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Abstract: Carrier signal detection is a complicated and essential task in many domains because it
demands a quick response to the existence of several carriers in the wideband, while also precisely
predicting each carrier signal’s frequency centers and bandwidths, including single-carrier and
multi-carrier modulation signals. Multi-carrier modulation signals, such as FSK and OFDM, could
be incorrectly recognized as several single-carrier signals by using the spectrum center net (SCN) or
FCN-based method. This paper designed a deep convolutional neural network (CNN) framework for
multi-carrier signal detection by fusing the features of multiple consecutive frames of the broadband
power spectra and estimating the information of each single-carrier or multi-carrier modulation
signal in the broadband, called frame fusion spectrum center net (FFSCN), including FFSCN-R,
FFSCN-MN, and FFSCN-FMN. FFSCN includes three base parts, the deep CNN-based backbone,
the feature pyramid network (FPN) neck, and the regression network (RegNet) head. FFSCN-R
and FFSCN-MN fusing the FPN out features, which use the Residual and MobileNetV3 backbone,
respectively, and FFSCN-MN cost less inference time. To further reduce the complexity of FFSCN-MN,
the designed FFSCN-FMN modifies the MobileNet blocks and fuses the features at each block of
the backbone. The multiple consecutive frames of broadband power spectra not only preserve the
high-resolution ratio of the broadband frequency, but also add the features of the signal changes in the
time dimension. Extensive experimental results demonstrate that the proposed FFSCN can effectively
detect multi-carrier and single-carrier modulation signals in the broadband power spectrum and
outperform SCN in accuracy and efficiency.

Keywords: carrier signal detection; frame fusion; deep learning; convolutional neural network

1. Introduction

Carrier signal detection in the wideband is usually the first and most vital step of blind
communication signal processing. For further study, each sub-carrier signal demodulation,
channel decoding, and other subsequent analyses, accurate carrier signal detection in the
wideband is a prerequisite.

Similar to the primary signal detection in cognitive radio (CR) [1], carrier signal
detection often requires the timely and precise detection of all sub-carrier signals in a non-
cooperative communication environment in a wideband signal, which can be formulated
as follows [2]:

Y(n) =


W(n), H0
M
∑

i=1
Si(n) + W(n), H1

(1)

where Y(n) denotes the received non-cooperative wideband signal, Si(n) is the ith sub-
carrier signal, M denotes the numbers of all sub-carrier signals in the received wideband
signal, W(n) denotes the received noise, which can be modeled as the zero-mean additive
white Gaussian noise (AWGN), and H0 and H1 denote the hypothesis of the absence and
the presence, respectively, of the sub-carrier signal in the received wideband signal.
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There are many algorithms for carrier signal detection. Energy detection [3–5] is a
non-coherent detection method that detects the carrier signal based on the sensed energy.
Although it is simple and needs no prior knowledge, the detection performance is subject to
the uncertainty of the received signal noise power. Cyclostationary feature detection [6–8]
exploits the periodicity in the received narrowband signal to identify the presence of the
carrier signal, and it is robust to noise uncertainties. In contrast, this method needs prior
knowledge and has a high computational complexity and detection time. At the same
time, energy detection and cyclostationary feature detection methods do not estimate the
parameters of the carrier signal, only focusing on its presence.

Some improvements have been noted using the double-threshold method [9,10] to
overcome these shortcomings. Moreover, by using signal properties such as the amplitude,
slope, deflection width, or distance between neighboring deflections, Kim et al. [11] pro-
posed using a slope-tracing-based algorithm to separate the intervals of the carrier signals.
However, these thresholds methods have to face the critical issue of discovering the proper
threshold values.

Recently, some studies [12–14] found that using deep learning for carrier signal detec-
tion achieves more robust and higher performance than threshold-based methods [9–11].
These deep-learning-based methods apply a broadband power spectrum as the input. Since
the sub-carrier signals contain both single-carrier and multi-carrier modulation signals, the
spectrum cannot drop the features between the two well-distinguished signals. There are
some problems in mistakenly detecting the multi-carrier signal as several single-carrier
signals, such as modulation by frequency-shift keying (FSK) and orthogonal frequency-
division multiplexing (OFDM). Additionally, reducing the model complexity and inference
time also remains to be solved.

Usually, people can easily distinguish multi-carrier and single-carrier modulation
signals on a broadband short-time Fourier transform (STFT) spectrogram, because the time–
frequency analysis of a non-cooperative signal provides us with a visual representation
of the spectrum of frequencies of a signal as it varies with time [15]. However, directly
using the STFT to detect the carrier signal converts the problem into a 2D picture object
detection problem. While the broadband frequency is too large and the resolution of the
input image is limited, it is necessary to crop the 2D image and cut it into multiple small
pieces for detection. The long time of signal accumulation affects real-time detection, and
the cropping of the picture makes it difficult to process the signal at the cut edges, all of
which reduce the efficiency and accuracy of signal detection.

This paper describes a new deep CNN framework for carrier signal detection, which
uses multiple consecutive frames of broadband power spectra as the input, called FFSCN,
including FFSCN-FMN, FFSCN-MN, and FFSCN-R. FFSCN estimates the frequency and
bandwidth information of each single-carrier and multi-carrier modulation signal by fusing
the multiple frames of the input spectra. The multiple consecutive frames of broadband
power spectra not only preserve the high-resolution ratio of the broadband frequency, but
also add the features of the signal changes in the time dimension.

We aim to build a deep-learning-based model that optimizes the accuracy of the
multi-carrier modulation signal detection in the wideband and improves the model’s
complexity. To accomplish this, in this work, we introduce (1) new data preprocessing steps
for generating multiple consecutive frames of the broadband power spectra, (2) the three
FFSCN model architectures for fusing the multiple frames of the inputs and reducing the
model complexity, including the new backbone network design and modification of the
FPN neck and RegNet head, and (3) new targets and loss functions.

Furthermore, we conducted extensive experiments to demonstrate the effectiveness
and efficiency improvements of the proposed methods. Moreover, some ablation studies are
presented to illustrate the choice of the model. Our experiments proved that the proposed
FFSCN can effectively detect the multi-carrier and single-carrier modulation signals in the
broadband and outperform SCN in accuracy and efficiency.
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The remainder of this paper is organized as follows. We start with a discussion of
related work in Section 2. Section 3 introduces the details of the proposed method. In
Section 4, the experimental dataset, training setup, evaluation metrics, results, and some
ablation studies are given. Finally, Section 5 concludes the paper.

2. Related Work

Artificial intelligence (AI) technologies, especially deep learning techniques, have
now been applied in many areas, such as computer vision (CV), speech recognition, and
natural language processing (NLP) [16]. Furthermore, in the wireless communication
field, many researchers have performed considerable exploration of deep learning and its
application [17–19], as well as communicational signal detection problems [20–22].

Inspired by fully connected networks (FCNs) [23,24] applied in two-dimensional (2D)
object semantic segmentation, References [12,13] used an FCN-based model consisting of an
encoder and a decoder for carrier signal detection in the broadband power spectrum. The
FCN-based methods cannot correctly distinguish between the demarcation points when
two or more neighboring subcarriers are very close. Moreover, the FCN-based methods
need much post-processing, and their performance degrades severely as the signal-to-noise
ratio (SNR) decreases. Reference [14] proposed SCN, an end-to-end deep-learning-based
CNN model for carrier signal detection in the broadband power spectrum. SCN regards the
carrier signal detection problem as a 1D object localization problem and uses an end-to-end
CNN model to regress each sub-carrier’s frequency center (FC) and bandwidth (BW) in the
broadband power spectrum. It achieved better performance than the FCN-based methods,
but cost much more inference time for its complex computation.

In the past few years, many researchers have engaged in designing a small deep neural
network architecture for an optimal trade-off between accuracy and efficiency, such as Xcep-
tion network [25], SqueezeNet [26], ShuffleNet [27], CondenseNet [28], ShiftNet [29], and
MobileNets serious [30–32]. Among these methods, MobileNetV1 [30] employs depthwise
separable convolution to improve computation efficiency substantially. MobileNetV2 [31]
expands on this by introducing a resource-efficient block with inverted Residuals and linear
bottlenecks. Moreover, MobileNetv3 [32] uses a combination of hardware-aware network
architecture search (NAS) complemented by the NetAdapt algorithm and subsequently
improved through novel architecture advances.

In this study, we propose the FFSCN models. As an upgrade to SCN, we replaced
the ResNet backbone with a MobileNetV3 base backbone to reduce network computation;
moreover, we incorporated a frequency center (FC) shift regression in RegNet to correct the
FC prediction. In particular, we created a fusion block based on the MobileNetV3 block,
which is utilized in the MobileNet backbone. Extensive experimental results demonstrated
that the proposed FFSCN can effectively detect multi-carrier and single-carrier modulation
signals in the broadband and outperform current deep-learning-based approaches in
accuracy and efficiency.

3. Methodology
3.1. Data Preprocessing

In this study, we employed multiple consecutive frames of the broadband power
spectra as the input of the proposed FFSCN for carrier signal detection. The Welch
method [33,34] was used to obtain the broadband power spectrum.

First, the N-point frame of the received signal sequence Y(n) is subdivided into
K overlapping segments, each with a length of M. Thus, the lth data segments can be
represented as

Yl(n) = Y(n + iD) n = 0, 1, . . . , M− 1
l = 0, 1, . . . , K− 1

(2)

where iD is the starting point for the lth data segments and M− D is the overlap between
each of two neighbor segments.
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Then, for each segment, a window function w(n) of length M is used to window the
data prior to computing the periodogram. The result is

P̃(l)
xx (ω) =

1
MU

∣∣∣∣∣M−1

∑
n=0

Yl(n)w(n)e−jωn

∣∣∣∣∣
2

l = 0, 1, . . . , K− 1 (3)

where ω is the frequency of the received signal and U is a normalization factor for the
power in the window function and is selected as

U =
1
M

M−1

∑
n=0

w2(n) (4)

The Welch power spectrum estimation is the average of the K-modified periodograms, namely:

PW
xx(ω) =

1
K

K−1

∑
l=0

P̃(l)
xx (ω) (5)

Next, the network input is a matrix that can be formulated by

P = 10·lg
([

PW
xx(ω0), PW

xx(ω1), · · · , PW
xx(ωr)

]T
)

(6)

where r denotes the number of consecutive frames of the broadband power spectra; fur-
thermore, the logarithmic transformation is used to convert power to decibels, which scales
the numerical range of the spectra.

Finally, we adopted zero mean normalization to normalize the network input matrix,
which follows as

P̃ =
P− P
σ(P)

(7)

where P and σ(P) are the mean and standard deviation of all the elements in the matrix P,
respectively.

3.2. FFSCN Architecture

FFSCN was built based on the SCN model, which consists of three main parts: the
deep-CNN-based backbone, the FPN neck, and the RegNet head, as Figure 1 shows. In this
work, to accurately detect the single-carrier and multi-carrier signals, we used multiple
consecutive frames of the broadband power spectra in the wideband to replace the single-
frame input in SCN. Therefore, the backbone and FPN neck will extract more valuable
features of the sub-carriers, and our aim was to fuse these features, which is the difference
between the FFSCN and SCN methods.

In FFSCN-R, we added an adaptive average pooling layer between the FPN neck and
the RegNet head to fuse the output features of the FPN neck output features. However,
compared to SCN, multi-frame input requires significantly more processing in the Residual
backbone and the FPN neck, which reduces the network’s inference speed and prevents
it from responding quickly to the burst signals in the wideband. Therefore, FFSCN-MN
uses the MobileNetV3 backbone, not the Residual backbone, to reduce the amount of the
network. FFSCN-R and FFSCN-MN both fuse the features before RegNet. Although this is
an effective solution for multi-carrier signal detection, it still sacrifices too much time in
the backbone and the FPN neck parts. To further improve the network’s performance, we
modified the MobilleNetV3 backbone and propose FFSCN-FMN, which fuses the multi-
frame input features in all the blocks of the Fusion-MN backbone. Moreover, FFSCN-FMN
optimizes the network complexity and improves the detection performance.
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3.2.1. Network Backbones

The backbone network is the fundament of a deep learning object detection model.
Figure 2 shows the basic block specification architecture of three deep-CNN-based backbone
networks in our work.
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block, uses a different nonlinear (NL) activation depending on the layer, and in_C denotes the
input channels.

Firstly, both FFSCN-R and SCN use the same Residual backbone network, which is
modified by the deep residual network (ResNet) [35], and we added a simplified channel
attention module (S-CAM) [36] prior to the last nonlinear activation of the Residual block. In
SCN [14], we elaborated on the specification structure of the Residual backbone and block.
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Then, by replacing the Residual backbone network with the MobileNetV3 backbone,
we propose the FFSCN-MN model, and Figure 2b shows the MobileNetV3 block struc-
ture. MobileNets are based on a streamlined architecture that uses depthwise separable
convolutions to build lightweight deep neural networks. MobileNetV3 adds Squeeze-
and-Excite [37] in the inverted Residual with the linear bottleneck of the MobileNetV2
block. Furthermore, MobileNetV3 uses the hard-swish nonlinear activation to enhance the
network inference speed [32,38]. The hard-swish function is as follows:

f (x) =


0, i f x ≤ −3
x, i f x ≥ +3
x(x+3)

6 otherwise

(8)

Next, in FFSCN-FMN, we added two adaptive average pooling layers at the beginning
and the end of the MobileNetV3 block, referred to as the Fusion block, as illustrated
in Figure 2c. After adding the two adaptive average pooling layers, the features of the
consecutive frames of inputs are no longer kept as separate, but are fused to be a whole.
Meanwhile, because the first adaptive average pooling layer fuses the multiple frames
of inputs into one frame, compared with the MobileNetV3 block, the Fusion block also
reduces the amount of computation.

However, the original MobileNet only downsampled the input scale five times, which
is not enough to extract the useful features for the carrier detection task, according to the
experimentation in SCN [14]. Therefore, we added some Fusion blocks to increase the
downsample times. All the added Fusion blocks’ strides were set to 2, and the nonlinear
activations were hard-swish functions. The specification for the FFSCN-FMN backbone net-
work is shown in Table 1, and FFSCN-MN uses the same structure, but with MobileNetV3
blocks in the operator.

Table 1. Specification for the FFSCN-FMN backbone network.

Input Shape Operator Exp Size Out Shape Out Scale SE NL Stride

1 × 10 × 16,384 Conv2d - 16 × 10 × 8192 P1 - HS 2
16 × 10 × 8192 Fusion block, 1 × 3 16 16 × 10 × 8192 - - RE 1
16 × 10 × 8129 Fusion block, 1 × 3 64 24 × 10 × 4096 P2 - RE 2
24 × 10 × 4096 Fusion block, 1 × 3 72 24 × 10 × 4096 - - RE 1
24 × 10 × 4096 Fusion block, 1 × 5 72 40 × 10 × 2048 P3

√
RE 2

40 × 10 × 2048 Fusion block, 1 × 5 120 40 × 10 × 2048 -
√

RE 1
40 × 10 × 2048 Fusion block, 1 × 5 120 40 × 10 × 2048 -

√
RE 1

40 × 10 × 2048 Fusion block, 1 × 5 240 80 × 10 × 1024 P4 - HS 2
80 × 10 × 1024 Fusion block, 1 × 5 200 80 × 10 × 1024 - - HS 1
80 × 10 × 1024 Fusion block, 1 × 5 184 80 × 10 × 1024 - - HS 1
80 × 10 × 1024 Fusion block, 1 × 5 184 80 × 10 × 1024 - - HS 1
80 × 10 × 1024 Fusion block, 1 × 5 480 112 × 10 × 1024 -

√
HS 1

112 × 10 × 1024 Fusion block, 1 × 5 672 112 × 10 × 1024 -
√

HS 1
112 × 10 × 1024 Fusion block, 1 × 5 672 160 × 10 × 512 P5

√
HS 2

160 × 10 × 512 Fusion block, 1 × 5 480 160 × 10 × 512 -
√

HS 1
160 × 10 × 512 Fusion block, 1 × 5 480 160 × 10 × 512 -

√
HS 1

160 × 10 × 512 Fusion block, 1 × 5 480 80 × 10 × 256 P6
√

HS 2
80 × 10 × 256 Fusion block, 1 × 5 480 80 × 10 × 128 P7

√
HS 2

80 × 10 × 128 Fusion block, 1 × 5 480 80 × 10 × 64 P8
√

HS 2
80 × 10 × 64 Fusion block, 1 × 5 480 80 × 10 × 32 P9

√
HS 2

80 × 10 × 32 Fusion block, 1 × 5 480 80 × 10 × 16 P10
√

HS 2
80 × 10 × 16 Fusion block, 1 × 5 480 80 × 10 × 8 P11

√
HS 2

Here, Exp size denotes the number of channels in the expansion layer. SE denotes whether there is a Squeeze-and-
Excite in that block. NL denotes the type of nonlinear activation used. HS denotes hard-swish. RE denotes ReLU.
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In SCN, we found that the performance of SCN-11× is almost comparable to that of
SCN-13×, but the inference time is shorter [14]. Therefore, in this paper, the downsample
times of our proposed FFSCN models were set to 11.

3.2.2. The FPN Neck

In this work, as Figure 3a shows, an adaptive average pooling layer was added at
the end of the original FPN neck in [14], which is used to fuse the multiple consecutive
broadband power spectra features and is still called the FPN neck. The FPN neck fuses all
the top-to-bottom scale features of the backbone in FFSCN-R and FFSCN-MN. Compared
with the original SCN, the amount of computation of the FPN neck is times the number of
consecutive frames of broadband power spectra inputs. To further optimize the efficiency
of the FFSCN-FMN model, we propose the Fusion FPN neck by applying an adaptive
average pooling layer after each backbone feature input of the original FPN neck, shown in
Figure 3b. The Fusion FPN neck fuses the consecutive frames of input features first and
keeps the same amount of computation as the original SCN. Additionally, in FFSCN-R,
there are 256 Conv layer channels in the FPN neck, while in FFSCN-MN and FFSCN-FMN,
there are 64 Conv layer channels.
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3.2.3. The Regression Network Head

Figure 4 gives the RegNet head of this work, and we added a frequency center (FC)
shift regression branch compared with that in the original SCN. Considering that we
regressed the FC prediction in the 1/4 scale of the input length, a shifting bias exists when
we set the target FC point as an integer. Therefore, the FC shift regression is to fix the
bias, and it consists of the same structure as FC regression and BW regression, a depthwise
separable convolutional layer [25] with 256 channels, rectified linear unit (ReLU) [39], and
a 1 × 1 Conv with one channel in common.
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3.3. FFSCN Targets and Loss Function

In this work, the proposed FFSCN regresses three sets of prediction key points, the
power spectrum distribution (PSD) prediction for all subcarrier FC positions and the
corresponding BW and FC Shift bias predictions. Here, the PSD and BW predictions are the
same as those in the original SCN [14], and the loss functions are formulated as follows:

Lpsd = − 1
N

L

∑
i=1

{
(1− Pi)

α log(Pi) i f Yi = 1
(1−Yi)

β(Pi)
α log(1− Pi) otherwise

(9)

Lbw = − 1
N

N

∑
k=1

∣∣∣Ŵk −Wk
∣∣∣ (10)

Ŵk =
L× BWk

BSW
(11)

where Lpsd and Lbw denote the PSD loss and BW loss, N denotes the number of all sub-
carriers in the power spectra input, L denotes the input spectrum length, α and β are
hyper-parameters and set to 2 and 4, respectively, Pi denotes the score at the ith point in the
predicted PSD, and Yi denotes the ground-truth PSD. BSW denotes the broadband power
spectrum bandwidth; BWk denotes the kth subcarrier bandwidth; Ŵk. and Wk are the BW
ground-truth and prediction, respectively.

Let Posk be the kth subcarrier FC in the input broadband spectrum, and we can
formulate the corresponding FC shift ground-truth and the whole FC shift loss as follows:

Ŝk =
Posk

4
−
⌊

Posk

4

⌋
(12)

Lshi f t = −
1
N

N

∑
k=1

∣∣∣Ŝk − Sk
∣∣∣ (13)

where Ŝk and Sk denote the FC shift ground-truth and prediction. b·c represents rounding
down. Lshi f t denotes the FC shift loss. Like the BW loss, we applied the L1 loss and only
focused on the subcarriers’ center point.

To balance the three losses, we used two constants λbw and λshi f t to scale the BW and
FC shift losses, respectively. The overall training loss is as follows:

Ldet = Lpsd + λbwLbw + λshi f t Lshi f t (14)
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where we set λbw = 0.01 and λshi f t = 0.1 in all our experiments.

4. Experiments

We describe the dataset and evaluation metrics in detail. We report the experimental
results and compared the performance with other methods to demonstrate the effectiveness
of FFSCN models. Moreover, some ablation studies are shown to shed light on the effects
of various design decisions.

4.1. Dataset Description

Table 2 shows detailed information on the dataset used in this work. We used Matlab to
generate all 1000 time domain signals, which are all complex. Each signal sample rate was
3.2 MHz, and the time duration as 200 ms. Because the time domain signal is complex, the
broad signal bandwidth equals the sample rate. To demonstrate the effectiveness of FFSCN
for multi-carrier modulation signals, we used Matlab to generate multi-carrier modulation
signals and single-carrier modulation signals, where multi-carrier modulation consisted of
2FSK and OFDM, and the single-carrier modulation consisted of binary phase-shift keying
(BPSK), 16 quadrature amplitude modulation (16-QAM), and Gaussian minimum-shift
keying (GMSK). Moreover, for each sub-carrier, the narrow signal bandwidth range was
4~117 kHz, the SNR range was −4~14 dB, and the time duration range was 20~200 ms.
When the sub-carrier signal time duration is 200 ms, the signal is called a constant signal;
otherwise, it is called a burst signal.

Table 2. Specification for the dataset in this work.

Sample Nums 1000

Sample Rate 3.2 MHz

Sample Time Duration 200 ms

Broad Signal Bandwidth 3.2 MHz

Sub-Carrier Signal Modulation 2FSK, OFDM, BPSK, 16QAM, GMSK

Sub-Carrier Signal bandwidth 4~117 kHz

Sub-Carrier Signal Time Duration 20~200MS

Sub-Carrier Signal SNR −4~14 dB

FFT Length 16,384

Window Function Hanning Window

Consecutive Frame Nums 10

Single Frame Time Domain Signal Length 3200

We used a length of 3200 time domain signals to calculate the single frame broadband
power spectrum; the FFT length was to 16,384, and the window function was selected as
the Hanning window. We set the nums of consecutive frames of broadband power spectra
inputs in the training phase to 10.

4.2. Training Setup

The training setup was mostly the same as SCN [14]. We implemented our models in
the PyTorch [40] library on a machine with 2 NVIDIA GeForce RTX 3080Ti graphic process
units (GPUs) and an Intel(R) Bronze 3204 CPU, with the Ubuntu 20.04 operation system.
We used a cosine annealing warm restarts [41] learning rate strategy, with an initial value
of 1 × 104, T_0 = 10, T_mult = 2, and a batch size of 16. We used the Adam optimization
method [42] to optimize the overall training loss and adopted Dropout [43] prior to RegNet
to reduce overfitting. All the FFSCN models were trained for 150 epochs, and were appling
the same data preprocessing steps described in Section 3.
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4.3. Evaluation Metrics

In accordance with [14], we also used the intersection-over-unit (IoU) on carriers to
decide the correctness of each sub-carrier on the broadband power spectrum, as shown and
defined in Figure 5.
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During the evaluation, when the detected sub-carrier IoU is greater than the IoU
threshold, it is referred to as true positive (TP), otherwise as true negative (TN). Further-
more, false negative (FN) represents the sub-carrier that is not detected but a ground-truth.
We calculate the harmonic means of the average precision rate (AP) and average recall
rate (AR) to quantify and compare the performance of different trained models, called the
F− Score [44], using the following formula:

AP =
∑N

i=0 TP

∑N
i=0 TP + ∑N

i=0 TN
(15)

AR =
∑N

i=0 TP

∑N
i=0 TP + ∑N

i=0 FN
(16)

F− Score =
2× AP× AR

AP + AR
(17)

4.4. Results

Firstly, to demonstrate the effectiveness of the proposed FFSCN models, we compared
the performance with other deep-learning-based methods, including SCN [14], FCN [12],
and SigdetNet [13]. As can be seen in Table 3, our proposed FFSCN-FMN models outper-
formed the other models. The performances of SigdetNet and FCN degraded more than
other models. With the IoU threshold increasing, all the model’s detection performances
degraded, but the proposed FFSCN models performed more robustly than our previous
SCN model overall. Moreover, from the table, we also concluded that the Residual back-
bone performed better than the MobileNetV3 backbone. However, the fusion MobileNetV3
backbone achieved the best performance, which indicates that the multiple time feature
fusion is superior to the one-time fusion strategy.

Then, to further demonstrate the multi-carrier modulation signal detection perfor-
mance of our proposed FFSCN models, Figure 6 shows the performances of the multi-carrier
and single-carrier modulation signal detection on the validation dataset. The proposed
models outperformed other methods on both the multi-carrier and single-carrier modula-
tion signal validation datasets. Moreover, the performance of all models degraded as the
IoU threshold increased. However, SigdetNet and FCN degraded more severely, especially
when the SNR was lower in multi-carrier modulation signal detection performance. There-
fore, the proposed FFSCN model predictions were more exact than the others. Moreover,
from Table 3 and Figure 6, FFSCN-FMN achieved better performance than FFSCN-R and
FFSCN-MN.
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Table 3. Performance comparison of the proposed FFSCN and other deep-learning-based methods
on the whole validation dataset.

MODEL AP60 AR60 F-S60 AP70 AR70 F-S70 AP80 AR80 F-S80 AP90 AR90 F-S90

FFSCN-FMN 99.33 94.82 97.02 98.19 93.73 95.91 96.44 92.06 94.20 93.43 89.19 91.26
FFSCN-MN 99.43 90.42 94.71 98.71 89.76 94.02 96.52 87.77 91.94 91.27 82.99 86.93

FFSCN-R 99.04 92.57 95.69 97.70 91.31 94.40 94.95 88.75 91.75 89.72 83.85 86.69
SCN 99.08 90.75 94.73 98.12 89.87 93.81 95.84 87.78 91.63 90.95 83.30 86.96

SigdetNet 83.76 95.11 89.07 81.59 92.64 86.77 77.10 87.55 81.99 65.10 73.92 69.23
FCN 34.32 73.06 46.70 31.49 67.03 42.85 28.05 59.69 38.17 20.98 44.64 28.55

Where F-S denotes the F-Score and the numbers after AP, AR, and F-S denote the IoU threshold. The downsample
times of the SCN and FCN were also set to 11.
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Figure 6. The multi-carrier and single-carrier modulation signal detection performances of our
proposed FFSCN models and other deep-learning-based methods: (a1–a4) all modulation samples’
detection performance; (b1–b4) multi-carrier modulation samples’ detection performance; (c1–c4)
single-carrier modulation samples’ detection performance. α denotes the IoU threshold and increases
from 0.6 to 0.9 from (1) to (4).
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Next, Table 4 shows the complexity comparison between the FFSCN models and
other deep-learning-based methods. Compared to FFSCN-R and SCN, by adopting the
MobileNet backbone, the floating-point operations (FLOPs) and inference time cost of
FFSCN-MN decreased obviously. Furthermore, by applying the Fusion FPN neck, the
FLOPs and inference time of FFSCN-FMN decreased further than FFSCN-MN. Furthermore,
even though the FLOPS of FFSCN-FMN were much larger than FCN and SigdetNet, they
consumed a comparable inference time. Therefore, FFSCN-FMN improved the efficiency
of SCN.

Table 4. The complexity comparison between the proposed FFSCN method and the other deep-
learning-based methods.

MODEL FLOPS (M) Parameters (K) Time Cost (ms)

FFSCN-FMN 2427.08 2803.83 7.82
FFSCN-MN 7814.48 2589.96 10.71

FFSCN-R 15,680.69 2410.66 21.42
SCN 2043.88 2342.56 17.35

SigdetNet 454.98 297.52 8.80
FCN 9.43 110.11 7.16

Finally, from the performance and complexity comparison, our proposed FFSCN
models can effectively detect multi-carrier and single-carrier signals in the broadband
power spectrum. Compared to other deep-learning-based methods, the FFSCN models
achieved better detection performance. Moreover, FFSCN-FMN not only achieved the best
detection performance, but also cost a comparable inference time to that of the FCN-based
methods, dramatically improving the model complexity of SCN. Meanwhile, SCN, FCN,
and SigdetNet use broadband power spectra as the model input and can only detect the
frequency locations. As Figures 7 and 8 show, since the multiple consecutive frames of
the broadband power spectra were the model input, FFSCN can distinguish the burst
signals from the constant signals and locate the frequency and time position. Note that the
time location accuracy correlated with the number of consecutive and overlap frames. In
Figures 7 and 8, we used 10 consecutive frames inputs without overlap. Compared to the
ground-truth, our frequency location predictions were rather good, but some errors existed
the in time location prediction, especially when the SNR was low.
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Figure 8. The second example of the FFSCN-FMN detection results. Here, the signal time duration is
200 ms, and we split it into 200 consecutive frames of the broadband power spectra and grouped
them into 20 FFSCN-FMN inputs without frame overlap.

4.5. Ablation Study
4.5.1. Impact of the Two Adaptive Pooling Layer Types

The effects of the two different adaptive pooling layer types used in the FFSCN models
are depicted in Figure 9. When the sub-carrier SNR was larger than 2 dB, the two types of
adaptive pooling layers performed comparably well in the three FFSCN models. However,
when the sub-carrier SNR was lower than 2 dB, the models using the adaptive average
pooling layer outperformed the models using the adaptive maximum pooling layer.
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4.5.2. Impact of Downsample Times

In Table 5, we show the performance comparison of different downsample times used
in the FFSCN-FMN model. We can see that FFSCN-FMN_11× achieved the best AR and F-
Score and that FFSCN-FMN_13× achieved the best AP, but the increase was feeble compared
to FFSCN-FMN_11×. Furthermore, the multi-carrier and single-carrier modulation signal
detection performances of different downsample times in the FFSCN-FMN model are
shown in Figure 10. We found that the main reason that FFSCN-FMN_13× had the best
AP was that it performed better in the single-carrier modulation sample detection results.
Considering the bigger gap in the AR and F-Score between FFSCN-FMN_13× and FFSCN-
FMN_11× and the more downsample times used, complexity, and inference time cost, we
think that using 11 downsample times is the better choice.
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Table 5. Performance comparison of different downsample times used in the FFSCN-FMN model.

MODEL AP60 AR60 F-S60 AP70 AR70 F-S70 AP80 AR80 F-S80 AP90 AR90 F-S90

FFSCN-
FMN_9× 99.46 91.31 95.21 98.54 90.47 94.33 96.57 88.66 92.45 93.08 85.46 89.11

FFSCN-
FMN_11× 99.33 94.82 97.02 98.19 93.73 95.91 96.44 92.06 94.20 93.43 89.19 91.26

FFSCN-
FMN_13× 99.48 94.65 97.01 98.25 93.54 95.84 96.49 91.74 94.05 93.44 88.93 91.13

F-S denotes the F-Score, and the numbers after AP, AR, and F-S denote the IoU threshold. We compared the
performance of the FFSCN-FMN model using 9, 11, and 13 downsample times.

Electronics 2022, 11, 3349 14 of 17 
 

 

   
(a) (b) (c) 

Figure 9. Effects of the two different adaptive pooling layer types used in the FFSCN models: (a) 
FFSCN-FMN; (b) FFSCN-MN; (c) FFSCN-R. Here, α denotes the IoU threshold, and we fixed it to 
0.6. 

4.5.2. Impact of Downsample Times 
In Table 5, we show the performance comparison of different downsample times 

used in the FFSCN-FMN model. We can see that FFSCN-FMN_11× achieved the best AR 
and F-Score and that FFSCN-FMN_13× achieved the best AP, but the increase was feeble 
compared to FFSCN-FMN_11×. Furthermore, the multi-carrier and single-carrier modu-
lation signal detection performances of different downsample times in the FFSCN-FMN 
model are shown in Figure 10. We found that the main reason that FFSCN-FMN_13× had 
the best AP was that it performed better in the single-carrier modulation sample detection 
results. Considering the bigger gap in the AR and F-Score between FFSCN-FMN_13× and 
FFSCN-FMN_11× and the more downsample times used, complexity, and inference time 
cost, we think that using 11 downsample times is the better choice. 

Table 5. Performance comparison of different downsample times used in the FFSCN-FMN model. 

MODEL AP60 AR60 F-S60 AP70 AR70 F-S70 AP80 AR80 F-S80 AP90 AR90 F-S90 
FFSCN-
FMN_9× 

99.46 91.31 95.21 98.54 90.47 94.33 96.57 88.66 92.45 93.08 85.46 89.11 

FFSCN-
FMN_11× 

99.33 94.82 97.02 98.19 93.73 95.91 96.44 92.06 94.20 93.43 89.19 91.26 

FFSCN-
FMN_13× 

99.48 94.65 97.01 98.25 93.54 95.84 96.49 91.74 94.05 93.44 88.93 91.13 

F-S denotes the F-Score, and the numbers after AP, AR, and F-S denote the IoU threshold. We com-
pared the performance of the FFSCN-FMN model using 9, 11, and 13 downsample times. 

   
(a) (b) (c) 

Figure 10. The multi-carrier and single-carrier modulation signal detection performances of differ-
ent downsample times used in the FFSCN-FMN model: (a) all modulation samples’ detection per-
formance; (b) multi-carrier modulation samples’ detection performance; (c) single-carrier modula-
tion samples’ detection performance. Here, α denotes the IoU threshold, and we fixed it to 0.6. We 
compared the performance of the FFSCN-FMN model using 9, 11, and 13 downsample times. 

Figure 10. The multi-carrier and single-carrier modulation signal detection performances of different
downsample times used in the FFSCN-FMN model: (a) all modulation samples’ detection perfor-
mance; (b) multi-carrier modulation samples’ detection performance; (c) single-carrier modulation
samples’ detection performance. Here, α denotes the IoU threshold, and we fixed it to 0.6. We
compared the performance of the FFSCN-FMN model using 9, 11, and 13 downsample times.

5. Conclusions

This paper introduced the FFSCN-FMN, FFSCN-MN, and FFSCN-R models for carrier
signal detection. As an upgrade to SCN, by using multiple frames of the broadband
power spectra as the model input rather than one, the model can extract the features of the
broadband power spectra of frequencies as they vary with time, so that it can effectively
detect the multi-carrier and single-carrier modulation signals. FFSCN-R adds an adaptive
average pooling layer between the FPN neck and RegNet head in SCN. FFSCN-MN replaces
the FFSCN-R backbone network with the MobileNetV3 backbone to reduce the complexity
of the model. FFSCN-FMN further modifies the MobileNetV3 backbone and FPN neck to
the Fusion backbone and Fusion FPN neck to design a more lightweight model. Extensive
experimental results suggested that the proposed FFSCN models outperformed the other
deep-learning-based methods SCN in accuracy and efficiency, and the FFSCN-FMN model
performed the best. As it remains a problem to detect the burst signals in a timely manner,
we will engage in solving this in future work.
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