = σ(WKX + bK), (6)

FTr(·, WV) = σ(WV X + bV), (7)

FCorr
(
X, WQ, WK

)
= Softmax

(
XTWT

QWKX
)

, (8)

where WQ, WK and WV are convolution kernels with a size of 1× 1; bQ, bK and bV are the
paranoid terms of linear mapping; σ(·) is the nonlinear activation function; and So f tmax(·)
is the normalization function.

By combining the above four formulas, we can acquire the calculation formula of X′′V :

X′′V = FTr(X, WV)FCorr
(
X, WQ, WK

)
= WV XSoftmax(XTWT

QWKX), (9)

Based on X′′V , we can shape the tensor from [C, H*W] to [C, H, W] to acquire the
location mask matrix XMask. The feature map of each channel in the location mask matrix
has been calibrated for specific features, highlighting the data features beneficial to spatial
correlation modeling. The location attention learned using the STATT block displays
global invariance, i.e., the spatial correlation between any positions on the feature map
is consistent.

To obtain the channel mask vector wC ∈ RC×1×1, we first map the input feature map
of the STATT block to the hidden layer feature space, obtaining XC ∈ RC×H×W . The specific
form of feature mapping function FTr(·, WC) is as follows:

FTr(·, WC) = σ(WCX + bC), (10)

where WC is the convolution kernel with a size of 1× 1, bC is the paranoid term of linear
mapping and σ(·) is the nonlinear activation function.

Then, we convert the feature map XC of the hidden layer feature space into a coding
vector that can characterize the global feature of the channel dimension. The specific form
of the feature compression function FSq(·) is as follows:

FSq(XC) = GlobalAvgPool(XC
)
, (11)

where GlobalAvgPool(·) is the global average pooling function [20].
The coding vector vC represents the global feature of the channel dimension. To

capture the nonlinear relationship between any two channels, we must learn a feature
activation function FEx(·, WFC1, WFC2), the specific form of which is as follows:

FEx(vC, WFC1, WFC2) = σ(WFC2ReLU(WFC1vC)), (12)

where WFC1 and WFC2 are convolution kernels with a size of 1× 1 [21], and ReLU(·) and
σ(·) are nonlinear activation functions.

Combining Formulas (11) and (12), we acquire the channel mask vector wC ∈ RC×1×1,
representing the importance of the channel dimension. Then, we calibrate the features
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of the location mask matrix XMask again, multiplying the feature map of each channel in
XMask by the weight coefficient of the corresponding channel in wC to obtain the output
X′Mask ∈ RC×H×W of the residual part of STATT block. The specific form of feature scaling
function FRs(·) is as follows:

FRs(XMask, wC) = wC · XMask, (13)

Finally, it is possible to obtain the output feature map of STATT block X′ ∈ RC×H×W :

X′ = X + FRs(XMask, wC) = X + wC · XMask, (14)

3.2.2. External Factor Learning Branch Architecture

The Ext branch is used for feature embedding and the extraction of external factors;
its input XE ∈ RE is a coded representation of external factors. Since it does not have
the attribute of spatial location, it cannot be directly used to guide the learning of spatial–
temporal pattern learning branches to improve the prediction performance of the model.
In order to integrate the external factor vector into the learning process of the STA-CFPNet
model, we constructed a feature embedding and extraction branch composed of multiple
convolution layers to map the external factor vector into scalar values that can represent
the global external factors contexts. The architecture of the external factor learning branch
is shown in Figure 8.
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The output of the external factor learning branch X′E ∈ RN×1×1 is calculated as follows:

X′E = WN(ReLU(W2ReLU(W1XE))), (15)

where W1, W2 and WN are convolution kernels with a size of 1× 1 and ReLU(·) is the
nonlinear activation function.

3.2.3. Model Fusion Method

In order to integrate the output feature maps of multiple model branches, we used the
fusion function FFuse(·) to merge the output feature maps X′C, X′P, X′Q and X′E, indicating
the temporal closeness, periodicity, tendency and external factor branches. This operation
allowed us to obtain the final output X̂Ti ∈ RN×H×W of the model:

X̂Ti = Tanh(Fuse(X′C, X′P, X′Q, X′E)), (16)

where Fuse(·) is the feature fusion function and Tanh(·) is the nonlinear activation function.

3.3. Model Training Method

By inputting the crowd flow matrix sequences X′C, X′P, X′Q and external factor vector
X′E into each branch of STA-CFPNet, we can acquire the predicted value X̂Ti of crowd flow
volume during period Ti. We used mean squared error (MSE) to measure the difference
between the real value and the predicted value:

L(θ) =
∥∥XTi − X̂Ti

∥∥2
2, (17)
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where θ represents all learnable parameters of STA-CFPNet.
We add a regularization term to the loss function in order to adjust the complexity

of the model and avoid over-fitting problems, and obtain the objective function of STA-
CFPNet:

θ̂ = argmin
θ
(L(θ) + λJ(θ)), (18)

where θ represents all learnable parameters of STA-CFPNet, J(θ) is the regularization term,
usually taking L1 or L2 norm, and λ is the regularization coefficient.

The pseudo code of the STA-CFPNet training process is shown in Algorithm 1.

Algorithm 1: STA-CFPNet training algorithm

Input: crowd flow matrix:
{

XT0 , XT1 , · · · , XTn−1

}
external factor vector:

{
XExtT0

, XExtT1
, · · · , XExtTn−1

}
sequence length of crowd flow matrix: lc, lp, lq
periodicity interval unit: p
tendency interval unit: q
Output: STA-CFPNet M
//construct training sample
1 S← ∅
2 for all available time periods t(1 ≤ t ≤ n− 1) do
3 XC =

[
XTi−1, XTi−2, · · · , XTi−lc

]
4 XP =

[
XTi−p, XTi−2×p, · · · , XTi−lp×p

]
5 XQ =

[
XTi−q, XTi−2×q, · · · , XTi−lq×q

]
6 construct training sample

({
XC, XP, XQ, XE

}
, XTi

)
and add it to dataset S in order

//train STA-CFPNet
7 initialize all learnable parameters of STA-CFPNet θ [22]
8 repeat
9 randomly select a subset Sb from dataset S
10 find a set of parameters θ̂ on current subset Sb that minimizes the objective function
11 until the convergence condition is reached
12 output the trained STA-CFPNet M

4. Results and Discussion
4.1. Experiment Settings

To verify the effectiveness of the model proposed in this paper, we chose seven
benchmark models that can be used for the crowd flow prediction task, the details of
which are as follows. The first three are commonly used benchmark models in this field.
Conversely, the last four are time series prediction models based on deep learning. These
provide sufficient technical implementation details. It should be noted that TFFNet was
proposed in a highly cited article from the past three years, and DeepIndoorCrowd is a
comparative method drawn from another highly relevant study published this year.

HA: The historical average (HA) method uses the average value of the crowd flow
volumes during the same period in history as the predicted value of the crowd flow volume.

ARIMA: ARIMA is a classical method for time series prediction. This method includes
many variants, such as SARIMA.

SARIMA: SARIMA is a statistical model for learning data with seasonal characteristics.
The model considers both temporal closeness and periodicity.

DeepST [23]: The deep-learning-based prediction model for spatial–temporal data
(DeepST) has four branches, which are used to learn temporal closeness, periodicity, ten-
dency and external factors, respectively.

ST-ResNet: ST-ResNet has three branches, an architecture similar to that of DeepST
and uses residual units as basic blocks in each branch.

TFFNet: TFFNet and DeepST have a similar four-branch structure. However, TFFNet
has a deeper model architecture, which is capable of extracting deeper spatial–temporal
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dependence and integrating external factors including weather, weekdays and weekends,
as well as holidays.

DeepIndoorCrowd: DeepIndoorCrowd comprehensively considers historical temporal
features, future temporal features, semantic features of indoor stores and spatial features.

The characteristics of the above models are shown in Table 2.

Table 2. Characteristics of benchmark models.

Model
Spatial

Correlation
Time Dependence External

FactorsCloseness Periodicity Tendency

HA × ×
√ √

×
ARIMA ×

√
× × ×

SARIMA ×
√ √

× ×
DeepST

√ √ √ √ √

ST-ResNet
√ √ √ √ √

TFFNet
√ √ √ √ √

DeepIndoorCrowd
√ √ √ √

×
× indicates incapable,

√
indicates capable.

To verify the generalization ability of STA-CFPNet, this study used two datasets to test
the performance of STA-CFPNet. IDSBJ is 1 month of indoor trajectory data of a shopping
mall in Beijing, covering weekdays, weekends and holidays. Due to the small number of
indoor crowd flow volume datasets published, we used TaxiBJ [23] as a supplement, which
includes taxicabs GPS trajectory data in four time intervals in Beijing. The details of the
two datasets are shown in Table 3.

Table 3. Experimental datasets details (holidays include adjacent weekends).

Dataset IDSBJ TaxiBJ

Location Beijing Beijing
Data type Indoor trajectory Taxicab GPS trajectory

Time span 1 to 31 May 2019

1 July 2013–30 October 2013
1 March 2014–30 June 2014
1 March 2015–30 June 2015
1 November 2015–10 April

2016
Time interval 15 min 30 min

Grid size 24 × 100 32 × 32
Sampling rate 60 s 60 s

Crowd flow matrices 2976 22459
Weekdays 23 days 376 days
Weekends 8 days 152 days
Holidays 4 days 41 days

Weather conditions 2 types (e.g., good, poor) 16 types (e.g., sunny, rainy)

We used the root mean squared error (RMSE) as the performance index to measure
the prediction accuracy of the model:

RMSE =

√
1
N ∑N

i=1

(
Xi − X̂i

)
, (19)

where Xi is the true value, X̂i is the predicted value and N is the total number of samples
in the dataset. The smaller RMSE, the better performance of STA-CFPNet.

The principal hardware configurations of the server used for model training are Intel
CORE i7-10875H * 1, NVIDIA GTX 2080Ti * 1, 32 GB RAM and 1 TB SSD. We used PyTorch
2.0 to realize STA-CFPNet and the benchmark models, and all benchmark models used the
super parameters provided in the original papers as the training super parameters.
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4.2. Comparison of Model Prediction Accuracy

We set the following super parameters for STA-CFPNet: initial learning rate of 0.005,
learning rate attenuation coefficient of 0.95, weight attenuation coefficient of 0.0001, length
of temporal closeness sequence of 8, length of periodicity sequence of 1, and length of
tendency sequence of 1; the division ratio of the training dataset and test dataset was
8:2, and the verification dataset was the last 20% of the training dataset. We trained STA-
CFPNet and the benchmark models on two training datasets for 100 rounds and all models
converged smoothly. The comparison of the models’ prediction accuracy and computation
time is shown in Table 4.

Table 4. Comparison of models’ prediction accuracy and computation time.

Model
RMSE Training Time

(min)
Inference Time

(s)

IDSBJ TaxiBJ IDSBJ TaxiBJ IDSBJ TaxiBJ

HA 13.2241 218.1444 - - - -
ARIMA 6.8770 102.3351 45.3 151.1 14.80 49.33

SARIMA 7.0633 106.7840 53.0 176.6 16.77 55.91
DeepST 0.3137 46.8211 133.2 388.0 31.72 105.73

ST-ResNet 0.2324 43.7945 112.7 365.6 31.28 102.19
TFFNet 0.1454 29.2633 135.0 424.5 28.74 95.58

DeepIndoorCrowd 0.1857 33.7945 147.9 536.0 33.15 110.52
STA-CFPNet 0.0430 28.1566 130.7 435.5 29.52 98.4

It can be seen from Table 4 that, compared with the use of traditional time sequence
prediction models on the two datasets, the accuracy index of STA-CFPNet relative to
ARIMA increased by 99.3% and 72.5%, respectively, and the accuracy index of STA-CFPNet
relative to SARIMA increased by 99.4% and 73.6%, respectively. STA-CFPNet can learn
the implicit spatial correlation and time dependence in the crowd flow matrix at the same
time and extract effective auxiliary information from the external factor vector. Due to the
above fact, STA-CFPNet greatly surpassed ARIMA and SARIMA in the task of crowd flow
volume prediction.

Compared with the current popular deep learning models, STA-CFPNet also has great
advantages. For the two datasets, the accuracy index of STA-CFPNet relative to DeepST
increased by 86.3% and 39.9%, respectively; the accuracy index of STA-CFPNet relative to
ST-ResNet increased by 81.4% and 35.7%, respectively; the accuracy index of STA-CFPNet
relative to TFFNet increased by 72.5% and 3.8%, respectively; and the accuracy index of
STA-CFPNet relative to DeepIndoorCrowd increased by 76.8% and 16.7%, respectively.
STA-CFPNet adds the STATT block to the three branches of temporal closeness, periodicity
and tendency, providing calibrated location and channel features for subsequent block
learning of the model. Due to the above fact, STA-CFPNet greatly reduces the difficulty
of model training and effectively improves the prediction performance of the model. In
addition, feature embedding and the extraction of external factor vectors using a fully
convolutional structure can reduce the number of learnable parameters of the external
factors branch and learn the location-independent external factors contexts for the research
area. The output feature maps of the four branches of temporal closeness, periodicity,
tendency and external factors are fused via tensor summation, which also improves the
performance of the model to a certain extent.

Table 4 shows that the STA-CFPNet is not superior in terms of computational cost.
On the contrary, traditional statistics-based crowd flow prediction models require less
computation time due to their simple model structures and fewer model parameters.
Although deep-learning-based crowd flow prediction models can achieve better results,
the computation time of the model is long owing to the complex model structures and
large number of model parameters. The question of how to reduce the computational
consumption will constitute the focus of our next study.
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4.3. Effectiveness Analysis of Model Architecture

For the purpose of studying the impact of structural changes on the performance of
the model, we fine-tuned the components of STA-CFPNet to form four variants. Then, we
tested these on two training datasets. Each variant adds the STATT block in Stage 0 and
Stage 1 of temporal closeness, and brings the periodicity and tendency branches, and uses
the fully convolutional structure to embed and extract the features of the external factor
vector. Finally, the model adopts tensor summation to fuse the output feature maps of
multiple branches. To compare the performance of each model fairly in the crowd flow
prediction task, we selected the same super parameters for each variant of STA-CFPNet.
The performance of each model variant is shown in Table 5. The model architecture and
super parameter settings are shown in Table 6.

Table 5. Model architecture effectiveness analysis results.

Model
RMSE

IDSBJ TaxiBJ

STA-CFPNet-CXXX 0.0897 93.3217
STA-CFPNet-CXXE 0.0799 79.6672
STA-CFPNet-CPQX 0.0831 87.3231
STA-CFPNet-CPQE 0.0430 28.1566

Table 6. Model architecture and super parameter settings.

Model Description Super Parameter Setting

STA-CFPNet-CXXX Using temporal closeness branch Initial learning rate is 0.005, learning rate attenuation
coefficient is 0.95 and weight attenuation coefficient is
0.0001; the length of temporal closeness sequence is 8,

the length of periodicity sequence is 1 and the length of
tendency sequence is 1; the division ratio of training

dataset and test dataset is 8:2, and the verification
dataset is the last 20% of the training dataset.

STA-CFPNet-CXXE Using temporal closeness and external
factor branches

STA-CFPNet-CPQX Using temporal closeness, periodicity
and tendency branches

STA-CFPNet-CPQE Using temporal closeness, periodicity,
tendency and external factor branches

Table 5 shows that, when tested on the dataset IDSBJ, compared with STA-CFPNet-
CXXX, STA-CFPNet-CXXE and STA-CFPNet-CPQX, the accuracy index of STA-CFPNet-
CPQE increased by 52%, 46.8% and 48.3%, respectively. When tested on the TaxiBJ dataset,
compared with STA-CFPNet-CXXX, STA-CFPNet-CXXE and STA-CFPNet-CPQX, the ac-
curacy index of STA-CFPNet-CPQE increased by 69.8%, 64.7% and 67.8%, respectively.
Based on the above analysis, it is possible to establish that STA-CFPNet-CPQE, which
integrates temporal closeness, periodicity, tendency and external factor branches, obtains
the best prediction accuracy on both datasets. This indicates that integrating the above four
branches can effectively learn the spatial correlation, time dependence and randomness
introduced by external factors implied in a crowd flow matrix, improving the performance
of the model.

Simultaneously, using the IDSBJ dataset, the accuracy index of STA-CFPNet-CPQX
improved by 7.4% compared with STA-CFPNet-CXXX, and the accuracy index of STA-
CFPNet-CXXE improved by 10.9% compared with STA-CFPNet-CXXX. Using the TaxiBJ
dataset, the accuracy index of STA-CFPNet-CPQX improved by 6.4% compared with
STA-CFPNet-CXXX, and the accuracy index of STA-CFPNet-CXXE improved by 14.6%
compared with STA-CFPNet-CXXX. These results prove that integrating the external factor
branch into the model can improve the prediction accuracy better than integrating the
periodicity and tendency branches. In particular, when the input length of the periodicity
and tendency sequences are short, that is, when working in the short-term crowd flow
prediction problem, it is possible to only use the temporal closeness and external factor
branches and properly fuse the output feature maps.
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4.4. Effectiveness Analysis of STATT Block

To verify the effectiveness of the STATT block proposed in this paper, we fine-tuned the
architecture of STA-CFPNet, removing the STATT block from the three branches of temporal
closeness, periodicity and tendency, and tested it on two training datasets. With the aim
of comparing the performance of each model in the crowd flow prediction task fairly, we
selected the same super parameters for each variant of STA-CFPNet. The effectiveness
analysis results for the STATT block are shown in Table 7. The model architecture and
super parameter settings are shown in Table 8.

Table 7. STATT block effectiveness analysis results.

Model
RMSE

IDSBJ TaxiBJ

STA-CFPNet-CPQE-with-STATT 0.0430 28.1566
STA-CFPNet-CPQE-without-STATT 0.0669 68.4889

Table 8. Model architecture and super parameter settings.

Model Description Super Parameter Setting

STA-CFPNet-CPQE-
with-STATT

Using temporal closeness, periodicity,
tendency and external factor branches

with STATT block

Initial learning rate is 0.005, learning rate attenuation
coefficient is 0.95 and weight attenuation coefficient is

0.0001; the length of temporal closeness sequence is 8, the
length of periodicity sequence is 1 and the length of

tendency sequence is 1; the division ratio of training dataset
and test dataset is 8:2, and the verification dataset is the last

20% of the training dataset.

STA-CFPNet-CPQE-
without-STATT

Using temporal closeness, periodicity,
tendency and external factor branches

without STATT block

As shown in Table 7, after removing the STATT block of STA-CFPNet-CPQE-with-
STATT, the accuracy index RMSE of STA-CFPNet-CPQE-without-STATT on the IDSBJ
and TaxiBJ datasets decreased by 35.7% and 58.5%, respectively. Using the STATT block
can effectively improve the performance of the model in crowd flow prediction tasks.
Furthermore, Figure 9 shows that the STATT block not only improves the performance of the
model, but also accelerates the convergence of the model training process. Compared with
STA-CFPNet-without-STATT, the training time of STA-CFPNet-with-STATT was greatly
reduced under the same training rounds and accuracy index constraints.

STA-CFPNet-CPQE-with-STATT adds STATT blocks before Stage 0 and Stage 1 of
the temporal closeness, periodicity and tendency branches. This achieves the feature
recalibration of the input data and shallow feature maps and provides more effective
information for feature extraction and pattern learning of the subsequent network, reducing
the interference of invalid information on the network fitting process in the process of
model learning. However, the STATT block introduces additional learnable parameters,
increasing the occupation of video memory and training time. Therefore, when using
this block, we must consider the impact of location and quantity on the performance of
the model.
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4.5. Effectiveness Analysis of External Factor Extraction Method

For the sake of verifying the effectiveness of the external factor extraction method, we
fine-tuned the architecture of STA-CFPNet, modifying the structure of the external factor
branch into a fully convolutional network and fully connected network. Then, we extracted
features from the external factor vector in the training dataset and fused them with the
other three branches of the model. With the aim of fairly comparing the two external factor
extraction methods, we selected the same super parameters for each variant of STA-CFPNet.
The effectiveness analysis results for the external factor extraction method are shown in
Table 9. The model architecture and super parameter settings are shown in Table 10.

Table 9. External factor extraction method effectiveness analysis results.

Model
RMSE

IDSBJ TaxiBJ

STA-CFPNet-CPQE-Conv 0.0430 28.1566
STA-CFPNet-CPQE-FC 0.0918 75.3992
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Table 10. Model architecture and super parameter settings.

Model Description Super Parameter Setting

STA-CFPNet-CPQE-Conv Using fully convolutional structure
for external factors branch

Initial learning rate is 0.005, learning rate attenuation
coefficient is 0.95 and weight attenuation coefficient is

0.0001; the length of temporal closeness sequence is 8, the
length of periodicity sequence is 1 and the length of

tendency sequence is 1; the division ratio of training dataset
and test dataset is 8:2, and the verification dataset is the last

20% of the training dataset.

STA-CFPNet-CPQE-FC
Using fully connected structure for

external factors branch

Table 9 shows that using a fully convolutional structure for feature embedding and
extraction of external factor vectors is much better than using a fully connected structure.
On the IDSBJ and TaxiBJ datasets, the accuracy index RMSE of STA-CFPNet-CPQE-Conv
compared with STA-CFPNet-CPQE-FC improved by 53.2% and 66.6%, respectively.

Compared with the fully connected structure, the fully convolutional structure has
fewer parameters, reducing over-fitting problems. Moreover, the existing deep learning
framework displays better optimization for convolution operation, which can make the
training process more efficient. As shown in Figure 10a, the size of the feature map output
by the fully convolutional structure is [1, 1, 1]. There were globally shared external factors
contexts for the whole research area, i.e., each position on the output feature map was
affected by the same external factor. Figure 10b shows that the output vector size of the fully
connected structure was [FC2,]. Then, according to the size of the research area, this was
shaped into a feature map with a size of [1, H, W]. The external factor features learned from
each location on the feature map did not possess meaningful spatial location attributes,
i.e., the external factor features of each location on the feature map were not related to the
spatial location, which brings additional complexity to the fusion of subsequent multiple
branch output feature maps. Therefore, it is suggested to use a fully convolutional structure
in the external factor extraction operation of the model.
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5. Conclusions

This paper proposes a deep-learning-based crowd flow prediction model for indoor
regions named STA-CFPNet. This model can utilize deep convolutional structures to cap-
ture spatial correlations from regions near and far. By establishing three branches, namely,
temporal closeness, periodicity and tendency, it is possible to model the time dependence
implicit in the crowd flow matrix via multi-channel convolution calculations. By designing
the STATT block based on the residual structure, we can highlight the data features that
are beneficial for spatial–temporal dependence modeling and reduce the interference from
invalid information on STA-CFPNet. The fusion of external factors (e.g., weather conditions,
holiday arrangements, working days and rest days, etc.) can improve the prediction accu-
racy of STA-CFPNet. In this research, we evaluated the effectiveness of STA-CFPNet and
other benchmarks when applied to the experimental datasets. Additionally, we explored
the impacts induced by different model structures and external factor extraction methods.
The experimental results indicate that STA-CFPNet exceeds the benchmark models on the
experimental datasets in the field of indoor regional crowd flow prediction and verify the
effectiveness of using STATT blocks and an external factor extraction method based on a
fully convolutional structure.

STA-CFPNet comprehensively considers multiple factors that affect indoor regional
crowd flow predictions in order to obtain robust prediction results. However, a large
amount of computation is required in the process of generating crowd flow matrices
and the training process of the model. As such, we need to introduce high-performance
computing methods to solve the problem. In addition, there are currently few publicly
available indoor trajectory datasets. This, to some extent, limits research on this issue. In
the future, we will consider the application of STA-CFPNet to many other indoor scenarios
such as indoor path planning, indoor hotspot prediction and so on.
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