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Abstract: Smart grids are complex cyber-physical systems that incorporate smart devices’ commu-
nication capabilities into the grid to enable remote management and the control of power systems.
However, this integration reveals numerous SCADA system flaws, which could compromise security
goals and pose severe cyber threats to the smart grid. In conventional works, various attack detection
methodologies are developed to strengthen the security of smart grid SCADA systems. However,
they have several issues with complexity, slow training speed, time consumption, and inaccurate
prediction outcomes. The purpose of this work is to develop a novel security framework for protect-
ing smart grid SCADA systems against harmful network vulnerabilities or intrusions. Therefore,
the proposed work is motivated to develop an intelligent meta-heuristic-based Artificial Intelligence
(AI) mechanism for securing IoT-SCADA systems. The proposed framework includes the stages of
dataset normalization, Zaire Ebola Search Optimization (ZESO), and Deep Random Kernel Forest
Classification (DRKFC). First, the original benchmarking datasets are normalized based on content
characterization and category transformation during preprocessing. After that, the ZESO algorithm is
deployed to select the most relevant features for increasing the training speed and accuracy of attack
detection. Moreover, the DRKFC technique accurately categorizes the normal and attacking data
flows based on the optimized feature set. During the evaluation, the performance of the proposed
ZESO-DRKFC method is validated and compared in terms of accuracy, detection rate, f1-score, and
false acceptance rate. According to the results, it is observed that the ZESO-DRKFC mechanism
outperforms other techniques with high accuracy (99%) by precisely spotting intrusions in the smart
grid systems.

Keywords: smart grid; supervisory control and data acquisition (SCADA); internet of things (IoT);
cyber-security; artificial intelligence; data normalization; Zaire Ebola search optimization (ZESO);
deep random kernel forest classification (DRKFC)

1. Introduction

Supervisory Control and Data Acquisition (SCADA) systems [1,2] play an essential
role in smart grid systems. An Internet of Things (IoT) [3] has a wide range of uses, in-
cluding in smart cities, businesses, and healthcare. An IoT uses cloud computing, which
is one approach to meet the present needs of industrial systems. The integration of CPSs
such as SCADA systems benefits the IoT and cloud combination [4]. The applications use
the network to transport massive amounts of traffic to the end devices, because they work
with both sensitive and non-sensitive data. Currently, most Intrusion Detection Systems
(IDS) utilized in the SCADA power distribution networks are focused on the cyber sector
while disregarding the process states in the physical field. Typically, assaults on protocol
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traffic are identified, although it is challenging to locate some harmful network attacks [5,6].
Moreover, cyber-physical systems are frequently used to combine computations with phys-
ical processes so that the system may be successfully controlled. The system’s performance
depends on the proper control [7,8] of sensors and actuators. The system’s performance
is directly impacted by effective and secure communication between system components,
making it of utmost importance. A severe problem in industrial control systems could
result from defective device characteristics [9]. In addition, the sensing and data actuation
of the system components are affected by significant security concerns [10,11]. Attacks
on IT system networks result in congestion or data leakage, but attacks on ICS networks
may damage the physical infrastructure and cause information leakage [12]. As a result,
cyber-security is considered a crucial component of SCADA [13,14], frequently used in
power distribution networks to protect the security of regulated processes. The most critical
element of the smart grid, the SCADA system, is responsible for securing communication
protocols, asset management, physical infrastructures, and controlled operations [15,16].
These cannot be protected in the same way as modern IT systems. Supporting software,
comprising Human Machine Interface (HMI), Distributed Control Systems (DCS), Pro-
grammable Logical Controllers (PLC), Remote Terminal Units (RTU), network components,
workstations, and processors, are some of the essential elements [11,17,18].

The use of IDS allows for the discovery of security threats and attacks in systems
where detection is possible but prevention is not. However, attacks can be identified [19,20]
without the need for manual intervention by properly training the detection systems.

1.1. Motivation

Due to the heterogeneous deployment of such systems, it is essential to detect intrusion
using models based on machine learning algorithms [21,22]. Attack labels can be incredibly
difficult, time-consuming, and occasionally even impossible to obtain [23–25]. The majority
of unsupervised algorithms currently in use are unable to handle the intrinsic correlations
and nonlinearity of multivariate time series, which make up a sizable portion of real-world
data, including sensor data streams [6,26]. Figure 1 depicts the general architecture of
smart grid SCADA systems. Cyber-physical systems are frequently utilized to combine
calculations with physical processes so that the system may be successfully controlled. The
system’s performance depends on the sensors and actuators being properly controlled. The
performance of the system is directly impacted by effective and secure communication
between system components, making it of utmost importance.
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1.2. Problem Statement

In industrial control systems, malfunctioning device characteristics could result in a
significant problem. The sensing and data actuation of the system components are affected
by significant security concerns. Attacks on IT system networks result in congestion or data
leakage, but attacks on ICS networks may inflict damage to the physical infrastructure in
addition to data leakage. The SCADA smart grid systems [27,28] are protected by a variety
of machine learning and deep learning-based technologies that have been developed in
the past. However, they continue to have issues with overfitting, a confounding model,
an ineffective attack detection rate, and a complex system architecture. As a result, the
proposed effort encourages the creation of an innovative and clever security framework
for SCADA smart grid systems. Also, cyber-security is regarded as a critical component of
SCADA systems, which are frequently used in power distribution networks to ensure the
security of regulated processes.

1.3. Objectives

The major research objectives of this paper are as follows:

• Data preprocessing is carried out to normalize the original SCADA benchmarking
datasets, which includes the operations of content characterization, scalar calculation,
and category transformation.

• An innovative Zaire Ebola Search Optimization (ZESO) method that offers the best
option for producing the optimized feature set is used to extract the most pertinent
features from the normalized dataset.

• A sophisticated Deep Random Kernel Forest Classification (DRKFC) mechanism is
used to predict the normal and attack data flows from the SCADA dataset.

• Some of the well-known SCADA benchmarking datasets are used to evaluate the
effectiveness and outcomes of the proposed ZESO-RKFC security framework.

1.4. Organization

The remaining sections of this article are divided into the following categories: The
comprehensive literature assessment of the methods currently employed for protecting
SCADA systems for the smart grid is provided in Section 2. In accordance with its opera-
tional strategy and security performance, it also examines the advantages and disadvan-
tages of each work. The proposed ZESO-RKFC-based security framework is thoroughly
explained in Section 3 along with its overall working methodology and architecture model.
Using a wide range of performance metrics and datasets, Section 4 validates and evaluates
the results of the suggested mechanism. The findings and future scope are presented in
Section 5 to wrap up the entire research.

2. Literature Review

The comprehensive literature analysis for assessing various IDS frameworks [29,30]
used to improve the security of smart grid networks is presented in this section. Addition-
ally, it covers each model’s benefits and drawbacks regarding how it functions and works.

Khalid and Ameen [31] presented a comprehensive literature review to increase the
security of IoT-SCADA networks. The original contribution of this work was to ensure the
properties of integrity, availability, and confidentiality for protecting the SCADA networks
against anomalous activities. Justindhas et al. [32] employed an Elephant Herding Opti-
mization (EHO) integrated NK-RNN classification mechanism for improving the security of
SCADA systems. In addition, a modified Elliptic Curve Cryptography (ECC) technique was
used to prevent the network from attacks. Lu et al. [33] built a honey pot system for improv-
ing the security of SCADA against spoofed attacks. Huda et al. [34] employed an ensemble
of deep belief networks for strengthening the security of SCADA-IoT systems. This paper
purposes to incorporate two ensemble-based detection methodologies such as SVM and
DBN for categorizing the normal and abnormal SCADA network traffic. Hossain et al. [35]
developed a new consensus algorithm, named Proof of Random Count in Hashes (PoRCH),
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for a blockchain-based SCADA system. The contribution of this work was to design a
blockchain-enabled SCADA systems [36], where the blockchain technology has been used
to improve the data acquisition process. Moreover, the block creation, verification, and
addition processes were performed for data aggregation. Singh et al. [37] developed a two
anomaly-based IDS for accurately spotting the stealthy cyber-attacks in the SCADA control
system. The key contribution of this work was to highly mitigate the system disturbances
by detecting the cyber-attacks within the acceptable time frame. Moreover, this framework
includes the major operations of controller deployment, malicious script execution, altering
attack generation, and false update transmission. Hasan et al. [38] deployed two distinct
security mechanisms for protecting an inline security device in the SCADA systems. This
paper mainly is mainly motivated to maximize the link coverage, and minimize the path
tolerance of the SCADA network by using a heuristic-based optimization mechanism. Here,
the Quadratic Assignment Problem (QAP) was mainly considered to strengthen the security
of SCADA systems with enhanced coverage. In addition, the centrality measurements
were used to rank the nodes in the network, which helps to control vulnerability in the
smart grid systems. For performance assessment, some of the common measures such as
link coverage, redundancy, path tolerance, and frequency of occurrence were estimated.
However, it requires the maximum amount of time to analyze the volume of traffic during
attack detection, which was the key limitation of this work. Islam et al. [39] investigated the
different types of vulnerabilities, threats, and countermeasures for improving the security
of smart grid systems. Typically, the major components involved in the smart grid net-
works were generation units, transmission and distribution units, and the communication
network. Moreover, this work [40] mainly concentrated on enhancing the physical layer
security against different types of security attacks such as data fabrication, man in the
middle, jamming, DoS, false data injection, spear phishing, and data compromise. In
addition, it suggested suitable countermeasure methodologies to increase security, such
as key generation mechanisms, spread spectrum mechanisms, resilience techniques, and
machine learning-based approaches. The performance of this technique has been validated
in terms of computational cost and communication overhead. Mir et al. [2] presented a
detailed security assessment for analyzing the baseline requirements for SCADA systems.
It includes the following key elements:

• Risk management;
• Malware protection;
• Vulnerability assessment;
• Security control;
• Cyber-risk analysis;
• Physical security.

Moreover, it suggested various controls used for fulfilling SCADA security require-
ments, such as single point of accountability, cyber security policy, security management,
and information security. Abir et al. [41] highlighted some of the advanced technolo-
gies such as blockchain, machine learning, deep learning, and AI for securing the IoT-
smart grid systems. This study comprises the communication, computation, sensor, cyber
attack, SCADA, and blockchain technologies for ensuring the safety of IoT networks.
Risco et al. [42] recommended a machine learning algorithm to maintain the stability and
security of IoT-SCADA systems. The purpose of this work was to choose the most suitable
algorithm for efficiently predicting the stability of grid systems. In paper [43], a detailed
overview of an Intrusion Detection Prevention System (IDPS) is provided, which helps
to ensure the security of smart grid systems. The purpose of this work was to investigate
the different types of cyber-threats that affect the normal operations of the smart grid.
Moreover, its object is to enable reliable and secured data transmission in the smart grid
by using an IDPS framework. Martinelli et al. [26] utilized a supervised machine learning
methodology for spotting intrusions in the smart grid—SCADA networks. This framework
includes the modules of log under analysis, feature extraction, machine learning classifica-
tion, and intrusion detection. However, this work failed to prove the efficacy and attack
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detection competency of the suggested model. Singh et al. [44] developed a cyber-kill
chain-based IDS framework for increasing the security of SCADA networks.

Research Gap

In recent years, many hacks have increased the vulnerability of smart grid networks.
These cyberattacks take many forms and aim to steal data, damage physical or digital
infrastructure, or gain access to complex systems [45]. The detection of cyberattacks in
smart-grid settings has been addressed using ML approaches; however, those studies
should have considered cross-validation comparing algorithms with different parameter
values. Furthermore, these ML algorithms cannot be used on various smart grids because
they were often tested only on one smart-grid scenario. Typically, reducing the detection
latency and increasing the robustness and consistency of the smart grid systems are highly
crucial in smart grid systems. Hence, it is essential to implement a proper data manage-
ment and security scheme for intrusion prevention and detection in smart grid systems.
According to comprehensive examination, the traditional works are constrained by the
significant issues listed below:

• High delay;
• Overfitting;
• Decreased detection accuracy;
• Ineffective handling of massive datasets;
• Complexity of computation.

This research presents a concatenated deep learning strategy to overcome these lim-
itations. Furthermore, deep learning algorithms are more effective than machine learn-
ing approaches at handling high-dimensional data and producing good results. Thus, a
straightforward and computationally effective AI-based security model is developed in the
proposed work for smart grid systems. The objective is to protect private information and
identify harmful activity in the network traffic of power systems.

3. Materials and Methods

The proposed AI-based security paradigm for smart grid SCADA systems is com-
pletely described in this section. The purpose of this work is to develop a novel security
framework for protecting smart grid SCADA systems against harmful network vulnera-
bilities or intrusions. The unique contribution of this research is the implementation of
a straightforward and computationally effective AI mechanism based on meta-heuristic
optimization for enhancing IoT-SCADA network security. This work employs sophisticated
and intelligent strategies to accomplish this objective. This strategy employed a hybrid
approach by leveraging the advantages of the consistent and predictable communication
patterns that are used by in-ground devices in ICS. To scale and standardize the data, a
limited number of preprocessing techniques are most often used. Then, a meta-heuristic
optimization algorithm for dimensionality reduction was employed to improve the perfor-
mance of anomaly detection. Here, the SCADA benchmarking datasets are obtained as the
inputs for processing, which comprise some irrelevant fields and attributes. Hence, they are
preprocessed at the beginning with the operations of content characterization, scalar model
estimation, normalization, and categorical transformation. This kind of dataset normaliza-
tion helps to increase the detection accuracy and efficiency of classification. Consequently,
a Zaire Ebola Search Optimization (ZESO) algorithm is deployed to choose the relevant
features from the normalized data. Specifically, this optimization technique is used to
analyze the characteristics of attacks in the IoT-SCADA networks. Moreover, the Random
Kernel Forest Classification (RKFC) algorithm is deployed to predict the label as normal or
attack. In previous security frameworks, the authors have used various ML/DL techniques
for detecting intrusions in the smart grid systems. However, the existing approaches face
problems in terms of reduced performance rate, have slow processing, are expensive in
computational cost, are more difficult to perform modifications on, and have poor detec-
tion performance. Thus, the computationally efficient ZESO-based RKFC mechanism is
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implemented in this work. It effectively simplifies the process of intrusion prediction and
classification by providing a suitable solution used to select the most relevant features for
classifier training and testing. The key benefits of the proposed ZESO-RKFC-based security
framework are as follows: increased convergence rate, reduced complexity, minimal time
consumption, and high detection efficiency. The architectural model of the smart grid
SCADA system with the cyber layer elements is shown in Figure 2. Then, the working
model of the proposed ZESO-RKFC framework is depicted in Figure 3, which encompasses
the following modules of operation:

• SCADA benchmark dataset obtainment;
• Normalization;
• ZESO-based feature selection;
• DRKFC-based attack prediction;
• Performance evaluation.
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The list of symbols and their descriptions are presented in Table 1.

Table 1. Symbols and their descriptions.

Parameters Descriptions

NF Transformed input parameter
mn, mx Specified range of input variables

dmx & dmn
Initial range of input parameters (minimum

and maximum values of the dataset)
αc Infected individual
ec Exposed individual
ρs Susceptible
βc Recovered
γc Dead
ϑc Vaccinated
Hc Hospitalized
Qc Quarantined
AI Agents can infect people
ε1 Contact rate of infection
ε2 Contact rate of pathogen
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Table 1. Cont.

Parameters Descriptions

ε3 Contact rate of deceased
ε4 Contact rate of recovered
σ Natural death rate
ϕ Disease-induced death rate
π Recruitment rate
η Rate response to vaccination
Z Recovery rate
S Rate of burial of deceased individual
V Rate of vaccination of individual
τ Rate of quarantine
K Number of trees
δ Number of leaves
M Matrix
P Regularization parameter

g(ci, ĉi) Loss function

3.1. Preprocessing

Here, the data preprocessing is mainly performed to transform the data values from
the original datasets for optimizing the attributes. At first, the content characterization
is performed to analyze the characteristics of the dataset, since it helps to represent the
protocol connections that are similar to the characteristics of the dataset. Then, the flow
and content characteristics are also used to analyze the attributes and http connections.
Moreover, the attributes correlated to the time are estimated based on the time characteris-
tics. Typically, normalizing the data reduces the complexity of the algorithm for processing
them because there is a large contrast between the dataset’s maximum and minimum
values. Moreover, the data normalization is used to boost the accuracy and efficiency of
classification, and also it speeds up the training process for minimizing time consumption.
Thus, the data normalization is performed in this work, where normalization-based data
scaling is performed by using the min-max algorithm. It converts the data within the
interval ranges of −1 to 1 and 0 to 1, and the function is estimated as shown below:

NF =
((d− dmn)(mx−mn))
(dmx − dmn) + min

(1)

where NF is the transformed input parameter, mn, mx are the specified range of input
variables, dmx and dmn are the initial range of input parameters (minimum and maximum
values of the dataset). Consequently, the standardization or z-score computation is per-
formed to properly normalize the attributes of the given SCADA benchmark datasets. This
function is mainly used to normalize the standard distribution based on the attributed
values of the dataset. The function is represented as follows:

d′(j) =
d(j) −Mean(j)

SD(j)
(2)

Based on this operation, the normalized dataset is generated from the preprocessing
stage, which can be used for further processing.

3.2. Zaire Ebola Search Optimization (ZESO)

After preprocessing the dataset, an advanced optimization algorithm, called ZESO,
is utilized to choose the optimal features from the normalized SCADA datasets. In the
existing work, various meta-heuristic algorithms are developed for feature optimization
and attribute selection. For instance, Firefly (FF), Whale Optimization (WO), Artificial
Jelly Fish (AJF), Spider Monkey (SM), and Greedy Search (GS) are the recently developed
optimization algorithms, which are widely applied in many application domains for
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solving complex problems. However, these methods suffer with the problems of reduced
convergence rate, local optimum, time consumption, and difficulty in understanding.
Therefore, the proposed work is motivated to deploy a computationally effective ZESO
algorithm for feature selection.

In this technique, all vectors and scalar quantities are initialized at first, which includes
susceptible (ρs), infected (αc), recovered (βc), dead (γc), vaccinated (ϑc), hospitalized
(Hc), and quarantined (Qc). After that, the index case (ρ) is randomly generated according
to the susceptible individuals. Here, the index case (δ) is set as the global best, and its
fitness value is estimated. There is at least one infected person and the number of iterations
has not reached its limit; the following conditions are executed: Based on the displacement,
each susceptible person creates and updates their position. Let us consider that the number
of infections increases with distance; hence, a short displacement reflects exploitation,
whereas a long displacement describes exploration:

• The newly infected persons (nP) are generated based on the set (s);
• Then, the generated persons are added in αc;
• According to the size of αc, the number of individuals is estimated and added toHc,

Qc, βc, γc, and ϑc.
• Consequently, update (ρs,αc) based on nP;
• Choose the current best value from αc, and compare it with the global best;
• Finally, return the global best solution with the optimal solution;

Here, the location of each person who is exposed is updated by using the following equation:

kαt+1
ci = kαt

ci + SK(αc) (3)

where S indicates the displacement scale factor of the individual, kαt+1
ci , kαt

ci represents the
updated and original positions, t is the time. K(αc) represents the movement rate estimated
by the individuals and is estimated by using the following equations:

K(αc) = sD× rand(0, 1) + K(IB) (4)

K(ρs) = lD× rand(0, 1) + K(IB) (5)

where sD indicates the short distance movement, and lD represents the average neigh-
borhood range. These parameters are regulated based on the neighborhood parameter
range ≥ 0.5. In this optimization, the initial population is generated based on the random
number distribution, and positions are initially updated as 0. Then, the upper and lower
bounds are estimated for the individual i = 1, 2, 3 . . . N in the population size.

indi = lbi + rand (0, 1)× (upi + lbi) (6)

Consequently, the current best is selected according to the set of infected individuals
at time t as shown below:

BS =

{
GB, f itness(CB) < f itness(GB)
CB, f itness(CB) ≥ f itness(GB)

(7)

where BS indicates the best solution, and GB and LB are the global best and current
best solution, respectively. Moreover, the parameters GB and LB are treated as the super
spreader and spreader of the Ebola. Moreover, the differential calculus is applied to attain
the rate of quantities such as ρs, αc, βc, γc, ϑc, Hc, and Qc. Then, the scalar functions are
computed as follows:

∂ρs(t)
∂t

= π − (ε1αc + ε3γc + ε4βc + ε2(AI))ρs − (σρs + ϕαc) (8)

∂αc(t)
∂t

= (ε1αc + ε3γc + ε4βc + ε2(AI)λ)ρs − (ϕ + Z)αc − (σ)ρs) (9)
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∂Hc(t)
∂t

= Rαc − (Z +ω)Hc (10)

∂βc(t)
∂t

= Zαc − ϕβc (11)

∂ϑc(t)
∂t

= Zαc − (η + V)ϑc (12)

∂γc(t)
∂t

= (σρs + ϕαc)− Sγc (13)

∂Qc(t)
∂t

= (παc − (Zβc + ϕγc))− τQc (14)

To calculate the population of susceptible individuals at time t, the rate of change of
the susceptible population is calculated and applied to the size of the susceptible vector as
it is at the moment. The flow of the proposed ZESO algorithm is depicted in Figure 4.
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Based on the obtained solution, the optimal number of features is selected from the
normalized SCADA dataset, which can be used for training the sample of classifier. The
primary benefits of using this algorithm are as follows: simple to implement, increased
convergence rate, reaches best optimal solution with minimal number of iterations, and
computational efficacy.

3.3. Deep Random Kernel Forest Classification (DRKFC)

After feature selection, an intelligent DRKFC model is deployed to categorize the
normal and attacking data flows according to the set of extracted features. Conventionally,
various machine learning and deep learning techniques are implemented for security
applications. But it degrades with key problems of complex mathematical modulations,
high false positives, overlapping results, and incapability to handle huge dimensional
datasets. Therefore, this paper motivates to implement a new and smart DRKFC model
for securing the smart grid SCADA systems. A random forest constructed from trees with
kernel decision splitters is called a Kernel Forest. A general top-down induction process is
followed in the top-level training of such trees. The traditional random forest algorithm
greedily locates a quasi-optimal distribution of classes to sub-trees at each stump and trains
this stump as a binary classifier. In this approach, the data is processed progressively
through a number of layers, which is a variant of the deep forest. Each sample from the
training set is used to build a set of objects in that layer, and each object is labeled with
the class of the original sample. The layered architecture model of the proposed DRKFC is
shown in Figure 5. The fundamental idea behind that strengthening procedure is to swap
out the initial class empirical likelihoods previously stored in each tree leaf of a pre-trained
forest with new ones produced by explicitly reducing a global loss function in accordance
with the random forest’s averaging rule. Let consider, the forest has K number of trees and
δ number of leaves, which is in the form of Ψ : N f → {0, 1}Kδ . This is the function for any
sample t that returns the binary vector and its elements are 1, if t goes to the corresponding
decision tree; otherwise, it is set as 0 [46].

Ψ(t) = (ϕ1(t), ϕ2(t) . . . ϕKδ(t)) (15)
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For all decision trees, the matrix M having the corresponding class weight is shown below:

M = (α1,α2, . . . αKδ) (16)
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Consequently, the linear function is estimated by using the following model:

b = M∗ Ψ(t) (17)

M∗ =
argmin

M
1
2
||M||2X +

P
w ∑w

i=1g(ci, ĉi) (18)

ci = MΨ(t), ∀i ∈ [1, w] (19)

where P indicates the regularization parameter; g(ci, ĉi) denotes the loss function. After
pruning, the random kernel forest is used to process the sample-extracted features. The
produced synthetic class probabilities obtained from the kernel forest’s trees are represented
by these embedding. The original features and the empirical probability vectors that the
improved forest trees have returned are included in the hidden states. Moreover, the global
refinement procedure of DRKFC is significantly more useful for performing the embedding
operations. Based on this operation, the normal and attacking data flows are accurately
predicted from the SCADA benchmarking datasets using the optimized features.

4. Results

This section validates the performance and results of the proposed ZESO-DRKFC
model by using various evaluation measures. For this evaluation, the different types of
SCADA benchmarking datasets are used to analyze the security of the proposed framework.
Character-based features cannot be processed by deep learning models; hence, preprocess-
ing operations such as normalization and feature screening must be carried out on the
input data before they are fed into the deep learning model in order to simplify and process
them. Following preprocessing, the features are converted to numerical features, which are
then integrated with the dataset’s already-existing numerical features. Additionally, the
labels in the dataset have been numerically processed so that normal behavior is denoted
by the number “0,” whereas abnormal behavior is denoted by the number “1”. The dataset
is normalized and uniformly mapped to reduce feature differences. Uniform mapping has
an interval range of (0, 1). The performance parameters used in this study are computed by
using the following equations:

Accuracy =
TrP + TrN

TrP + TrN + FaP + FaN
× 100% (20)

Precision =
TrP

TrP + FaP
× 100% (21)

F1− score =
2× Pre× Sen

Pre + Sen
× 100% (22)

Recall =
TrP

TrP + FaN
× 100% (23)

Sensitivity =
TrP

TrP + FaN
× 100% (24)

Speci f icity =
TrN

TrN + FaP
× 100% (25)

where TrP—true positive, TrN—true negative, FaP—false positive, and FaN—false negative.
For assessing the performance of the ZESO technique, the parameters such as fitness plot
and convergence curve are validated as shown in Figures 5 and 6, respectively. Here, the
reason for estimating these parameters is to analyze the efficacy and competency of the pro-
posed optimization mechanism. Typically, the convergence rate is one of the most essential
parameters used to assess the performance of the optimization mechanism. According to
the analysis, it is analyzed that the proposed ZESO provides effective optimization results
with an increased convergence rate.
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Figure 9 validates the training loss characteristics of the proposed ZESO-DRKFC tech-
nique with respect to the varying number of epochs. Based on the results, it is analyzed that
the training loss is gradually reduced after reaching the ninth epoch. Due to the optimal
selection of attributes, the training loss of the proposed model is efficiently reduced in
this model. Figures 10 and 11 depict the ROC characteristics for dataset 1 and dataset 2,
respectively. According to the analysis, it is observed that the proposed ZESO-DRKFC
provides an improved true positive rate with reduced false positives. Overall, the ROC of
the suggested methodology is greatly enhanced as a result of the appropriate feature selec-
tion. The confusion matrix of several datasets produced using the suggested ZESO-DRKFC
methodology is shown in Figures 12–16. Usually, the confusion matrix is used to gauge
the effectiveness and outcomes of the assault detection methods. The results show that
the proposed technique offers better outcomes since the parameters were properly chosen
and categorized.
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Figure 17 validates the false detection rate of the conventional and proposed attack
detection methodologies using dataset 1. The false detection rate is mainly estimated
for how exactly the classifier forecasts the normal and attacking data flows according to
the optimized set of features. Moreover, the false prediction rate is minimized to ensure
better system performance. Figure 18 shows the precision, detection rate, f1-score and FPR
of the proposed methodology concerning different types of attacks in dataset 1. These
parameters are mainly used to determine the classifier’s overall performance, and the
perfect attack detection methodology should improve the values of these parameters.
Moreover, Table 3 and Figure 19 present the comparative analysis of the existing and
proposed security methodologies using dataset 3. The overall performance of the proposed
ZESO-DRKFC beats those of cutting-edge methods. As a result, it is usually appropriate
to quantify measures such as testing and training time succinctly. Although the proposed
model performed better than the baseline models, it is still not determined if the proposed
technique completely surpassed the alternatives. Nevertheless, it is indicated that the
suggested solution enables outstanding network protection and the quick detection of
dangerous attacks.
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Table 3. Comparative analysis using dataset 3.

Methods Precision Recall F1-Measure Detection rate FAR

LR 78.1 80.1 79.1 80 11.50
XGB 84.5 83.4 83.9 83 9.13
DT 87.3 88.5 87.9 88 7.8

HCNN 96.3 97.12 97.6 97 2.5
Proposed 99.2 98.9 99.1 99.2 1.5
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Table 4 compares the classification accuracy of conventional and proposed security
mechanisms by using dataset 3. Zaire Ebola Search Optimization could optimize the
features of SCADA benchmarking datasets based on the global best solution, which helps
to speed up the training process with increased detection results. The suggested technique
provides maximum accuracy when compared to other models because of effective feature
selection and a concatenated procedure. Moreover, the results show that the proposed
model effectively identifies network assaults and offers a higher detection rate and accuracy.
Also, it is adequate for an industrial system intrusion detection model to effectively detect
the attacks.

Table 4. Accuracy analysis using dataset 3.

Methods Accuracy

DBN 95
DNN 90.25

DL 95
LSTM 96.2

IDS-DL 96
CNN IDS 96
HCRNN 97.75
Proposed 99.3

Figure 20 presents the overall comparative analysis of the existing [47] and proposed
security mechanisms based on the parameters of accuracy, detection rate, FAR, and f1-score.
From the findings, it is apparent that the proposed model performs better than alternative
models. The proposed model’s maximum precision and detection rate show that all
normal and aberrant network activity is efficiently detected. The results show that the
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ZESO-DRKFC methodology is superior to alternative methods with better values for these
parameters. Consequently, Figure 21 presents the overall performance analysis of the
existing and proposed methods by using dataset 3. This analysis also indicates that the
proposed model provides an improved result over the other techniques, due to the proper
normalization and optimization operations.
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5. Discussion

Deep learning models cannot process character-based features; thus, before feeding the
input into the model, preprocessing operations such as normalization and feature screening
are carried out to simplify and process the input data. As a result, the computational
complexity of the suggested model is slightly higher than that of the existing methodologies.
However, the proposed model is adequate for an industrial intrusion detection model to
identify attacks effectively. This paper’s minor limitation is that the detection performance
may somewhat alter due to environmental and system changes. Additionally, this paper
could be strengthened by concentrating on the additional grid environment factors.
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6. Conclusions

Smart grid CPSs, a crucial component of the infrastructure of every nation, have
recently become the targets of more cyberattacks of various kinds. Examples of CPS
security difficulties include the theft of private information, the insertion of fake data, and
the destruction of assets and data in a smart grid via hacked physical devices deployed
in a physical environment and managed by SCADA systems. The early identification
of these intrusions is therefore necessary to protect the data and equipment of the smart
grid. The work already undertaken on intrusion detection techniques for smart grids is
insufficient. For the purpose of detecting cyberattacks on a smart grid, a number of machine
learning (ML) techniques have been deployed in recent years that employ supervised or
unsupervised methodologies. These techniques classify cyberattacks using a number of
smart grid network parameters.

This paper presents a new security framework for protecting the IoT-SCADA systems
by using computationally efficient and intelligent techniques. The main contribution of
this work is to accurately detect cyber-attacks from the SCADA benchmarking datasets
by using a novel meta-heuristic-based AI mechanism. Here, the operations of categorical
transformation, scalar modeling, and normalization are used to perform dataset prepro-
cessing in order to first normalize the dataset before classification. The ZESO technique
offers the best optimal solution to choose the pertinent qualities for improving the speed
of classifier training and testing. It also helps to improve the detection accuracy and ef-
ficiency of the classifier. The categorized label is then predicted to determine whether
the data flow is normal or attacking using the DRKFC technique. Reduced overfitting,
higher convergence rates, quick training, and simplicity are the main advantages of this
approach. During experimental analysis, the performance of the proposed mechanism
is validated and tested by using various parameters. Also, system implementation and
performance assessment are carried out by using the standard and popular benchmarking
datasets. The overall results reveal that the suggested technique produces better outcomes
for all datasets, demonstrating the effectiveness and enhanced functionality of the proposed
methodology. The novel ZESO-DRKFC outperforms the other strategies due to effective
parameter optimization and training procedures.

In future, this work could be extended by implementing a deep learning methodology
for increasing the security smart grid networks.
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