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Abstract: This paper presents an end-to-end deep convolutional neural network (CNN) model for
carrier signal detection in the broadband power spectrum, so-called spectrum center net (SCN).
By regarding the broadband power spectrum sequence as a one-dimensional (1D) image and each
subcarrier on the broadband as the target object, we can transform the carrier signal detection problem
into a semantic segmentation problem on a 1D image. Here, the core task of the carrier signal detection
problem turns into the frequency center (FC) and bandwidth (BW) regression. We design the SCN
to classify the broadband power spectrum as inputs and extract the features of different length
scales by the ResNet backbone. Then, the feature pyramid network (FPN) neck fuses the features
and outputs the fusion features. Next, the RegNet head regresses the power spectrum distribution
(PSD) prediction for FC and the corresponding BW prediction. Finally, we can achieve the subcarrier
targets by applying non-maximum suppressions (NMS). Moreover, we train the SCN on a simulation
dataset and validate it on a real satellite broadband power spectrum set. As an improvement of
the fully convolutional network-based (FCN-based) method, the proposed method directly outputs
the detection results without post-processing. Extensive experimental results demonstrate that the
proposed method can effectively detect the subcarrier signal in the broadband power spectrum
as well as achieve higher and more robust performance than the deep FCN- and threshold-based
methods.

Keywords: carrier signal detection; broadband power spectrum; deep learning; convolutional net-
works; regression

1. Introduction

With the rapid development of wireless mobile communication, satellite communi-
cation, and other communication technologies, the electromagnetic spectrum space has
become very complex and crowded. The safe use and effective control of the electromag-
netic spectrum have turned into the critical task of radio monitoring, particularly in the
non-cooperative electromagnetic spectrum monitoring field. Carrier signal detection is
the first and most crucial step of non-cooperative signal processing. Through accurately
detecting only the signal in the spectrum, we can further perform modulation recognition,
channel coding identification, source coding identification, specific emitter identification,
and other information analysis processes.

Few algorithms [1–6] are available for carrier signal detection, and these algorithms are
mainly based on threshold values and human intervention, although some improvements
have been noted using the double-thresholds method [7,8]. Kim et al. [9] proposed the use
of a slope tracing-based algorithm to separate the interval of signal elements based on signal
properties, such as amplitude, slope, deflection width or distance between neighboring
deflections. For the practical application of these methods, many restrictions exist due to
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the fact that some parameters cannot be accurately estimated as well as the high complexity
of computations.

Recently, artificial intelligence (AI), including machine learning, deep learning, and
reinforcement learning, has been steadily growing as a research field and has shown suc-
cessful results in diverse applications. Moreover, deep learning is one of the most exciting
and fast-growing techniques with numerous improvements, particularly in domains, such
as computer vision and natural language processing [10]. Meanwhile, many researchers
have performed considerable exploration of AI and its application in wireless communica-
tion [11–13]. O’Shea et al. [14] discussed several deep learning applications for the physical
layer. They introduced a new way of thinking about communications as an end-to-end re-
construction optimization task, using autoencoders to jointly learn transmitter and receiver
implementations as well as signal encodings without prior knowledge.

Deep learning has been applied to carrier signal detection. For example, Morozov and
Ovchinnikov [15] applied a fully connected neural network for the detection of FSK signals.
Moreover, Li et al. [16] used generative adversarial network (GAN) and CNN for blind
detection of underwater acoustic communication signals. In contrast, Yuan et al. [17] used
deep learning for blind morse signal detection in wideband spectrum data.

Inspired by two-dimensional (2D) image semantic segmentation [18–20], we employed
an FCN-based model [21] to solve the carrier signal detection problem in the broadband
power spectrum. By regarding the broadband power spectrum sequence as a 1D image and
each subcarrier on the broadband as the target object, we can transform the problem into a
semantic 1D image segmentation problem. On the basis of the FCN-based model, the 1D
deep CNN model was designed to categorize each point on a broadband power spectrum
array into two categories (i.e., subcarrier or noise), then we can locate the subcarrier
signals’ position on the broadband power spectrum. We use a simulated and real satellite
broadband power spectrum dataset to train and validate the 1D CNN model, respectively.
The experimental results demonstrate that the FCN-based method can successfully detect
the subcarrier signal and achieve higher accuracy than the slope tracing method.

In accordance with [22], a deep learning-based framework named SigdetNet is applied
to the multi-signal detection task, which focuses on each point classification of the power
spectrum and is essentially based on FCN.

However, the FCN-based methods [21,22] cannot handle the carrier signal detection
very well in these situations. One reason is that if a point in one subcarrier array has been
categorized as noise, then the subcarrier would be wrongly recognized as two subcarriers.
Another reason is that when two or more neighboring subcarriers are very close to each
other, the FCN-based method cannot correctly distinguish between the demarcation points,
and this would cause severe fault and leak detections.

In this paper, to solve the problems above, we propose SCN, an end-to-end CNN
model based on deep learning. Contrary to the FCN-based method, which transforms
the carrier signal detection problem into a semantic 1D segmentation image problem,
we regard each subcarrier in the broadband power spectrum as an independent target
object and directly localize its FC position and BW. Therefore, the carrier signal detection
problem turns into a 1D image object localization problem. The proposed SCN classifies
the broadband power spectrum as inputs and extracts the features of different length scales
by the ResNet backbone. Then, the FPN [23] neck fuses the features and outputs the fusion
features. Next, the RegNet head regresses the PSD prediction for FC and the corresponding
BW prediction. Finally, we can achieve the subcarrier targets by applying NMS. Moreover,
we train the SCN on a simulation dataset and evaluate it on an actual satellite broadband
power spectrum set. As an improvement of the FCN-based method, the experimental
results demonstrate that the proposed method can effectively detect the subcarrier signal
in the broadband power spectrum as well as achieve higher and more robust performance
than the FCN-based method. The main contributions of this work are summarized as
follows:
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1. We propose an end-to-end deep CNN-based model for carrier signal detection in
the broadband power spectrum, so-called SCN. Without prior knowledge and post-
processing, the SCN directly achieves the detection results;

2. We conducted several experiments to demonstrate the superiority of our proposed
method compared with other existing methods. Additionally, the model scale and the
amount of training simulation samples on the performance of the proposed method
are investigated.

The remainder of this paper is organized as follows: Section 2 further describes the
carrier signal detection problem in the broadband power spectrum. Section 3 introduces
the details of the proposed method. Section 4 provides the specific experimentations,
including the dataset for the experiments, training details, the evaluation results, and some
comparisons with other methods. Finally, Section 5 concludes the paper.

2. Problem Description
2.1. The Core Task of Carrier Signal Detection Problem

At present, in the 2D object detection problem, it is always preferrable to use a rectangle
to localize the object in the images. Therefore, most of the end-to-end deep learning-based
solutions are engaged in the regression of the corner points or center points position of the
rectangle, as well as the width and height [24,25].

As Figure 1 shows, inspired by the 2D object detection problem, the 1D power spec-
trum is regarded as a 1D image and each subcarrier as an object. Moreover, we can use
rectangles to localize the subcarriers. Therefore, the carrier signal detection problem turns
into a 1D object localization problem. However, contrary to the 2D object detection problem,
the core task of the carrier signal detection problem in the broadband power spectrum is
the detection of the FC and BW of all subcarriers in the wideband power spectrum. Then,
we can easily split the subcarrier signal from the broadband signal to perform modulation
classification as well as further research and analysis.
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Figure 1. The core task of carrier signal detection problem in the broadband power spectrum.

The proposed SCN directly regresses the FC and BW in this paper and is an end-to-end
carrier signal detector. Furthermore, its input is the broadband power spectrum, and the
outputs are all of the subcarriers’ positions and the corresponding BW of the broadband.

2.2. The End-to-End Detection Process

Figure 2 shows the end-to-end detection process of the carrier signal detection in
the broadband power spectrum. First, for the wideband time-domain signal, we utilize
the Welch method [26,27] to estimate the broadband power spectrum. Then, considering
that the broadband power spectrum is an input of the network, the proposed SCN can
automatically regress the FC and the corresponding BW of all subcarriers.
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Figure 3. The architecture of SCN-13× includes three main parts, the residual backbone, the FPN 
neck, and the RegNet head. 

Figure 2. The detection process of the carrier signal detection in broadband power spectrum. The
whole process mainly includes two steps. First, the Welch power spectrum estimation method is
utilized to estimate the broadband power spectrum. Then, the proposed SCN regresses the FC and
the corresponding BW of all the subcarriers of the broadband power spectrum.

The Welch power spectrum estimation is the average of the modified periodograms,
namely:

PW
xx =

1
k

k−1

∑
i=0

∣∣∣∑M−1
n=0 xi(n)ω(n)e−j2π f n

∣∣∣2
∑M−1

n=0 ω2(n)
i = 0, 1, . . . , k− 1 (1)

The time-domain signal sequence is separated into k data segments with an overlap
of 50% and a length of 2M. Additionally, ω(n) is the window function of a normalization
factor for the power estimation results.

3. Methodology
3.1. SCN Architecture

Figure 3 presents the architecture of the SCN, which includes three main parts, the
residual backbone, the FPN neck, and the RegNet head. The inputs of the SCN are the 1D
broadband power spectrum, and the model outputs are PSD and BW regressions. Moreover,
all the local maximums of PSD regression are the subcarrier FC positions.
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• The Residual backbone

The residual backbone in SCN is modified by the deep residual network (ResNet) [28],
which is widely used in the computer vision field. Additionally, it has emerged as a family
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of extremely deep architectures showing compelling accuracy and excellent convergence
behaviors. In our work, since the inputs are a batch of 1D broadband power spectrum
sequences, all of the parameters are suitable for setting the dimension of the inputs. Mean-
while, we still utilize the 2D Conv application interface (API) and fix the features to the
width channel. For instance, if the Conv kernel size is (1, k) with a stride of (1, s), then the
padding size would be (1, (k− 1)/(2× s)).

As can be seen in Figure 3, we add a convolutional block attention module (CBAM) [29]
for better feature extraction prior to the residual blocks. Contrary to the original CBAM,
we directly concatenate the average global pooling (GAP) and maximum global pooling
(GMP) features in the channel attention module (CAM). Additionally, we use a 1 × 1 Conv
to replace the shared multilayer perceptron (MLP). Moreover, we set the groups to four to
reduce the computing complexity.

In Figure 3, the residual layer in SCN is contrary to the original residual layer. Herein,
we add a simplified CAM (S-CAM) prior to the last non-linear activation of the residual
layer. Compared with the CAM, only GAP is used prior to the 1 × 1 Conv in S-CAM.
Additionally, we use only one residual block and downsample the feature length in each
residual layer, thus the downscale increases by two times. In our work, the input spectrum
length is set to 32,768, which is considerably longer than the 2D image size in the object
detection tasks. Therefore, we can set the downsample times (M) between 6 to 13 and
name the whole corresponding model as SCN-M×. In the architecture of SCN-13× and the
residual backbone, the number in the boxes represents the strides to the input spectrum
length, which increases with the number of residual layers and is equal to 2M, as shown in
Figure 3. Moreover, the output features of each residual layer are called PM. Furthermore,
to reduce the complexity of the original residual layers, the number of feature maps is set
to 64 + 32 M.

• The FPN Neck

Feature pyramid structures (FPN) are essential in recognition systems to detect objects
at different scales [23]. This top-down architecture builds high-level semantic feature maps
with lateral connections at all scales. We utilize FPN as the features fusion neck module,
as shown in Figure 3. With the skip-connections, the inputs of FPN are the outputs of the
residual layers. We use the bilinear mode in the upsample layers and perform the last
regression at four strides to the input spectrum length. All the Conv layers in the FPN head
contain 256 channels. This architecture efficiently fuses all the top-to-bottom scale features.

• The Regression Network Head

The PSD and BW regressions are produced by almost the same structure modules
in the RegNet head, as shown in Figure 3. The modules consist of a depthwise separable
convolutional layer [30] with 256 channels, rectified linear unit (ReLU) [31], and a 1 × 1
Conv with one channel in common. However, we hope that in the PSD regression, all the
values in the subcarrier center position are 1 and the others are considered as background
and 0. Therefore, we can use the non-linear sigmoid function as the output layer. Moreover,
since we directly regress the BW, the ReLU is used for the BW regression output layer to
ensure positive results.

3.2. SCN Training Targets and Loss Function

As mentioned above, in SCN, we regress the two sets of prediction key points, PSD
prediction for subcarrier FC positions and the corresponding BW prediction.

In Figure 4, the PSD targets are an example of the input power spectrum. Let I ∈ SL

be an input power spectrum of length L. Therefore, we aim to produce the PSD outputs

P ∈ [0, 1]
L
4 for the set output stride to a fixed value of 4 in SCN. Let Pi be the score at the ith

point in the predicted PSD, and let Yi be the ground-truth PSD, where the subcarrier center
denotes Pi = 1, corresponding to a detected keypoint, while the others are all background

and Pi = 0. In accordance with [24,25], a 1D Gaussian kernel e−
(x−Px)2

2σ2 is used to produce
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the ground-truth at the frequency center of the PSD, where σ is 1/3 of the corresponding
BW. If the two Gaussians overlap, we consider the element-wise maximum [32].
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where α and β are hyper-parameters of the modified focal loss and N is the number of all
subcarriers in the power spectrum. We set α to 2 and β to 4 in all our experiments. The loss
reduces the penalty around the ground-truth locations.

Let BSW be the broadband power spectrum bandwidth, and let BWk be the kth subcar-
rier bandwidth. Therefore, we can use an embedding vector to predict the BW regression.
Here, the kth subcarrier center is the ground-truth embedding value set to Ŵk = L×BWk

BSW .
As a result, we can predict a set of BW regression embedding and directly use the raw spec-
trum coordinates without normalizing the scale, so-called Wk. To train the BW regression,
we utilize a L1 loss at the center point of the subcarrier. All the other locations are not
considered and the formula is as follows:

Lbw = − 1
N

N

∑
k=1

∣∣∣Ŵk −Wk
∣∣∣ (3)

To balance the PSD and BW losses, we use a constant λbw to scale the BW loss. The
overall training loss is as follows:

Ldet = Lpsd + λbwLbw (4)

In all our experiments, λbw = 0.1.

3.3. SCN Inference Details

The aim of this work is to utilize SCN for the detection of the carrier signal results
directly with the fusion of PSD and BW regressions in the inference phase.

First, we apply a 1 × 7 max pooling layer on the PSD regression to avoid the local
maximum at inference time. Then, we pick the top 300 centers from the PSD regression,
which are the scores of the predicted subcarriers. As a result, we can achieve the predicted
subcarriers with the corresponding BW prediction by applying NMS.

In the NMS process, the intersection-over-unit (IoU) on carriers is defined by the
following formula:

IoUcarrier =
BWoverlap

BWunion
(5)
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where the BWoverlap and BWunion are the length of overlap and length of union between the
two predicted subcarriers, as shown in Figure 5. The predicted subcarrier scores remain as
> 0.7 and IoU > 0.9.
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4. Experiments
4.1. Data Preparation

In accordance with [21], the test set is a set of real-world satellite broadband power
spectrum, consisting of 9581 subcarriers whose carrier-to-noise ratio (CNR) are all greater
than 4 dB and BW regressions are greater than 10 kHz. The satellite power spectrum
bandwidth is 36 MHz, and the raw coordinate length is 32,768.

The training set produced by the MATLAB simulation signal power spectra is es-
timated by the Welch method with a simulation of complex time-domain signals. This
produces 100,000 simulation samples for training the network. Additionally, in all the
training processes, the ratio of the number of training sets between the validation sets is 4:1.

4.2. Model Training

As can be seen in Table 1, we implement the SCN in PyTorch [34]. Additionally, the
parameters of the network are randomly initialized under the default setting of PyTorch
with no pre-training on any external dataset. During the training process, we set the input
length of the network to 32,768, which leads to an output length of 8192. Moreover, we
adopt Dropout [35] prior to RegNet to reduce overfitting.

Table 1. SCN training parameters.

Implement Library PyTorch 1.10.0
Hardware Platform 2 GeForce RTX 3080Ti GPU, Intel(R) Bronze 3204 CPU
Operation System Ubuntu 20.04

Model Input Length 32,768
Batch Size 32

Training Epochs 150
Dropout Probability 0.3

Optimizer Adam

Learning Rate Strategy Cosine Annealing Warm Restarts,
initial value 2 × 105, T_0 = 10, T_mult = 2

Adam optimization method [36] is utilized to optimize the overall training loss. More-
over, we employ a batch size of 32 and the network on 2 NVidia GeForce RTX 3080Ti graphic
process units (GPUs) (Santa Clara, CA, USA) and Intel(R) Bronze 3204 CPU (Santa Clara,
CA, USA), Ubuntu 20.04 operation system (London, UK). Furthermore, all the models for
150 epochs are trained with a learning rate strategy of cosine annealing warm restarts [37].

This paper proposes two different methods to train the proposed SCN. The first method
compares the different residual downsample layers with the same training simulation sam-
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ples, while the second method compares the different numbers of training simulation
samples with the same residual downsample layers, as shown in Figures 6 and 7, respec-
tively. In Figure 6, 20,000 simulation samples are used to train the networks. The residual
downsample layer ranges from 6 to 13 and the results demonstrate that both the PSD and
BW losses converge with the training epoch. Subsequently, they increase and decrease
with the increasing number of residual downsample layers. In Figure 7, a total of 10,000,
20,000, 40,000, 60,000, 80,000, and 100,000 simulation samples are used to train SCN-11x.
Moreover, the results demonstrate that both PSD and BW losses converge with the training
epoch. Subsequently, they increase and decrease with the increasing number of training
simulation samples. Nevertheless, the specific converged loss values indicate that the scale
of residual downsample layers significantly influences the scale of training samples.
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4.3. Evaluation Results

During the evaluation, we calculate the F-score by the average precision rate (AP)
and average recall rate (AR) to quantify and compare the performance of different trained
models using the following formula:

AP =
∑ TP

∑ TP + ∑ TN
(6)

AR =
∑ TP

∑ TP + ∑ FN
(7)



Electronics 2022, 11, 1896 9 of 18

F-Score =
2 ∗ AP ∗ AR

AP + AR
(8)

where TP (true positive) denotes the number of subcarriers that are correctly detected,
TN (true negative) denotes the number of subcarriers that are wrongly detected, and FN
(false negative) denotes the number of subcarriers that are not detected, but are included in
the test set. F-score is the harmonic means of AP and AR and is more reasonable than the
arithmetic means [38].

Figures A1–A8 show qualitative examples of the actual satellite broadband power
spectrum set. All the subcarriers in these broadband power spectra have been correctly
located and colored with a rectangle, which indicates that the proposed method is effective
and achieves outstanding performance.

• SCN Model scale influence

With the application of CNN-based deep learning method in many fields, several
studies [28,39–41] show that the network scale (depth or layers) is significant for the
performance of CNN. Moreover, the more layers used, the better the performance of the
model. Furthermore, the different scales of SCN are validated on the test set with the
number of residual layers ranging from 6 to 13.

In Figure 8a, the F-score increases with the SCN model scale. Moreover, Figure 8b
shows the precision-recall (PR) curves of these SCNs. Both AR and AP achieve high area
under the curve (AUC) values when the network scale is beyond SCN-8x. The SCN-6x
and SCN-7x do not have a good recall ratio, which leads to a deployment problem in real
applications. The results indicate that the proposed method is effective and accurate.
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• The effect comparison of the training set amounts

At present, deep learning is a data-driven science [10]. The more training samples
used, the better the model would perform to a certain extent. Figure 9 shows the evaluation
results of the SCN-11x trained with different numbers of training sets. We can see that
the performance increases slightly as the training samples increase. On the basis of our
analysis, all of the training samples are generated randomly through simulation, thus the
diversity of the samples is insufficient. However, this also indicates that we do not have
to use plenty of training samples to train the network for carrier signal detection in the
broadband power spectrum. Furthermore, the fewer training samples used, the lower the
cost of training time.
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• Complexity comparison

On the basis of the performance comparison of the SCN scale, we know that the model
performs better with the SCN model scale. In comparison, the model complexity would
also increase, as shown in Table 2. In practice, real-time is an essential factor in signal
processing. A more complex model increases the processing time. Therefore, we need the
most efficient model to balance the performance and processing time cost. Additionally,
as can be seen in Table 2, the performance of SCN-11× is as good as SCN-13×, but the
inference time cost is 89.35% of SCN-13×, which is the most appropriate candidate.

4.4. Performance Comparison to Other Methods

To demonstrate the superiority of the SCN, the performance comparison is carried out
with four other methods, including the double-thresholds method [7], the slope tracing
method [9], the FCN-based models [21], and SigdetNet [22]. Both of these methods are eval-
uated on the same test datasets. The two deep learning-based methods (FCN-based models
and SigdetNet) are trained with 20,000 simulation samples, as mentioned in Section 4.2.

Table 2 shows the performance comparison between the SCN method and other
methods. Compared with the double-thresholds method and slope tracing method, both of
the deep learning-based methods are significantly superior. From our analysis, setting the
appropriate thresholds for these threshold-based methods is difficult, which is the main
reason for the vast performance gaps from the deep learning-based methods.

Compared with SigdetNet, the deep learning method provides different results [22],
while we found that FocalLoss performs better than DiceLoss in our experiments. However,
the proposed SCN achieves better performance when the SCN scale is greater than 10.

As an improvement of the FCN-based method, the SCN method improves the AP
from 98.32% to 99.88%, AR from 98.13% to 99.12%, and F-score from 98.22% to 99.48%,
respectively. It is evident that the proposed method achieves higher AP scores than the
FCN-based method at all different scales of networks. However, the higher AP scores
scarify the AR scores when the scale of the network is small in the SCN method.
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Table 2. The performance comparison between the proposed method and other methods.

AP AR F-Score

Double-Thresholds 77.64% 68.21% 72.62%

Slope Tracing 89.18% 88.63% 88.90%

SigdetNet with DiceLoss 95.64% 98.82% 97.20%

SigdetNet with FocalLoss 98.01% 98.79% 98.40%

FCN-Based 1 90.29% 89.47% 89.88%

FCN-Based 2 92.56% 93.71% 93.13%

FCN-Based 3 93.09% 93.88% 93.48%

FCN-Based 4 94.62% 95.66% 95.14%

FCN-Based 5 95.65% 97.39% 96.51%

FCN-Based 6 97.89% 97.49% 97.69%

FCN-Based 7 98.32% 98.13% 98.22%

FCN-Based 8 98.30% 97.43% 97.86%

FCN-Based 9 98.23% 97.66% 97.94%

FCN-Based 10 98.26% 97.56% 97.91%

FCN-Based 11 98.20% 97.25% 97.72%

FCN-Based 12 98.10% 97.70% 97.90%

FCN-Based 13 98.26% 97.89% 98.07%

SCN-6× 98.35% 43.09% 59.93%

SCN-7× 99.27% 60.59% 75.25%

SCN-8× 99.70% 82.01% 89.99%

SCN-9× 99.75% 94.55% 97.08%

SCN-10× 99.45% 96.99% 98.21%

SCN-11× 99.84% 99.12% 99.48%

SCN-12× 99.73% 98.59% 99.15%

SCN-13× 99.88% 99.08% 99.48%

Table 3 shows the complexity comparison between SCN and the other deep learning-
based methods. Although the floating-point operations (FLOPs) and network parameters
of the SCN models are dozens of times more than the SigdetNet and FCN-based methods,
the inference time cost only increases by 22.0% and 52.2%. Due to the fact that the proposed
SCN method is an end-to-end deep learning-based network without post-processing, while
the FCN-based and SigdetNet methods only predict the classification probability of each
point of the inputs, they cannot directly achieve the detection results. Therefore, without
the post-processing time cost, the proposed method achieves higher performance using a
considerably more complex CNN-based model.
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Table 3. The complexity comparison between the proposed method and the other deep learning-based
methods.

Time Cost/ms FLOPs/M Parameters/K

SigdetNet with FocalLoss 15.32 909.97 297.52

FCN-Based 1 2.01 6.29 16.03

FCN-Based 2 3.32 7.86 25.44

FCN-Based 3 3.49 8.65 34.85

FCN-Based 4 4.78 9.04 44.26

FCN-Based 5 5.24 9.24 53.66

FCN-Based 6 5.71 9.34 63.07

FCN-Based 7 6.14 9.39 72.48

FCN-Based 8 6.46 9.41 81.89

FCN-Based 9 7.23 9.42 91.3

FCN-Based 10 7.93 9.43 100.7

FCN-Based 11 9.11 9.43 110.11

FCN-Based 12 9.71 9.44 119.52

FCN-Based 13 12.28 9.44 128.93

SCN-6× 8.98 12,923.99 3312.23

SCN-7× 10.25 13,338.22 4120.42

SCN-8× 11.45 13,545.35 4928.61

SCN-9× 12.85 13,648.92 5736.8

SCN-10× 14.36 13,700.71 6544.99

SCN-11× 16.7 13,726.62 7353.19

SCN-12× 16.83 13,739.58 8161.38

SCN-13× 18.69 13,746.07 8969.57

Furthermore, the SCN method prevents the typical problem and false detection of the
FCN-based method, which successfully improves the detection performance. For example,
Figure A4 shows that the SCN method locates the precise subcarrier, whose bandwidth is
very wide and the power distribution is relatively uneven, while it is a typical example of
false detection in FCN-based method.

5. Discussion and Conclusions

In this paper, an end-to-end deep learning-based method for carrier signal detection
in the broadband power spectrum, so-called SCN, was proposed. By regarding the carrier
signal problem as an object localization task in the 1D broadband power spectrum image
rather than the segmentation task in the FCN-based method, the core task is to regress the
centers of all subcarriers and their corresponding bandwidths. To improve the FCN-based
method, we apply the attention mechanism and use more complex residual layers in the
feature extraction modules. Then, the FPN neck fused the different scales of features and
automated regressions to PSD and BW predictions by the RegNet head. As shown in
Table 2, the experiments have suggested that the SCN method, through training with the
simulation samples, effectively handles the carrier signal detection problem and achieves
higher performance than the FCN- and threshold-based methods.

Moreover, in the training process, Figures 6 and 7 suggest that the proposed model
converges with the training epochs. Meanwhile, increasing the scale of the model or
using more numbers of training samples both improve the PSD and BW loss to a lower
value. However, while the SCN scale is beyond 8, the distance of performance on the
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validation simulation samples becomes smaller as the training epochs increase, as shown
in Figure 8. Furthermore, in Figure 9, the number of training samples slightly impacts the
validation performance when the losses converge. Considering that the validation samples
are simulated in the same conditions as the training samples, our analysis indicates that the
model tends to overfit as the losses converge. Increasing the variety of sample generation
conditions or the actual signal sample numbers would help alleviate this phenomenon.

Finally, in the evaluation phase, the performance increases with the SCN scale, as
shown in Table 2. Meanwhile, Table 3 indicates that the SCN method requires significant
computation complexity, which causes more inference time than the FCN-based methods,
even though the SCN methods do not require post-processing. Therefore, in our future
work, we plan to reduce the computation complexity of the proposed method to allow for
more efficiency in real applications.
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Appendix A

Figures A1–A8 show the qualitative examples of the actual satellite broadband power
spectrum set.
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