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Abstract: Network intrusion data are characterized by high feature dimensionality, extreme category
imbalance, and complex nonlinear relationships between features and categories. The actual detection
accuracy of existing supervised intrusion-detection models performs poorly. To address this problem,
this paper proposes a multi-channel contrastive learning network-based intrusion-detection method
(MCLDM), which combines feature learning in the multi-channel supervised contrastive learning
stage and feature extraction in the multi-channel unsupervised contrastive learning stage to train
an effective intrusion-detection model. The objective is to research whether feature enrichment
and the use of contrastive learning for specific classes of network intrusion data can improve the
accuracy of the model. The model is based on an autoencoder to achieve feature reconstruction
with supervised contrastive learning and for implementing multi-channel data reconstruction. In
the next stage of unsupervised contrastive learning, the extraction of features is implemented using
triplet convolutional neural networks (TCNN) to achieve the classification of intrusion data. Through
experimental analysis, the multichannel contrastive learning network-based intrusion-detection
method achieves 98.43% accuracy in dataset CICIDS17 and 93.94% accuracy in dataset KDDCUP99.

Keywords: network intrusion detection; feature reconstruction; autoencoder; multi-channel; contrastive
learning

1. Introduction

The network is a national infrastructure and one of the primary targets of attack
in modern warfare, where defense against cyber attacks has become a growing concern
for researchers. In 2020, Brazil’s Light S.A. electricity company was hacked to extort
$14 million in ransom, and in late February 2022, the Internet was frequently attacked and
controlled from abroad, and cross-space cyber attacks were carried out against Russia and
Ukraine. A network intrusion-detection system is achieved by analyzing the characteristics
of network data streams to determine the network streams as normal data streams and
attack data streams. Intrusion-detection systems are still challenging in the face of the high
dimensionality of data features and extreme imbalance of intrusion categories, and the
systems exhibit low accuracy and high false alarm rates. To solve the above problems,
numerous researchers have mainly focused on machine learning methods [1], deep learning
methods [2], and contrastive learning [3].

Various machine learning and deep learning-based solutions have been proposed
in the past decades. Among them, machine learning-based network intrusion network
detection systems rely mainly on feature engineering, so as to learn information about
the characteristics of network intrusion data [4]. Deep learning-based network intrusion-
detection approaches, on the other hand, do not rely on huge feature engineering, but
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instead learn the complex features of network intrusion data from deep network struc-
tures [5].

As the application of supervised deep learning continues to evolve, deep learning
has shown a significant decrease in performance when dealing with data imbalance [6],
and unsupervised contrastive learning continues to narrow the gap between supervised
deep learning. The purpose of contrastive learning is to achieve judgments on predicted
samples by reducing the distance between like classes and increasing the distance between
different classes and by computing the distance (e.g., Euclidean distance). Contrastive
learning is a combination of deep learning hierarchical learning features and self-defined
sample distances to deal with data imbalance.

Autoencoder is widely used to attract our interest. Autoencoder as a kind of neural
network, whose architecture includes an input layer, encoder, hidden layer, decoder, and
output layer, implements recoding the raw data according to the label of the data and
minimizing a loss function. Recently, autoencoder is widely used in data dimensionality
reduction, data reconstruction, and data noise reduction. For example, in [7], an autoen-
coder is used to achieve feature extraction from the raw data and shows good experimental
performance. As in the literature [8], the decoder of the autoencoder is used for noise
reduction in the raw data. Moreover, the autoencoder is simple to train and continues to be
more efficient.

In contrastive learning, many of the state-of-the-art deep neural networks are used in
contrastive learning [9,10]. In the literature [11], it is proposed that the detection effective-
ness of a network intrusion-detection model depends on the loss function of contrastive
learning and is one of the important components of the model. In network intrusion
detection, intrusion data and anomaly data represent only a small fraction of the net-
work data [12]. In the literature [13], the researchers studied the resampling of deep
neural networks, thus verifying that neural network algorithms are robust in dealing with
data imbalance.

Multichannel feature extraction is applied in the tasks of image analysis [14] and speech
recognition [15] to improve the accuracy of the model by learning to correlate between
different channels. During multi-channel data enhancement, our method uses the network
data stream as the raw data vector and dichotomizes the data according to the labels of the
raw data, which are normal and attack network streams. The normal autoencoder is trained
using normal data, and the attack autoencoder is trained using attack data. The raw data are
fed into the corresponding autoencoder according to the labels to obtain a one-dimensional
embedding representation of the output. We compute the cross-correlation matrix for the
one-dimensional data of the autoencoder, and reconstruct the different cross-correlation
matrices to obtain the multi-channel data and use it as a new description of the raw data.
The multi-channel data can represent the connection existing between different features
and enrich the features of the raw data. In this paper, the extraction of the features of
the one-dimensional embedding representation is transformed into the extraction of the
features of the multi-channel cross-correlation matrix, which increases the gap between
different classes of data and improves the accuracy of model detection.

Contrastive learning applications have recently received attention in image classifi-
cation by setting innovative loss functions to improve the poor learning performance of
the model in addressing data imbalance. However, these methods are usually applied in
the feature extraction of multi-channel images. Therefore, we use TCNN as a contrastive
learning network for feature-reconstruction multichannel two-dimensional vector-data
feature extraction to reduce the distance between like classes and increase the distance
between different classes to improve the accuracy of network intrusion detection.

The main innovations of the proposed model are as follows.

(a) A new network intrusion-detection model is proposed to recode the network intrusion
data using autoencoder according to the labels, realizing autoencoder coupled with
TCNN, which has high accuracy and low false alarm rate and improves the security
of intrusion detection.
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(b) The features are augmented, and the raw single-channel one-dimensional data are
feature-enhanced into multi-channel two-dimensional data.

(c) The problem of extreme data imbalance encountered in network intrusion is solved,
and we evaluate the model extensively.

2. Related Research

Network intrusion detection is often viewed as a binary classification problem, where
the classification of network data streams is achieved by setting the model’s feature extrac-
tion method and the model’s classification rules, among which machine learning methods
such as k-Nearest Neighbor (KNN), support vector machine (SVM), decision tree (DT),
etc., are used. Zhou et al. proposed an intrusion-detection method that is based on the
selection of the most relevant features, and an integrated classifier based on Random Forest
(RF), C4.5, and Penalized Attribute Forest (Forest PA), and finally, classification is achieved
by voting technique [16]. While traditional machine learning algorithms enable network
intrusion detection, these methods have low accuracy rates during experiments.

Deep learning methods learn to extract data features by a hierarchical approach,
which enables the extraction of high-dimensional features from raw data. Deep learning is
currently used with remarkable effects in image recognition [17] and sentiment analysis [15].
Autoencoders are widely used in deep learning, and Zeng et al. stacked autoencoders and
used the output of the previous layer of autoencoding as the input of the next layer [18].
Sara A. Althubiti et al. applied the Long Short-Term Memory algorithm (LSTM) to a
network intrusion-detection system, and validated their model on the CICIDS dataset, with
results demonstrating deep learning algorithms outperform machine learning methods [19].
Lopez et al. [20] used a one-dimensional convolutional neural network to achieve better
experimental results for feature extraction of one-dimensional network intrusion data. Deep
learning-based network intrusion-detection algorithms are able to achieve high accuracy
rates, but are ineffective in handling network intrusion data imbalance experiments.

The contrastive learning approach uses a hierarchical learning approach to achieve a
transformation of the raw data to map the raw data to a suitable feature space. Contrastive
learning is implemented by deep neural networks, as well as by defining a sample distance
loss function to learn different classes of sample features in order to alleviate the prediction
error under data imbalance. Currently, contrastive learning is mainly used in face recogni-
tion and face verification in [21]. As pointed out in the literature [22], the performance of
contrastive learning networks depends mainly on the defined loss function (e.g., contrastive
loss, triplet loss) and the network sampling method. In the above contrastive learning
method, no data preprocessing is performed, and the training process results in a model
that is not optimal.

Novel feature extraction models have been reported in recent cybersecurity research.
In the literature [23], an autoencoder was used to learn the raw data features, and a deep
neural network was used to extend the new feature data to compose multi-channel data
from the raw data and the new feature data to train a multi-channel convolutional neural
network. In the literature [24], based on the combination of autoencoder and contrastive
learning, it is demonstrated that contrastive learning has good performance in dealing
with data imbalance and nonlinear data structure problems. Therefore, we propose an
auto-encoder to pre-process the data and reconstruct the multi-channel data to increase the
differences between different categories and finally implement a contrast learning network
intrusion-detection method.

3. Model Methodology

In this section, we describe MCLDM—our proposed multichannel contrastive learning
method for implementing network intrusion detection—which is a combination of a super-
vised contrastive learning method (two autoencoders) and an unsupervised contrastive
learning method for multichannel feature extraction (TCNN). The symbols used in the
MCLDM are shown in the following Table 1.
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Table 1. Symbol representation.

Symbol Description

X training data matrix X ⊂ <D

Xn The labels in X are a subset of the normal samples
Xa The labels in X are a subset of the attack samples
gn normal autoencoder trained on Xn

ga attack autoencoder trained on Xa

Xn+ Xn− Xn Output via autoencoder gn ga
Xa− Xa+ Xa Output via autoencoder gn ga
Xn

cor Xa
cor the crosscorrelation matrix with Xn

Xn+
cor Xa+

cor the crosscorrelation matrix with Xn+

Xn−
cor Xa−

cor the crosscorrelation matrix with Xn−

[xn
cor, xn

cor] [xa
cor, xa

cor] representative anchor samples
[xn

cor, Xn+
cor ] [xa

cor, Xa−
cor ] representative positive samples

[xn
cor, Xn−

cor ] [xa
cor, Xa+

cor ] representative negative samples
Φ : RD∗D → Rd embedding space learned via a TCNN

Two stages are included in this MCLDM: the training stage and the prediction stage.
In the training stage, the purpose of the MCLDM is mainly to learn the features of the raw
vector of network intrusion data, train two types of autoencoders, realize the recoding of
the normal network stream and the attack network stream, and output the one-dimensional
reconstructed vector. The reconstructed vector and the raw vector are computed separately
for the cross-correlation matrix, and the cross-correlation matrix is combined to form the
multi-channel reconstructed data. Finally, the multi-channel reconstructed data are used
as input to train the TCNN to achieve unsupervised contrastive learning according to the
objective function, and finally the embedding of the comparison output and the calculation
of the loss function to achieve the training of the MCLDM. In the prediction stage, the
predicted data are input to the MCLDM to obtain the final embedding, and the type of data
stream is determined by analyzing the embedding.

As shown in Figure 1, in the MCLDM training stage, (1) training data set X is divided
into normal sample set Xn and attack sample set Xa by labeling the data. (2) Normal sample
Xn and attack sample Xa are used as inputs to train autoencoder gn and ga, respectively.
(3) Normal sample Xn and attack sample Xa are input to gn and ga to obtain [Xn+, Xn−]
and [Xa+, Xa−], respectively. (4) Triples [Xn, Xn+, Xn−] and [Xa, Xa+, Xa−] are constructed.
(5) Triples [Xn, Xn+, Xn−] and [Xa, Xa+, Xa−] are obtained by combining them to obtain the
cross-correlation matrix triplet [xn

cor, Xn+
cor , Xn−

cor ] and [Xa
cor, Xa+

cor , Xa−
cor ], which is combined to

obtain the multichannel triplet ([xn
cor, xn

cor], [xn
cor, Xn+

cor ], [xn
cor, Xn−

cor ]), ([xn
cor, xn

cor], [xn
cor, Xn+

cor ],
[xn

cor, Xn−
cor ]). (6) The multichannel triplet is used as the input of the TCNN to learn the

vector features of the training set. (7) The triplet loss is obtained by calculating different
class-embedding representations to realize the training of the model in the state of data
type imbalance.

3.1. Training Stage

The training stage of MCLDM pseudocode is described in Algorithm 1. This stage is
to analyze the historical network intrusion data, learn the network intrusion data features,
enrich the data features and reconstruct the multi-channel data, map the raw data to
different vector spaces, and to realize to distinguish the normal network flow from the
attack network flow. Specifically, three main stages are included in MCLDM.

(1) By constructing two independent autoencoders and training the autoencoders accord-
ing to the binary labels, where the labels are normal data streams and attack data
streams, we achieve mapping the different autoencoder output data vectors into a
vector space different from the raw data distribution.

(2) Different autoencoders output reconstruction vectors, calculate reconstruction vector
cross-correlation matrix, and combine different cross-correlation matrix arrays to
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obtain different multi-channel vector data, which include anchor points, positive
samples and negative samples.The multi-channel vector data are formed into a triplet.

(3) Train TCNN using the reconstructed ternary vectors in the previous stage.

Algorithm 1 MCLDM training stage

Input: D: training sample set {(Xi, labeli)}N
i=1 with labeli ∈ {normal, attack}. X represents the

raw data matrix N D-dimensional variables X ⊂ <D, Xn ⊂ Xlabel=normal and Xa ⊂ Xlabel=attack.
Output: (gn, ga, φ): the trained intrusion-detection model
1 Begin: Initialize parameters
2 #Autoencoder training stage

3
gn ← train Autoencoder(Xn)
ga ← train Autoencoder(Xa)

4 #Multi-channel data construction
5 Foreach (Xn, label) ∈ D do
6 If y = normal then
7 1 Xn+ ← gn

(
Xn+) , Xn− ← gn

(
Xn−)

8 else
9 2 Xa+ ← ga

(
Xa+) , Xa− ← ga

(
Xa−)

10
[
Xn

cor, Xn+
cor , Xn−

cor
]
←
[
Xn, Xn+, Xn−]

11
[
Xa

cor, Xa+
cor , Xa−

cor
]
←
[
Xa, Xa+, Xa−]

12 Triplet←
[ (

[xn
cor, xn

cor], [xn
cor, Xn+

cor ], [xn
cor, Xn−

cor ]
)
∪(

[xa
cor, xa

cor], [xa
cor, Xa+

cor ], [xa
cor, Xa−

cor ]
) ]

13 #TCNN training stage
14 Φ← train TCNN(Triplet)
15 Return gn, ga, Φ

Electronics 2023, 12, x FOR PEER REVIEW 5 of 16 
 

 

used as the input of the TCNN to learn the vector features of the training set. (7) The triplet 

loss is obtained by calculating different class-embedding representations to realize the 

training of the model in the state of data type imbalance. 

 

Figure 1. Model training stage. 

3.1. Training Stage 

The training stage of MCLDM pseudocode is described in Algorithm 1. This stage is 

to analyze the historical network intrusion data, learn the network intrusion data features, 

enrich the data features and reconstruct the multi-channel data, map the raw data to dif-

ferent vector spaces, and to realize to distinguish the normal network flow from the attack 

network flow. Specifically, three main stages are included in MCLDM. 

(1) By constructing two independent autoencoders and training the autoencoders ac-

cording to the binary labels, where the labels are normal data streams and attack data 

streams, we achieve mapping the different autoencoder output data vectors into a 

vector space different from the raw data distribution. 

(2) Different autoencoders output reconstruction vectors, calculate reconstruction vector 

cross-correlation matrix, and combine different cross-correlation matrix arrays to ob-

tain different multi-channel vector data, which include anchor points, positive sam-

ples and negative samples.The multi-channel vector data are formed into a triplet. 

(3) Train TCNN using the reconstructed ternary vectors in the previous stage. 

Algorithm 1 MCLDM training stage 

Input: D : training sample set ( ) 
1

,
N

i i i
X label

=
 with  ,ilabel normal attack . X  

represents the raw data matrix N D-dimensional variables DX  , 
n label normalX X =

and 
a label attackX X = . 

Output: ( ), ,n ag g  : the trained intrusion-detection model 

Figure 1. Model training stage.

3.1.1. Autoencoder Training Stage

Autoencoders are deep neural networks with an architecture that learns the features
of the data through encoders and decoders [17]. Autoencoder mainly consists of an input
layer, encoder, hidden variable, decoder, and output layer. The data are fed to the encoder
through the input layer and the encoder is converted to the hidden variable dimension
by compressing the encoding of the raw vector data. The decoder performs decoding
operations on the compressed data and outputs the reconstructed vector at the output
layer. The autoencoder principle mainly consists of two stages: encoder f —input vector X
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by mapping into the hidden variable X̃, denoted as X̃ = f (X); and decoder f ′—hidden
variable Y by mapping into the output space X̂n, denoted as X̂n = f ′

(
X̃
)

.

We select a set of N training data samples from the training set denoted as <d =

{(Xi, labeli)}N
i , where Xi ⊂ <D denotes the one-dimensional vector representation of

the corresponding training data i samples D features, and labeli denotes the label in-
formation of the corresponding samples, and where Xn = {Xi, label = normal} and
Xa = {Xi, label = attack} denote the normal network flow and the attack network flow,
respectively. We train two independent autoencoders using Xn and Xa, respectively, where
the normal network flow encoder is denoted as gn and the attack network flow encoder
is denoted as ga. In real scenarios where the attack samples are much fewer than normal
samples, we train different autoencoders to cope with a data imbalance.

3.1.2. Multi-Channel Data Construction

The raw vector data is reconstructed by the autoencoder and is denoted as X̂n. In
principle, the reconstructed vector X̂n is more concentrated and less noisy than the raw
vector X. We input the raw vector X to the autoencoders gn and ga to obtain X+, and
X−. By computing the cross-correlation matrix of X, X+, and X−, denoted as Xcor, X+

cor,
and X−cor, we combine the three cross-correlation matrices to obtain the multi-channel
data ([Xcor, Xcor], [Xcor, X+

cor], [Xcor, X−cor]), and build a triplet training sample. We denote
[Xcor, Xcor] as an Anchor sample, [Xcor, X+

cor] as a Positive sample, and [Xcor, X−cor] as a
Negative sample. When label = normal, we specify [Xn

cor, Xn
cor] as the Anchor sample,

[Xn
cor, Xn+

cor ] as the Positive sample, and [Xn
cor, Xn−

cor ] as the Negative sample. When label =
abnormal, we specify [Xa

cor, Xa+
cor ] as the Anchor sample, [Xa

cor, Xa−
cor ] as the Positive sample,

and [Xa
cor, Xa+

cor ] as the Negative sample. By multi-channel data reconstruction, the feature
extraction of one-dimensional vectors is transformed into the extraction of two-dimensional
multi-channel data, increasing the gap between different categories and helping to cope
with training data imbalance.

3.1.3. TCNN Training Stage

The convolutional neural network consists of an input layer, a convolutional layer, a
pooling layer, a fully-connected layer, and an output layer. The convolutional layer extracts
the feature information from the input layer, the pooling layer aims to reduce the dimen-
sionality of the input data, and the fully connected layer aims to flatten the two-dimensional
data into a one-dimensional vector. We use the constructed triplet ([Xcor, Xcor], [Xcor, X+

cor],
[Xcor, X−cor]) to train a TCNN. In this paper, where we are dealing with multichannel recon-
struction data and the convolutional neural network, we choose AlexNet, where the TCNN
includes AlexNet and fully connected layers. The TCNN processes ([Xcor, Xcor], [Xcor, X+

cor],
[Xcor, X−cor]) and is a shared network weight feedforward network. In this stage, we use the
triplet loss function proposed in [10] to train MCLDM, as shown in Equation (1).

Disap = ‖ϕ([Xcor, Xcor])− ϕ([Xcor, X+
cor])‖

2

Disan = ‖ϕ([Xcor, Xcor])− ϕ([Xcor, X−cor])‖
2

Loss = log
(
1 + exp

(
Disap − Disan

)) (1)

The TCNN minimizes the distance between the anchor samples and the positive sam-
ples, i.e., minimizes Disap and maximizes the distance between the anchor and the negative
samples, i.e., maximizes Disan. In traditional neural network algorithms, classification is
achieved by predicting the probability of a category, but the predicted probability does
not work well when dealing with data imbalance. Therefore, converting the probability of
predicted categories into predicted distances mitigates the effect of data imbalance on the
model, where Disan and Disap are denoted as the final output Euclidean distances.
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3.2. Prediction Stage

In the prediction stage as in Figure 2, the test sample Ya of the query is input to
the autoencoder gn and ga output [Yn, Yn+, Yn−], the corresponding cross-correlation
matrix [Ya

cor, Ya+
cor , Ya−

cor ] is calculated, and the multi-channel triplet ([Ya
cor, Ya

cor], [Ya
cor, Ya+

cor ],
[Ya

cor, Ya−
cor ]) is obtained by combination, and the multi-channel triplet is input to the TCNN

to calculate the distance of the output triplet-embedding representation, and finally, the
prediction category is judged according to the distance.

Disn = ‖ϕ([Xcor, Xcor])− ϕ
(
[Xcor, X+

cor]
)
‖2 (2)

Disa = ‖ϕ([Xcor, Xcor])− ϕ
(
[Xcor, X−cor]

)
‖2 (3)
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MCLDM prediction stage is described in Algorithm 2. Now, we consider a sample
that needs to be queried Y ⊂ <D. In the first step, the data are reconstructed by the
normal autoencoder gn and attack autoencoder ga. In the second step, multi-channel data
construction is implemented. In the third step, the embedding representation of the output
of the TCNN is calculated to achieve the judgment, as shown in Equations (2) and (3).

Finally, compare the distance between Disn and Disa. If Disn < Disa, classify the label
of X as a normal network data stream, otherwise classify the label of X as an attack network
data stream.

Algorithm 2 MCLDM prediction stage

Input: D: query sample set X ⊂ <D, as well Tripelt Convolutional Neural Network Φ
Output: (label): the predicted label
1 Begin:
2 X+ = gn(X) X− = ga(X)
3

[
Xcor, X+

cor, X−cor
]
←
[
X , X+, X−

]
4 Anchor = Φ([Xcor, Xcor]) positive = Φ

(
[Xcor, X+

cor]
)

5 negative = Φ
(
[Xcor, X−cor]

)
6 Disn = Euclidean_distance(anchor, positive)
7 Disa = Euclidean_distance(anchor, negative)
8 If Disn < Disa:
9 1 label = normal
10 Else:
11 2 label = attack
12 Return label



Electronics 2023, 12, 949 8 of 14

4. Implementation Details

MCLDM is implemented in python 3.8, and the framework used for the deep neural
network is TensorFlow 2.8 with Keras 2.8., where the API for data preprocessing includes
Scikit-learn. For training with the dataset, we used the library structure Parzen estimator
algorithm implemented in the Hyperopt library for automatic tuning; this way 20% of the
dataset is used as the test set, and in particular, our procedure used random sampling to
select the validation set. The hyperparameter values for the automatic search using the
tree-structured Parzen estimation are shown in Table 2. The cpu of the device we use is as
follows: 15 cores/GPU, Intel®Xeon(R) Platinum 8358P CPU @ 2.60 GHz. The GPU model
is RTX3080 with 10 GB of video memory. The system of the device is ubuntu20.08.

Table 2. Hyperparameter Value.

Auto-Tuning Parameter Names Autoencoders TCNN

batchsize [25, 26, 27, 28, 29] [25, 26, 27, 28, 29]
lr [0.0001, 0.1] [0.0001, 0.1]

Dropout [0, 1] [0, 1]

Each autoencoder includes three fully connected layers with 32, 16, and 32 neurons,
and two dropout layers to prevent overfitting of the neuronal network. The neurons in
each layer use Relu as the activation function and speed up the training of the network.

The TCNN is composed of three AlexNet and fully connected layers with shared
weights. Each convolutional neural network is a deep neural network consisting of five
convolutional layers, three pooling layers, one Flatten layer, three fully connected layers,
and two Dropout layers. The activation function of the first two fully connected layers is
Relu to speed up the network training, and the activation function of the final embedding
representation layer is Sigmoid, which aims to make the size of the output embedding
representation of [0, 1] in each dimension. Finally, the Euclidean distance of the output
embedding is calculated and the data are determined as normal or attack samples by
the distance.

5. Experimental Validation

For the experimental evaluation, we use two benchmark datasets, CICIDS17 and KD-
DCUP99, which have a long timespan and are sufficient to validate the network intrusion
detection to which MCLDM is applicable.

5.1. Dataset Description

CICIDS17 was collected by the Canadian Institute of Cyber Security in 2017 and
contains a total of 5 days of network intrusion logs collected from 3 July 2017 to 7 July 2017,
where each network traffic sample includes 79 characteristics of information. The dataset
includes eight data types, one normal sample and seven attack samples. The data contain
100,000 training sets and 900,000 test sets. The amount of normal traffic is much larger than
the amount of attack data (80% vs. 20%) in both the training and test sets.

The KDDCUP99 dataset was adopted in the KDD competition in 1999, and has been
frequently used to evaluate network intrusion-detection models since then. The dataset
consists of five data types, one normal sample and four attack samples. The dataset consists
of 494,021 training samples and 31,029 test samples. The amount of normal traffic is much
smaller than the amount of attack data (19.7% vs. 80.5%) in both the training and test sets.
The specific database description is shown in Table 3. In the dataset description we labeled
the imbalance of the dataset. The data are unbalanced during training and testing.
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Table 3. Description of the data set.

Dataset
CICIDS17 KDDCUP99

Attributes Total 79 42

Training set
Total 100,000 494,021

Normal flows 80,000 (80%) 97,278 (19.7%)
Attacking flows 20,000 (20%) 396,743 (80.3%)

Testing set
Total 900,000 31,1029

Normal flows 720,000 (80%) 60,593 (19.5%)
Attacking flows 180,000 (20%) 250,436 (80.5%)

Using two datasets for the training stage, we select the training set as the training
sample and the test sample by random stratified sampling, where the training sample is
80% of the training set and the test sample is 20% of the training set. In the laboratory, we
use data normalization. The purpose of normalizing the data is to reduce the training time
of MCLDM and to accelerate the convergence of MCLDM. After hot-coding the data, we
use the min-max scalar technique in Scikit-learn, with Equation (4).

Xstd =
X− Xmin

Xmax − Xmin
(4)

where Xstd denotes the representation of the input data sample X after normalization, Xmin
denotes the minimum amount of some feature value, and Xmax denotes the maximum
amount of some feature value.

5.2. Evaluation Metrics

Accuracy, Precision, Recall, and F1-Score metrics to evaluate the performance of the
proposed MCLDM are calculated as in Table 4. All results are calculated from four variables:
TN denotes the number of correctly predicted normal samples, TP denotes the number of
correctly predicted attack samples, FN denotes the number of incorrectly predicted normal
samples, and FP denotes the number of incorrectly predicted attack number samples.

Table 4. Evaluation metrics.

Metric Mathematical Formulae

Accuracy Accuracy = TP+TN
TP+TN+FP+FN

Precision Precison = TP
TP+FP

Recall Recall = TP
TP+FN

F1-Score F1-Score = 2× Precision×Recall
Precision+Recall

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

5.3. Observation Model Using Performance Metrics

We validated the MCLDM using Accuracy, Precision, Recall, and F1-Score evaluation
metrics separately, as shown in Figure 3, and MCLDM performed better on each evaluation
metric. The performance of Accuracy, Recall, and F1-Score on data set CICIDS17 is better
than that on data set KDDCUP99, and the performance of Precision on data set KDDCUP99
is better than that on CICIDS17. Precision was 99.69%, Recall was 92.69%, and F1-Score was
96.06%. In the data set KDDCUP99, the Accuracy was 98.43%, Precision was 98.65%, Recall
was 97.17%, and F1-Score was 97.93%. We measured the detection time of each sample by
adjusting the size of the test CICIDS and KDDCUP99 datasets separately, and we found
that changing the size of the data did not affect the test results of the samples.
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5.3.1. Model Accuracy and Loss Variation

The Accuracy and loss of our proposed MCLDM during the training stage are plotted
in Figure 4 above, from which can be seen the fact that MCLDM changes very rapidly
with increasing epochs at the beginning of the training set, indicating that the proposed
MCLDM has good learning performance. As the epoch increases, the changes in Accuracy
and loss level off gradually. When the Accuracy and loss curves of MCLDM start to deviate
from the level of flatness, we stop the training of MCLDM.
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5.3.2. Embedding Analysis

We analyze the embeddings of MCLDM output to show how MCLDM performs con-
trastive learning to distinguish normal network flows from attack network flows. MCLDM
is made easier to distinguish between normal and attack data streams by decreasing the
Euclidean distance between the anchor point and the positive sample embedding rep-
resentation, i.e., decreasing Disn, while increasing the Euclidean distance between the
anchor point and the negative sample, i.e., increasing Disa. Figures 5 and 6 show the
difference in the values of Disn and Disa during training and testing in datasets CICIDS17
and KDDCUP99, respectively. By analyzing Figures 4 and 5, it is obvious that the distance
between the anchor embedding and the positive sample embedding is much smaller than
that between the anchor embedding and the negative sample embedding. By comparing
the embedding representation analysis of the training and test sets, it is obvious that both
achieve the expected results.
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5.3.3. Ablation Study

Our research continues to analyze the following reasons that together contribute to
the good accuracy of MCLDM in network intrusion detection.

(1) Data reconstruction and synthesis of additional information are achieved through an
autoencoder.

(2) The multi-channel representation enriches the features of the raw data and increases
the gap between different classes of data.

(3) TCNN can contribute to the accuracy of MCLDM.

For this purpose, we use four architectural configurations as a baseline, which are
defined by removing autoencoder, multichannel data construction, and convolutional
neural network from MCLDM. We have considered the following four architectures.

(a) NN: It is fully connected by the last three layers of the MCLDM architecture.
(b) ANN: It is composed of an autoencoder and NN structure. This structure contains an

autoencoder and can explain the advantages of using an autoencoder.
(c) CNN: It is composed of CNN structure in MCLDM structure, and its principle is

similar to NN. It is required to convert the input sample [X] to [Xcor] before training
the model.

(d) ACNN: It is a structure similar to CNN, but differs from the MCLDM structure in that
it lacks the step of multi-channel data reconstruction.

We verified the performance of MCLDM, NN, ANN, CNN, and ACNN in datasets
CICIDS17 and KDDCUP99, respectively. In the Table 5, we show the results of Accuracy
and F1-score in different datasets, respectively, where MCLDM outperforms the other
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structures. This also proves that the combination of autoencoder, multichannel data re-
construction, and convolutional neural network is beneficial to obtain better accuracy in
network intrusion detection.

Table 5. Accuracy and F1-score of MCLDM, NN, ANN, CNN, ACNN architecture validated in
datasets CICIDS17 and KDDCUP99.

Dataset
Architectrue

MCLDM NN ANN CNN ACNN

CICIDS17
Accuracy 98.43 95.89 96.70 95.69 96.50
F1-score 97.93 89.53 91.72 89.32 91.31

KDDCUP99
Accuracy 93.94 92.02 91.92 92.10 92.11
F1-score 96.06 94.80 94.75 94.92 94.80

5.3.4. Data Imbalance Verification

To verify that MCLDM remains robust in the data type imbalance phenomenon, we
performed a validation using dataset CICIDS17, that was collected in a realistic network
scenario that includes data-type imbalance sites, including 20% of attack data and 80% of
normal data. We performed the validation by adjusting the amount of attack data in the
dataset, and these experimental data include all normal data and different percentages of
attack samples. We conducted four experiments using 100%, 75%, 50%, and 25% attack
samples, respectively. Different degrees of data imbalance scenarios are achieved by
reducing the use of attack samples for training. By experimenting with MCLDM, NN,
ANN, CNN, and ACNN structures, the F1-score changes as shown in Figure 7. We find
that the F1-score decreases for all algorithms, but MCLDM continues to outperform the
other structures for different degrees of data imbalance, which also proves that MCLDM
can handle data imbalance scenarios.
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5.3.5. Comparison with Competitive Rivals

Our experiments are trained and predicted on CICIDS17, KDDCUP99. We compare
the proposed MCLDM with competing adversaries. We compare the performance of
Accuracy and F1-score metrics with competing lines in the recent state-of-the-art literature,
respectively.

The Accuracy and F1-Score of MCLDM in all datasets are reported in Table 3, and a
comparison of the data in Table 6 shows that good results were obtained for both Accuracy
and F1-score metrics of MCLDM in datasets CICIDS17 and KDDCUP99. In the literature 24,
good experimental results were also obtained using AE combined with deep metric learning
(DML), where DML is the paradigm of contrastive learning, respectively. The contrastive
analysis shows that MCLDM outperforms the latest competing model on dataset CICIDS17
by 0.19% for the Accuracy metric and 2.23% for the F1-score metric than the latest competing
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model. MCLDM exceeds the Accuracy metric of the latest competitive model by 0.44% on
the dataset KDDCUP99, and the F1-score is 0.26% higher than the latest competitive model.

Table 6. Accuracy and F1-cores tested at CICIDS17 and KDDCUP99.

Dataset Algorithm Description Accuracy F1-Score

CICIDS17

MCLDM AE + TCNN 98.43 97.93

RENOIR [22] AE + DML 98.24 95.70

MINDFUL [23] AE + CNN 97.90 94.93

THEODORA [25] AE + CNN 98.03 95.25

KDDCUP99

MCLDM AE + TCNN 93.94 96.06

RENOIR [22] AE + DML 93.50 95.80

MINDFUL [23] AE + CNN 92.49 95.13

AE-LSTM [26] AE + LSTM 90.5 91

THEODORA [25] AE + CNN 92.97 95.46

6. Conclusions

In this study, we propose a novel model for network intrusion detection, which uses
autoencoders to reconstruct and noise-reduce the raw one-dimensional network stream
data; calculates the cross-correlation matrix of the reconstructed data; combines the cross-
correlation matrix to obtain multi-channel data; and, finally, uses a TCNN to achieve
feature extraction of multi-channel data. Contrastive learning is achieved according to the
prescribed loss function to achieve the training effect and show a good accuracy in the test
set. The main idea is that after noise reduction, the data are combined into multi-channel
data by autocorrelation calculation, so that the feature difference between different types of
data will increase, which helps to distinguish the normal network flow from the abnormal
network flow. By comparing with other techniques, we are good at dealing with the data
imbalance problem, we used TCNN and finally designed MCLDM. MCLDM has some
limitations, and the model is to transform the network intrusion-detection problem into a
binary classification problem, and does not implement multiple classifications of network
intrusions; therefore, the specific classes of network intrusions are not known, so our next
task will be to implement network into specific classifications.

We evaluated the effectiveness of MCLDM using two benchmark datasets. The experi-
mental analysis fully demonstrates the effectiveness of our proposed MCLDM approach.
In particular, it has a good performance in dealing with the problem when the data are
unbalanced. It is experimentally demonstrated that the multi-channel data constructed by
class-specific autoencoders and using unsupervised contrastive learning helps to separate
the different classes of data and finally achieve network intrusion detection.
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