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Abstract: Detecting small objects in infrared images remains a challenge because most of them lack
shape and texture. In this study, we proposed an infrared small-object detection method to improve
the capacity for detecting thermal objects in complex scenarios. First, a sparse-skip connection block
is proposed to enhance the response of small infrared objects and suppress the background response.
This block is used to construct the detection model backbone. Second, a region attention module
is designed to emphasize the features of infrared small objects and suppress background regions.
Finally, a batch-averaged biased classification loss function is designed to improve the accuracy
of the detection model. The experimental results show that the proposed small-object detection
framework significantly increases precision, recall, and F1-score, showing that, compared with the
current advanced detection models for small-object detection, the proposed detection framework
has better performance in infrared small-object detection under complex backgrounds. The insights
gained from this study may provide new ideas for infrared small object detection and tracking.

Keywords: infrared image; small object; object detection; SSD

1. Introduction

With the development of infrared image-sensor technology, infrared spectral imaging
technology has provided new information for object-detection tasks [1,2]. Currently, the
object detection method based on infrared images is one of the best methods for detecting
remote thermal objects because the infrared features of objects are more noticeable than
their visible features [3]. In remote detection tasks, most infrared objects are considered
small objects because of fewer pixels, a lower signal-to-clutter ratio (SCR), unclear contours,
and sparse texture features. Because of these characteristics, infrared small-object detection
remains a significant challenge.

Convolutional neural networks (CNNs) provide a broader perspective on object detec-
tion. Compared to traditional methods, CNN-based object detection methods can adaptively
learn object locations and semantic information in sample images, resulting in higher accu-
racy and robustness. Object detection models based on CNN include two- and one-stage
models. The former are not suitable for high real-time detection because of the slow infer-
ence speed that divides positioning and classification into two steps, such as RCNN [4]. The
latter, such as YOLO [5] and SSD [6], have a fast inference speed and good accuracy.

Some optimized CNN-based models have a good detection capacity for small objects.
ResNet [7], DenseNet [8], and ResNext [9] propose shortcut connections that can transfer
information by skipping one or more layers to address the degradation problem. This is
helpful in reducing the feature loss of small objects during information transmission. In
DetNet [10], downsampling blocks in deep layers are eliminated to preserve the resolution
of high-level feature maps, which can improve the positioning accuracy of small objects.
DSSD [11], RSSD [12], and FSSD [13] propose specific multiscale feature fusion methods to
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suppress the static noise in low-level feature maps. In RFBNet [14], multiple branches with
different kernels and dilated convolution layers are concatenated to expand the receptive
field and enhance the deep features of lightweight CNNs. Extensive studies have shown
that the above methods can improve the accuracy of small-object detection but still do not
achieve satisfactory results. One of the most important factors is that the methods do not
optimize the model structure specifically for the characteristics of small objects, such as
size and texture.

Many researchers have been inspired by small-object detection methods and have pro-
posed detection models suitable for small objects. The optimized methods of these models
can be categorized into spatial-temporal information fusion [15–17], residual/background
information prediction [18,19], optimized region proposal [20,21], and multiscale informa-
tion fusion [22–25]. The spatial-temporal information fusion method reduces static noise
by combining adjacent frames in an infrared image sequence. The residual/background
information prediction method is an indirect method that first predicts the background
information and then subtracts it from the original image to obtain the object’s position. Tra-
ditional methods or CNN-based methods are used in optimized region proposal methods
to filter the potential region of the object. Subsequently, a classifier is designed to process
the potential region image.

In summary, these studies support the notion that there are many essential differences
between visible and infrared objects, such as the number of image channels, image signal-
to-noise ratio, and the number of hard negative samples. Therefore, infrared small-object
detection methods are different from visible small-object detection algorithms; the former
focuses on reducing false alarms, while the latter aims to reduce misdetections.

An infrared small detection framework called IRSDet is proposed to address these
issues. The main contributions of this study are as follows.

1. A sparse-skip connection module is proposed to construct the backbone that can
reduce the feature loss of infrared small objects in information transmission.

2. A feature map enhancement method based on the region attention mechanism is
proposed to reduce background noise interference and emphasize the objects’ poten-
tial region.

3. A batch-averaged biased classification loss method under limited memory usage is
proposed to alleviate the drastic fluctuation of classification loss under the small-batch
configuration and avoid the gradient explosion of the focal loss function in the initial
training process.

Experimental results showed that the proposed method has high precision and recall.
The insights gained from this study may provide new ideas for infrared small object
detection and tracking.

2. Related Works
2.1. Small-Object Detection Methods Based on CNN

In recent years, the optimization methods of CNN-based small-object detection models
have been divided into the following aspects:

Receptive field and attention mechanism: Sun et al. [26] proposed a mask-guided
SSD. The method enhances features with contextual information and introduces segmenta-
tion masks to eliminate the background regions. However, segmentation masks, including
the object region, require pre-labeling. FD-SSD [27] adopts deformable convolutional layers
that can optimize the position of the receptive field to better adapt to the geometric and
shape changes of small objects, but they increase the computational cost. Lim et al. [28]
proposed FA-SSD, which uses a residual attention module and context information to
enhance the feature representation of low-level feature maps, thus improving the accuracy
of small-object detection.

Multiscale information fusion: Cui et al. [29] proposed a multiscale deconvolu-
tional SSD (MDSSD). The method can simultaneously upsample high-level feature maps
of different layers and fuse them with non-adjacent low-level feature maps to form a
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clearer feature for small objects. Zhai et al. [30] proposed a DF-SSD that designed a back-
bone network based on dense connections. To enhance the representation of features in
the output image, adjacent feature maps are fused to supplement semantic information
and details. Although dense connections can suppress feature loss, they retain a large
amount of static background noise, which is a severe problem for infrared small-object
detection. Pan et al. [31] proposed a top-down feature fusion module that iteratively fuses
high-level features containing semantic information with low-level features containing
boundary information.

Additionally, data augmentation methods were considered to preprocess small-object
samples to improve the training effect of the detection models. Kisantal M et al. [32]
proposed a sample replication method to increase the number of small objects in each image
to address the issue of a small number of positively matched anchors. Bai Y et al. [33]
proposed a super-resolution small-object generation method, SOD-MTgan, which can
upsample small, blurred objects to recover more details.

2.2. Infrared Small-Object Detection Methods Based on CNN

Spatial-temporal information fusion: Park et al. [15] proposed an infrared small-
object detection method for pedestrian image sequences that manually introduces spatial-
temporal information and potential object regions. To avoid position errors caused by
residual and mask images, adjacent similar pixels are merged into a single object using
the connecting component algorithm. To eliminate the influence of static noise in an
infrared image sequence on the detection of small infrared objects, Yao et al. [16] proposed
an optimized FCOS network model that uses traditional filtering methods and spatial-
temporal feature fusion to preprocess sample images. Du et al. [17] proposed an interframe
energy accumulation (IFEA) enhancement mechanism to effectively extract spatial-temporal
information in the infrared sequence. The method is specially designed to suppress strong
spatially nonstationary clutter, enhance the object, and improve accuracy.

Residual/Background information: Shi et al. [18] proposed a convolutional and
denoising autoencoder network (CDAE) that uses residual images as output images. Addi-
tionally, perceptual loss is employed to solve the problem of background texture feature loss
in the encoding process, and structural loss is proposed to compensate for the perceptual
loss defect in which small objects appear. This method was supported by Fang et al. [19],
who stated that too many details are lost during the pooling operation in the downsam-
pling of the encoding process; thus, it is difficult to reconstruct the high-frequency details
well in the decoding stage. To address this issue, they proposed a multiscale U-Net. The
constructed image-to-image network integrates the global and local dilated residual convo-
lution blocks into the U-Net, predicting the residual information between the input and
output images for small infrared UAV object detection.

Optimized region proposal: Fan et al. [20] proposed an infrared small-object detec-
tion method based on region proposal and a CNN module to separate real objects from the
background and significantly reduce the false alarm rate caused by complex background
clutter. First, the small-object intensity is enhanced based on the local intensity charac-
teristics. Potential object regions are then proposed by corner detection to ensure a high
detection rate of the method. The approach used in the research by Ren et al. [21] is similar
to that described above. They designed a simple structured region context network (RCN)
to extract possible regions. Then, an optimized GAN network is used to process region
images to generate super-resolution results with more detailed features.

Multiscale information fusion: The downsampling of CNN-based models may
cause information loss, decreasing the accuracy of detecting small infrared objects.
Ding et al. [22] and Du et al. [23] used high-resolution low-level images as feature maps
to address this issue. Moreover, multilevel feature-fusion methods are used to suppress
false alarms in low-level feature maps. Ju et al. [24] went one step further. They used
an hourglass image-filtering module to obtain a fusion image to substitute the original
input image, aiming to enhance the response of small infrared objects and suppress the
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background response. However, this module directly processes the original image without
distinguishing background noise from objects. Hou et al. [25] adopted a more efficient
method for replacing the input image with a fusion image. The framework in their research
used parallel convolutional layers to extract the contrast information of small objects and
neighborhoods. The kernels of the parallel convolutional layers have different sizes for
extracting different-scale spatial information.

Training strategies: Some studies have optimized training strategies for small-object
detection. For instance, Du et al. [23] specially designed an IOU threshold and anchor
size for small objects. Bai et al. [34] proposed a regular constraint loss (RCL) to restrict
multiscale feature fusion learning and obtain more accurate object location information.

3. Proposed Method

Small infrared objects exhibit three characteristics. First, the feature of small objects is
apt to lose in information transfer. Second, limited by the performance of current infrared
sensors, the signal-to-noise ratio of infrared images is low, and there are numerous false
alarms. Finally, most infrared objects lack texture and detailed features.

This study, therefore, proposes an infrared small-object detection model (IRSDet) to
address these issues. The structure of IRSDet is shown in Figure 1. The SSD is used as
the detection head in the proposed method. In this section, we first discuss the structure
and function of the backbone and then describe a feature enhancement method based on
the proposed guide block. Finally, we describe the batch-averaged biased classification
loss function.

L1 L2 L3 L4 L5 L6

SRes block

Downsampling

Guide block

Conv+Relu

32×32×51264×64×512128×128×256 16×16×512

Input Image
512×512×1

Feature Extractor

Localization Loss  Optimized 
Confidence Loss 

Backbone

Feature Enhancement

Figure 1. Proposed infrared small-object detection framework. The backbone has 16 weight layers,
and L2–L5 layers have 2, 3, 3, 3 SRes blocks. The first layer of the backbone is a parallel convolutional
layer with different atrous rates.

3.1. IRS16: Backbone of IRSDet
3.1.1. Sparse Residual Block

Small infrared objects are more challenging to spot than small visible objects. First,
there is only one information channel in infrared images, and many false alarms have fea-
tures similar to real objects. Second, serial convolutional layers can enhance the information
extraction of the surrounding receptive field. The output signal of one of the serial convolu-
tional layers cannot sufficiently extract the features of the real objects. Consequently, the
subsequent convolutional layers cannot obtain accurate information. Bias accumulates over
multiple convolutional layers, resulting in a severe loss of object features in deep layers.

A sparse residual block (SRes block) is proposed to address these issues. The SRes
block is an alternative parallel structure that can transmit signals on parallel branches. The
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signals of the two branches are combined after each convolutional layer. The structure of
an SRes block is shown in Figure 2.

EYE传递层

the SRes block

CBA ×m

CBA ×m

Typical residual block

CBA×m

CBA ×m

Figure 2. Proposed SRes block and typical residual block. CBA = convolutional layer + batch
normalization + activation function.

The n-th CBA × m can be defined as function Fn(), and the output is Xn. Therefore,
the output of the SRes block is:

Xn = Fn(Xn−1) + Fn−1(Xn−2) (1)

The output of the typical residual block is:

Xn = Fn(Xn−1) + Fn−1(Xn−2) + Xn−2 =
n

∑
i=1

Fi(Xn−i) + X0 (2)

The output of the SRes block is related only to the outputs of the two adjacent convo-
lutional layers. However, the output of typical residual blocks is related to all the previous
layers. We consider that the excessive use of low-level information brings much background
noise and, therefore, reduces the detection accuracy.

3.1.2. Adaptive Receptive Field Block

An adaptive receptive field (ARF) block is designed as the first convolutional layer to
better adapt to the size change in the objects. The ARF block adopts parallel convolution
kernels with different atrous rates (Figure 3a). These convolution kernels can collect
features from regions of different sizes in an input image. They are then concatenated to
create a large kernel with sparse receptive fields (Figure 3b). Thus, more features can be
extracted to adapt to the geometric and shape changes of an object. We added a 1 × 1 kernel
convolutional layer in the parallel stage to counteract the overlap in the center of the large
convolution kernels. Convolutional layers with different atrous rates can adjust the weights
of different regions.

ReLU can suppress negative signal transmission, resulting in the feature loss of small
objects. Therefore, an extra branch is appended to transmit negative signals. The positive
and negative signals are concatenated and then transmitted to a 1 × 1 convolutional
layer with two functions: (1) to optimize the internal weight allocation of the sparse
large convolution kernel to increase its sensitivity to object features; and (2) to reduce the
dimensions of the output maps and suppress less-valuable channels.
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Sparse Convolution Kernel

3×3 Conv
k = 1; rate=1

3×3 Conv
k = 3; rate=1

3×3 Conv
k = 3; rate=2

3×3 Conv
k = 3; rate=3

Concatenation

Input image

Concatenation

3×3 Conv
Relu

(a) (b) 

Negation

Figure 3. (a) shows the ARF block. (b) shows the sparse convolutional kernel. The convolutional
layers in the parallel stage have different atrous rates.

3.1.3. Extremum Pooling

Strided convolution and pooling methods are currently the most popular downsam-
pling methods. However, with the strided convolution and Avg-pooling, it is hard to avoid
decreasing the contrast between small objects and neighborhoods. Conversely, Max-pooling
can adaptively select the maximum grayscale from the region and exhibits outstanding
performance in transferring semantic information. However, a specific drawback associ-
ated with Max-pooling is that it might ignore the critical details of small objects in shallow
convolutional layers. The results of the downsampling are shown in Figure 4a.

We propose an optimized downsampling method called extreme pooling (Ext-pooling)
to address this issue. Ext-pooling (Figure 4b) has two branches that can simultaneously
transfer the local maximum and minimum to the next layer. The output yd

m
s ×

n
s

of Ext-
pooling can be expressed as

yd
m
s ×

n
s
= Ext-pooling(xd

m×n) (3)

where xd
m×n is an input feature map; s is the stride of the Ext-pooling layer.

Down-
sampling

Avg-pooling Max-pooling

Strided
convolution

Proposed
Ext-pooling

Truth box

Feature box

(b) (a) 

Feature Map

1 2 3 4

4 5 6 7

7 6 5 4

4 3 2 1

3 5

5 3

2×2
Ext-pooling

Figure 4. (a) shows the comparison of different downsampling methods. (b) shows an example of
Ext-pooling, Ext-pooling(1, 2, 4, 5) = 1

2 [(max(1, 2, 4, 5) + min(1, 2, 4, 5)].

3.2. Feature Enhancement Based on Attention Mechanism

We utilized low-level images as feature maps to improve the recall of small objects.
However, low-level feature maps have undesirable noise because of the complex clutter
backgrounds. Multilevel feature fusion methods were used in [22,23] to suppress back-
ground noise; however, computational costs were proportionally increased. To reduce the
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interference of false alarms and noise, this study proposes a region attention mechanism
block, namely, the guide block.

The structure of the guide block is shown in Figure 5. Max-pooling and Avg-pooling
were used to process the branch feature maps. The former was used to recover the contour
of an object’s potential region, which may lose information transmission, and the latter
was used to suppress noise and smoothen the image. Two processed images were then
combined by multiplication. Finally, a CBA module was appended to eliminate redundant
information from the image, thereby generating a guide map. Potential object regions have
high weights in the guide map, whereas the background region has weak weights.

3×3 Conv
BN, Relu Guide Map1×1 Conv

Relu

Max-pooling

Avg-pooling
Feature Map

Figure 5. Structure of the guide block.

The guide map is used to activate the corresponding original feature map by element-
wise multiplication, aiming to enhance the response of infrared small objects and suppress the
response of the background. The output image was processed through an additional 3 × 3
convolutional layer to adjust the grayscale information distribution. Note that the feature
map of L3 has more background noise, making it difficult to generate an accurate guide map.
To address this problem, we processed the feature map of L3 layer using the guide map of
its adjacent L4 layer. We adopted a bilinear interpolation algorithm and 1 × 1 convolutional
layer to adjust the feature map resolution and number of channels, respectively.

3.3. Batch-Averaged Biased Classification Loss

The confidence loss of SSD, Lcon f , is the softmax loss over multiple classes confi-
dences (c). It is defined as

Lcon f (x, c) = −
N

∑
i∈ Pos

xp
ij log

(
ĉp

i

)
− ∑

i∈Neg
log
(

ĉ0
i

)
where ĉp

i =
exp

(
cp

i

)
∑p exp

(
cp

i

) (4)

xp
ij = {1, 0} is the indicator for matching the i th default box to the j th ground-truth

box of category p; N is the number of prior boxes matching ground-truth boxes. Ground
truth is the category of each object in the image and its real bounding box.

There are many hard samples in infrared small-object images, and how to distinguish
them is a critical issue. To improve the capacity to detect hard samples, Lin et al. [35]
proposed an adaptive weight classification loss called focal loss. The focal loss is defined as

L f l = −(1− pt)
γ log(pt) where pt =

{
p if y = 1
1− p otherwise

(5)

pt ∈ [0, 1] is the model’s estimated probability for the class with label y = 1; γ ≥ 0 is a
tunable focusing parameter.

However, the critical issue is that the characteristics of infrared and visible images
are different, which makes the typical focal loss perform poorly in the training of infrared
small-object detection models. To solve this problem, we propose a batch-averaged biased
classification loss (Ba loss) based on focal loss.

First, the extreme class imbalance of positive and hard-negative signals encountered
during the training of detectors is a central issue. In response, we set a scale factor β to
adjust the proportion of positive and negative samples involved in calculating the final
classification loss function, thereby suppressing the excessive interference of hard-negative
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samples in the model training process. For instance, if there are N positive examples after
classification, we sort negative examples using the highest confidence loss for each anchor
box and pick the top β · N examples. These positives and negatives are used to compute
the final classification loss.

Second, at the beginning of the training process—limited by the performance of the
initial detection model and characteristics of the sample images—it is difficult to avoid sev-
eral classification errors. These classification errors enormously increase the classification
loss value and significantly affect or even terminate the training of the detection model. To
address this issue, we added a small bias factor to L f l , to avoid gradient explosion. In this
study, the bias was set to 1 × 10−3. The optimized L f l is:

L
′
f l = −(1− pt)

γ log(pt + bias) (6)

Finally, the batch size per iteration was not sufficiently large because of the model and
hardware memory size limitations. Thus, the classification loss in successive iterations is
volatile, particularly in infrared datasets with complex scenes. It is unreliable to evaluate
the detection accuracy of the model using a single-batched classification loss in the later
training period. To solve this problem, a smoothing method was adopted in this study to
adjust the weights of the classification loss of multiple batch samples. The latest confidence
loss has a large weight because it reflects the current situation of the model; early confidence
losses have low weights. The modified confidence loss is

L
′
con fn

=
1
2

Lcon fn +
1
2

L
′
con fn−1

=
1
2

Lcon fn +
1
22 Lcon fn−1 + · · · =

n

∑
j=1

1
2j Lcon fn−j+1

=
n

∑
j=1

1
2j L

′
f ln−j+1

(7)

4. Experiments and Results
4.1. Dataset

According to the definition of SPIE, an object with less than 80 pixels in an image
of 256 × 256 pixels is a small object. The dataset [36] selected in this study contained
15,546 images in which the objects were small fixed-wing UAVs. The dataset acquisition
scene covered the sky, ground, and a variety of complex scenes. Some of the images in the
dataset are shown in Figure 6.

Figure 6. Some images in the experimental dataset. Red boxes mark the real locations of objects. The
resolution of the images is 256 × 256.
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The size distribution of objects in the experimental dataset is shown in Figure 7. A
total of 82.2% are below 20 pixels, 10.8% are 20∼40 pixels, 4.3% are 40∼60 pixels, and 2.7%
are 60∼80 pixels.

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
0

2,000

4,000

6,000

8,000

10,000
co

un
t

pixels per sample
Figure 7. Sizes of objects in the dataset.

The dataset contained 21 scenes, and the training and test sets were divided based on
the serial number of scenes to ensure that the sample ratio was 4:1. The training and test
sets contained data from different backgrounds, and the details are listed in Table 1.

Table 1. Division of the dataset.

Class Training Set Test Set

Data Serial Number 2; 3; 5; 6; 7; 9; 10; 11; 13;
14; 15; 17; 18; 19; 21; 22

4; 8; 12; 16; 20

Number of Images 12,355 3191
Number of Samples 12,954 3590

Average SCR 3.6 4.5

4.2. Experiments Settings

The experiments in this study were run on Ubuntu 20.04, and the deep learning
framework was PyTorch 1.8.1. The GPU was 11 GB RTX3080Ti. We used the cosine decay
method to adjust the learning rate in the training process. The initial learning rate is
1× 10−3, which finally decreases to 1× 10−7. The number of training iterations was set
as 160,000. The batch size was set as 8. β in the loss function was set as 14. We used the
k-means method to cluster the size of ground-truth boxes of the dataset and then preset
anchor box parameters to accelerate the reduction of regression loss.

4.3. Evaluation Criteria

Infrared images tend to have more false alarms compared to visible images. Thus,
visible small-object detection tasks focus on FN, whereas infrared small-object detection
tasks should consider FP. To address this issue, precision, recall, and F1Score were used as
the evaluation criteria in our experiments for infrared small-object detection.

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)
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F1Score =
2 · Precision · Recall
Precision + Recall

(10)

TP is true positive, FN is false negative, and FP is false positive.
The loss curve is a time series curve, and we use Moving Standard Deviation (MSD)

and Moving Average (MA) as the evaluation criteria for Ba loss and typical focal loss curves.
MSD is used to evaluate curve smoothness, and MA is used to evaluate curve trends. The
formulas for MSD and MA are represented as:

MSD =

√
1

N − 1 ∑
i∈L
|Ai −MA|2 (11)

MA =
1
N ∑

i∈L
Ai (12)

where L is the moving window, N is the length of L, and Ai is the point i on curve A.

4.4. Results and Analysis
4.4.1. Ablation Studies

This section assesses the functions of the proposed blocks. We used the SSD as the
baseline and modified the backbone, feature enhancement method, and loss function
according to the method proposed in this study. A comparison of the detection methods
with different configurations is presented in Table 2.

Table 2. Experiment results of detection methods with different configurations.

No.
SSD Detector

TP FN FP Precision
(%)

Recall
(%)

mAP
(%)

F1Score
(%)Backbone Feature Enhancement Optimized Loss

1

VGG16

3121 469 137 95.8 86.9 86.3 91.2
2 X 3182 408 124 96.2 88.6 87.8 92.3
3 X 3262 328 206 94.1 90.9 90.2 92.4
4 X X 3233 357 109 96.7 90.1 89.4 93.3
5

IRS16(ours)

3206 384 159 95.3 89.3 88.3 92.2
6 X 3287 303 46 98.6 91.6 90.8 95.0
7 X 3372 218 275 92.5 93.9 92.7 93.2
8 X X 3396 194 43 98.8 94.6 94.5 96.6

bold number: Optimal result.

First, to assess whether the proposed evaluation criteria were rational, we plotted
the precision, recall, mAP, and F1Score in Table 2, as shown in Figure 8. Further analysis
showed that the trend of mAP was consistent with the recall trend but was not sensitive
to changes in precision. F1Score was sensitive to changes in both recall and precision.
Therefore, this study used F1Score instead of mAP as the evaluation criterion.

It is apparent from Table 2 that IRS16 can transmit more details about small objects.
Compared to No. 1, No. 5 showed an 18.1% decrease in FN, thus resulting in a 2.4% increase
in recall. The result is significant that the guide maps have improved the precision and
recall of the detection model. FN and FP significantly decreased when using guide blocks as
feature enhancement methods, regardless of VGG16 or IRS16. Some of the detection results
and corresponding guide maps are shown in Figure 9. Moreover, the batch-average-biased
classification loss function was more conducive to the detection of small infrared objects.
This effectively improved the recall rate of the detection model. The results of Nos. 3 and 7
show that the recall rates of VGG16 and IRS16 increased by 4.0% and 4.6%, respectively.
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Figure 8. Experiment results of different methods in Table 2. FE means proposed feature enhancement
method, and OL means proposed classification loss.

(a)

(b)

Figure 9. (a) Detection results and (b) corresponding guide maps. The guide maps highlight the
object regions.

Overall, these results indicate that each block proposed in this study can improve the
accuracy of the detection model. A comparison of SSD512 (No.1 in Table 1) and IRSDet
(No. 8 in Table 1) shows that the latter is more suitable for detecting small infrared objects.
Remarkably, the F1Score of the IRSDet significantly increased by 5.4% compared with that
of SSD512, reaching 96.6%.

4.4.2. Different Configurations of the Proposed Model

In this section, we changed the IRS16 configuration and feature enhancement method.
The experimental results are listed in Table 3. The models in Table 3 adopted the classifica-
tion loss proposed in this study.
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Table 3. Different configurations of the proposed model.

No.
Backbone Feature

Enhancement TP FN FP Precision
(%)

Recall
(%)

mAP
(%)

F1Score
(%)Down-Sampling Feature Extraction

1
Ext-pooling

None

Guide block

3411 179 203 94.4 95.0 94.1 94.7
2 Residual block 3357 233 117 96.6 93.5 93.1 95.0
3 SRes block 3396 194 43 98.8 94.6 94.5 96.6

4 Max-pooling SRes block 3399 191 78 97.8 94.7 94.4 96.2
5 Strided Convolution 3083 507 789 79.6 85.9 81.3 82.6

6 Ext-pooling SRes block FPN 3446 144 191 94.8 96.0 95.3 95.4

bold number: Optimal result.

Feature extraction: Comparison of the results for 1, 2, and 3. The detection model
using the serial block has many FPs, which means that the serial block will lose the texture of
the objects, weakening the difference between the noise and objects. In contrast, the residual
and SRes blocks have lower FPs and can improve the accuracy of the detection model.
Remarkably, the excessive use of low-level information of the residual blocks introduced
background noise and, therefore, did not substantially decrease the FPs and FNs.

Down-sampling: Comparison of the detection results of 3, 4, and 5. Max-pooling and
Ext-pooling could improve the precision of the detection models. However, the number
of FPs in the latter was 45% lower than that in the former. The detection model using
convolutional downsampling is inferior to the other detection models. This indicates that
convolutional downsampling is inappropriate for infrared small-object detection.

Feature enhancement method: It is apparent from Table 3 that the detection model
using FPN has the least number of FNs compared to the other detection models, which
reveals that multiscale feature fusion can combine the object information in multiple feature
maps to enhance the features of real objects. However, it also stresses the characteristics of
static noise, resulting in an undesired increase in the FPs.

4.4.3. Convergence Analysis of Gradient Descent

This study compared the focal loss with the proposed classification loss function. We
used the default classification loss function of SSD to pretrain the initial detection model to
avoid gradient explosion owing to focal loss at the beginning of the training process. The
number of iterations of pretraining was 40,000, and the batch size was set to 8. Subsequently,
the focal and Ba loss functions were employed in the model. The number of iterations was
40,000, and the batch size was set to 8. The learning rate was 1× 10−3. The results are
shown in Figure 10. The curve of the classification loss function proposed in this study is
smoother than that of the focal loss function curve and has a faster convergence rate.

The experimental results show that in the training process of the infrared small-object
detection model, the batch-averaged method can effectively solve the loss fluctuation
problem caused by the limitation of GPU memory. Moreover, the scale factor of positive to
negative helps the detection model eliminate the learning dilemma owing to the extreme
class imbalance between positive and negative samples. Using these methods, the model
can focus on distinguishing between hard samples, thereby reducing the loss value for the
detection model.
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Figure 10. Comparison of different classification losses. MA = Moving Average; MSD = Moving
Standard Deviation.

4.4.4. Comparison of Advanced Detection Models

Clearly, from Table 4, the method in this study performed well at infrared small-object
detection. The TPs, FNs, FPs, and precision of the proposed model reached a suboptimal
level, and the recall, mAP, and F1Score reached an optimal level. Using high-resolution
feature maps inevitably reduces the inference speed of the model; however, it decreases the
FNs and FPs. Some of the detection results are presented below.

Table 4. Comparison of different detection methods.

Method TP FN FP Precision
(%)

Recall
(%) mAP (%) FPS F1Score

SSD512 3121 469 137 95.8 86.9 86.3 117 91.2
IRSDet(ours) 3396 194 43 98.8 94.6 94.5 72 96.6
DSSD 3284 306 255 92.8 91.5 88.5 105 92.1
FSSD 3286 304 124 96.4 91.5 91.1 106 93.9
SSD-ST 3207 383 99 97.0 89.3 88.3 83 93.0
FA-SSD 3211 379 271 92.2 89.4 83.8 62 90.8
FD-SSD 3311 279 31 99.1 92.2 92.2 44 95.5
DF-SSD 2920 670 136 95.6 81.3 79.0 81 87.9
YOLOv3 3308 282 435 88.4 92.2 86.4 66 90.2
YOLOv4 3397 193 446 88.4 94.6 93.1 67 91.4

bold number: Optimal result, underline number: Suboptimal result.

It can be seen from the above table that the method in this paper has a good per-
formance in infrared small object detection. The proposed model’s TPs, FNs, FPs, and
precision reached a suboptimal level, and the recall, mAP, and F1Score reached an optimal
level. The use of high-resolution feature maps inevitably reduces the inference speed of the
model but also decreases FNs and FPs. Some detection results are shown in Figure 11.
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Figure 11. Detection results of advanced detection models.

5. Conclusions

This study proposed an infrared small-object detection framework based on deep
learning to improve the detection capacity for small objects such as drones and vehicles in
complex backgrounds. First, we proposed a backbone that uses sparse skip connection and
the optimized downsampling method to enhance the feature representation of small objects.
Then, we proposed a feature enhancement module based on the attention mechanism
to filter potential object regions. Finally, the classification loss function was modified to
improve the detection accuracy for infrared hard samples. A small public infrared dataset
was used to evaluate the detection model. The experimental results show that the IRSDet
proposed in this study performed better than the other advanced small-object detection
methods. The precision and recall rates were 98.8% and 94.6%, respectively, and the F1Score
reached 96.6%.

This paper provides deeper insight into research in the field of infrared object detection
and tracking. The limitations of this study are that we did not optimize the location loss
function, and the inference speed of the current detection models was not sufficiently fast.
Therefore, our future research direction is to explore the position loss function suitable
for small infrared objects and determine an efficient combination of traditional and deep
learning methods.
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