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Abstract: Multivariate time-series forecasting is one of the crucial and persistent challenges in time-
series forecasting tasks. As a kind of data with multivariate correlation and volatility, multivariate
time series impose highly nonlinear time characteristics on the forecasting model. In this paper, a new
multivariate time-series forecasting model, multivariate temporal convolutional attention network
(MTCAN), based on a self-attentive mechanism is proposed. MTCAN is based on the Convolution
Neural Network (CNN) model, using 1D dilated convolution as the basic unit to construct asymmetric
blocks, and then, the feature extraction is performed by the self-attention mechanism to finally obtain
the prediction results. The input and output lengths of this network can be determined flexibly.
The validation of the method is carried out with three different multivariate time-series datasets.
The reliability and accuracy of the prediction results are compared with Long Short-Term Memory
(LSTM), Gated Recurrent Unit (GRU), Convolutional Long Short-Term Memory (ConvLSTM), and
Temporal Convolutional Network (TCN). The prediction results show that the model proposed in
this paper has significantly improved prediction accuracy and generalization.

Keywords: multivariate time-series forecasting; self-attention mechanism; deep learning; neural
network

1. Introduction

A multivariate time series is an important data object, which is a series of obser-
vations formed by multivariate variables recorded in chronological order. Multivariate
time series are used in more and more fields, such as the environment [1,2], finance [3,4],
transportation [5–7], healthcare [8], and energy [9,10]. In these fields, time-series prediction
is used to monitor some critical data and avoid the occurrence of unforeseen situations
that cause economic losses. For multivariate time-series prediction tasks, early solutions
mainly choose recurrent networks, but recurrent networks suffer from gradient disappear-
ance and gradient explosion problems, due to which the long-term dependence problem
of RNNs [11,12] cannot be solved. The time-series structure on the one hand makes it
difficult to have efficient parallel computing capability (the computation of the current
state depends not only on the current input but also on the input of the previous state),
and on the other hand makes the RNN model, including variants of LSTM [13], GRU [14],
etc., more similar to a Markov decision process [15] in general and difficult to extract
global information. In addition, CNN models [16] have started to be applied to sequence
modeling. For multivariate time-series [17] problems, these models also have difficulty
capturing the mapping relationships between multiple variables as well as adapting to
complex data features.

Traditional CNNs are generally considered less suitable for modeling time-series
problems, which is mainly due to the limitation of convolutional kernel size and thus
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cannot capture long-time dependent information well. With the development of deep
learning, some specially processed convolutional neural networks can also achieve good
results for time-series modeling. The TCN model [18] based on CNN model uses causal and
inflation convolution and residual modules [19] to make it suitable for temporal modeling
tasks, and TCN can reach or even surpass the RNN model in many tasks. In contrast
to the RNN model, the CNN model has no temporal structure and can perform parallel
computations to maximize the use of computing power. Our goal is to explore a better
architecture based on CNN with attention mechanism and feedforward neural networks to
achieve an approximate replacement of recurrent networks and improve training efficiency
while ensuring effectiveness for multivariate time-series problems.

Inspired by TCN and the attention mechanism [20], in this paper, we propose a MT-
CAN model for multivariate time-series prediction. In this MTCAN, we use a feedforward
neural network as the base unit to construct residual blocks; then, we enhance the interpre-
tation of features by an asymmetric residual block network [21] and finally perform feature
extraction by a self-attentive mechanism. The paper is organized as follows: Section 2
reviews the background of the work. Section 3 describes the modeling approach. The
experiments are analyzed and discussed in Section 4. Finally, conclusions and outlook are
drawn in Section 5.

2. Background and Related Work

In the task of time-series prediction [22,23], researchers have proposed many solutions.
Various models have been developed from the earliest classical statistical-based methods
to the current deep learning algorithms. In 1927, the British statistician G.u. Yule proposed
the AR (Auto Regressive) model [24,25]. In 1931, G.T. Walker proposed the MA (Moving
Average) model and the ARMA model [26,27], which formed the basis of time-series
analysis. Subsequently, Box and Jenkins discussed the ARIMA (an autoregressive integrated
moving average) model [28]. All four models require the time series to be univariate,
homoskedastic linear models. In recent years, techniques such as machine learning and
neural networks have developed rapidly, and these new methods have been applied to
time-series forecasting. In 1998, White applied the neural network approach to time-series
forecasting. Vladimier N. Vapnik proposed the original support vector machine [29] and
used it in capital cost estimation. In 2006, Geoffery Hinton and Ruslan Salakhutdinov
proposed a solution to the gradient disappearance problem in deep network training, and
deep neural networks came back into the limelight. In particular, CNNs and RNNs have
received widespread attention. Convolutional neural is widely used in image recognition,
and recurrent neural network is widely used in sequence modeling.

The main approach in deep learning to deal with prediction problems is recurrent
neural networks. However, since recurrent neural networks suffer from gradient disap-
pearance or explosion, they cannot solve the long-range dependence problem. For this
problem, Hochreiter and Schmidhuber proposed the long short-term memory network [13].
For the gradient disappearance problem, a gate mechanism is used to solve it. For the
problem of short-term memory overwriting long-term memory, LSTM adopts a cell state
to preserve long-term memory and then cooperates with the gate mechanism to filter the
information to achieve the control of long-term memory. The gated recurrent cell network
was proposed by Cho et al. GRU can be regarded as a simplified version of LSTM. For
LSTM and GRU, the iterative process can be greatly accelerated because GRU has fewer
parameters and converges faster.

Although CNNs are generally tasked with image classification, with dedicated design,
they have been confirmed to be significant tools for sequence modeling and prediction.
Bai et al. proposed time-domain convolutional networks, which consist of dilated, causal
1D convolutional layers with the same input and output length. They were able to show
that in many tasks, convolutional networks can achieve better performance than that of
RNNs in avoiding common drawbacks of recursive models, such as the gradient explo-
sion/disappearance problem or the lack of memory retention. For a multivariate time-series
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task featuring the dataset of multivariate series at time step t, depending on the previous
data point, any two data points may be correlated, and the data within the data points may
be correlated. Therefore, a feasible multivariate time-series model should describe not only
the correlation between the elapsed relationships and data points as in a univariate time
series but also the correlation of the data within the data points.

Wan et al. proposed an M-TCN model [30] in solving multivariate time-series forecast-
ing problems. It is proved to have better performance on multivariate time-series tasks, but
M-TCN uses fully connected layers, which leads to a large number of parameters in the
model and thus makes the model match more time-consumption.

The self-attention mechanism is a new attention mechanism proposed by Ashish
Vaswani et al. The attention mechanism essentially assigns a weight factor to each element
of the sequence, which can also be understood as soft addressing. If each element in the
sequence is stored as (K, V), then the attention mechanism accomplishes addressing by
computing the similarity between Q and K. The similarity computed between Q and K
reflects the importance of the taken out V value. The difference between the self-attention
mechanism and the attention mechanism is that the self-attention mechanism reduces the
dependence on external information, and it is the elements in the sequence that find the
similarity themselves. Such a mechanism enhances the capture of dependencies. We adopt
the self-attention mechanism for feature extraction here to improve the effectiveness of the
model and reduce the number of parameters.

In this context, our model uses a TCN-based design with a self-attention mechanism
for feature extraction. It is tested under three datasets in the areas of PM2.5 prediction and
electricity prediction as well as weather prediction.

3. Methodology

For the multivariate time-series forecasting task, we first describe the definition and
construction of a sequence model. What we highlight is the idea and structure of the
proposed model MTCAN by incorporating a self-attention mechanism.

3.1. Sequence Problem Statement

Deep learning is essentially the use of deep neural networks to fit the complex nonlin-
ear relationships between data and labels. In order to obtain the desired nonlinear mapping
during model learning, a large amount of data is needed for learning to extract the features
of the data. A multivariate time-series forecast is actually a sequential prediction prob-
lem [31] as well. Suppose the input sequence is x1:T = x1, x2, . . . , xT with length T and the
target sequence is y1:H = y1, y2, . . . , yH with length H. The goal of model is to construct a
nonlinear mapping of the predicted time series from the current state:

y1:H = SeqMod(x1:T) (1)

It is important to note a constraint that yh should satisfy the causal constraint to prevent
future information xt>h from leaking. The length of the input and output may not be the
same. The SeqMod is essentially to find a neural network with the best prediction result.

In the traditional time-series modeling process, RNNs are generally chosen for se-
quence modeling because of the reliance on past information for sequence modeling.
However, with the development of feedforward models, researchers have found that by
applying special treatments to feedforward models, they can also be used for sequence
modeling and can take advantage of parallel training.

3.2. Model Structure

For the time-series prediction problem, the memory of past information is required,
and CNNs in general do not have the ability to remember. We generally believe that RNN
models, such as LSTM, are the best standard approach to solve time-series prediction
problems; however, CNN models can save a lot of time by being able to perform parallel
operations compared to RNN models. Based on these considerations, we designed the
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general framework inherited from CNNs. The goal is to obtain the best structures of
convolutional network design as a flexible and stable framework for multivariate time-
series forecasting. We denote the proposed network structure as the multivariate temporal
convolutional attention network, MTCAN. The salient features of MTCAN are (1) a one-
dimensional convolution is used instead of causal convolution, (2) a Residual Connect
structure is used, (3) an attention mechanism is used to capture features, and (4) the input
and output length of the model can be determined flexibly. The MTCAN network structure
is in general a multi-headed network structure. In this work, we are using the asymmetric
residual blocks and the attention mechanism to construct an effective network approach.
The detailed structure of the model is as follows.

3.2.1. 1D Dilated Convolution

In causal convolution [32], the output at time t is only convolved with elements from
the previous layer at time t and earlier. One major drawback of this network design is that
in order to get a large enough perceptual field to obtain information over a long period of
time, we need a very deep network or a very large filter, which would make the model
too large. In causal convolution, it has a one-to-one causal relationship between input and
output. For time-series problems, this design leads to no parallel computation during the
operation, which makes feature learning inefficient. The one-dimensional convolutional
network is used to avoid this situation and to improve the feature learning efficiency.

However, pooling is used in traditional 1D convolutional networks, which is designed
to expand the perceptual field and reduce the size of the sequences. An obvious drawback
of pooling is sequence feature loss in the information-merging process. The expanded
convolution increases the range of the filter without increasing the number of weight
parameters in it. Thus, the inflation convolution increases the perceptual field of the neural
network without increasing the computational cost. Thus, for long information-dependent
problems inside a time series, the dilation convolution can be well applied. It is because of
these advantages of one-dimensional dilated convolution [33] that we adopt it as the basic
unit of our model here. We can define the 1D dilated convolution as:

Out(k, q) = ∑
c

∑
w+d∗s=q

In(c, w) ∗Weight(k, c, s) (2)

where In(c, w) is the input vector, Out(k, q) is the output vector, Weight(k, c, s) is the filter
size, and d is the expansion factor. Figure 1 shows the process of a dilated convolution.

Figure 1. An example of the 1D dilated convolution layer with input channels C = 5, input width
W = 13, number of filters K = 2, filter width S = 3, output with Q = 13, and dilation parameter
d = 3.
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3.2.2. Residual Connect

The use of convolutional neural networks for time-series prediction requires consider-
ing the problem of gradient disappearance due to the large number of layers in multilayer
convolutional networks, while we use residual blocks [34] to build the model to avoid this
problem and to improve the model by deepening the number of layers. A residual block
contains a branch that leads to a series of transformations whose output adds the input of
the residual block. We design a novel structure by multi-layer ordered residual networks
and parallel residual networks. The core of the residual block is to create a shortcut between
the front and back layers and does not introduce additional parameters or computational
complexity. Whereas the hopping connections in ResNet lead to the fact that not all residual
blocks are functional, we use direct connections to ensure that each residual block learns
useful information.

To increase the effectiveness of the neural network, the size of the convolutional kernel
can be increased or the depth of the network can be increased, but this would make the
computation very large. We have taken the approach of invoking the asymmetric block
structure [35], which will create an asymmetric factor in the structure of the whole network
and have a positive effect on the whole model.

The structure of our residual block is shown in Figure 2. Our input goes into two
channels; then, we start the expansion of the 1D convolution first, then correct it by
correcting the linear unit, and finally sum the output. This process is repeated three times
in residual block 1 and four times in residual block 2. In this way, residual block 1 and
residual block 2 form an asymmetric structure. Since the dimensionality of the final feature
mapping may be different, 1 × 1 convolution is introduced to adjust the dimensionality.

Figure 2. Residual Block 1 (left). Residual Block 2 (right).

The operation process in the repetition cell is as follows.

y1k = ReLU(Wk ∗ X + bk) (3)

y2k = ReLU(Wk ∗ X + bk) (4)

yk = y1k + y2k (5)
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The last step is to add the input to the output of the block.

Output = (Input + f (Input)) (6)

3.2.3. Self-Attention

The attention function can be described as mapping a query and a set of key–value
pairs to an output, where the query, key, value and output are all vectors. The keys and
queries are dotted multiplied to obtain the corresponding attention weights, and finally,
the obtained weights and values are dotted to obtain the final output. For self-attention,
the three matrices Q (Query), K (Key), and V (Value) are all from the same input. We first
compute the dot product between Q and K and then divide the result by a scale

√
dk to

prevent the result from being too large, where dk is the dimensionality of a query and key
vector. The result is then normalized using the Softmax operation and then multiplied by
the matrix V to obtain the representation of the weight summation. This computational
procedure can be expressed as follows.

Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (7)

Figure 3 shows the process of calculating attention weights. The self-attention mech-
anism is a variation of the attention mechanism, which reduces the reliance on external
information and is better at capturing the internal relevance of data or features. Compared
with RNN and its variant models, it is able to compute in parallel and can make better
use of computing power. We use the self-attention mechanism in MTCAN to capture the
internal correlation of long time series, which can better describe the internal correlation of
time series and improve the performance of the whole model.

Figure 3. Scaled Dot-Product Attention.

3.2.4. MTCAN Model

Multivariate time series are actually multiple unitary time series, but there is a certain
mapping relationship between these multiple time series. It is due to this structural feature
that we adopt a structure similar to that of a multi-headed attention network. The difference
with the multi-headed attention network is that we split the multivariate time series into
multiple univariate time series and use each univariate time series as the input of each
repeat block. This way, instead of using an identical sequence as the input of each repeat
block, the mapping relationship between the multivariate time series can be captured more
effectively.
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We use a convolutional neural network as the basis of the model, and we need as
deep a network as possible to solve the long time information dependence. However,
deeper convolutional neural networks may experience gradient disappearance or add
multiple layers without improving the model effect. To solve this problem, a residual block
is used, which ensures that the depth of the convolutional neural network is deep enough
to remember the information for a long time.

The information learned in each repetition block has different features for each in-
dividual variable. Moreover, in the repeat module, we first interpret by residual blocks;
then, we extract features from the interpretation by self noticing, and finally, we merge the
output vectors of each repetition block. The finally obtained variables are interpreted by
the fully connected layer, and then, the prediction results are obtained. The structure of the
multivariate temporal convolutional attention base network is shown in Figure 4.

Figure 4. Overall structure of MTCAN model.

4. Experiments

To evaluate the effectiveness of MTCAN, we perform experiments on a multivariate
time-series forecasting task. The three datasets are firstly described for the empirical
study. All data can be downloaded online. Then, the parameters turning as well as the
evaluation criteria are described. Finally, the proposed MTCAN model is compared with
different models.

4.1. Data Preprocessing

Three datasets were used in this study, namely the ISO-NE dataset (ISO-NE Dataset
available online: https://www.iso-ne.com/isoexpress/web/reports/load-and-demand,
accessed on 1 June 2021), Beijing PM2.5 dataset (Beijing PM2.5 Dataset available on-
line: https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data, accessed on 12 June
2021), and Jane Climate dataset (Jena Climate Dataset available online: https://storage.
googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip, accessed on
22 June 2021).

https://www.iso-ne.com/isoexpress/web/reports/load-and-demand
https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.5+Data
https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip
https://storage.googleapis.com/tensorflow/tf-keras-datasets/jena_climate_2009_2016.csv.zip
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The ISO-NE dataset includes hourly demand, price, temperature and other features.
The time frame of this dataset is from 2003 to 2014. We use two variables from this dataset,
namely, hourly electricity demand and dry bulb temperature. For this dataset, hourly
electricity demand is used as the forecast value.

The Beijing PM2.5 dataset has eight features that include dew point, temperature,
atmospheric pressure, etc. The time range of this dataset is from 2010 to 2014. For this
dataset, temperature is used as the predicted value.

The Jena Climate dataset contains 14 different features such as temperature, atmo-
spheric pressure, and humidity, among others. We used only the data collected between
2009 and 2016, and these data were collected every 10 min. We used the first 10 variables of
this dataset and extracted the data so that the time interval was 1 h. For this dataset, hourly
temperatures were used as predicted values.

Table 1 shows the length of the time series, the number of variables, and the sampling
interval for the three datasets. There are cases where the values in the dataset are null, so
preprocessing is required. For some “NA” values in the dataset, we use 0 instead.

Table 1. Dataset statistics.

Dataset Length of Time Series Total Number of Variables Sample Rate

ISO-NE 103,776 2 1 h

Beijing PM2.5 43,824 8 1 h

Jane Climate 70,080 10 1 h

4.2. Experimental Details

Algorithm 1 is an algorithm for learning rate iteration, where the learning rate de-
creases for every eight periods of no improvement in the validation score before the
minimum learning rate is reached. This algorithm is used for all model learning rate itera-
tion processes. For the multivariate time-series forecasting task, most models are chosen
from {24, 72, 144} in length with a batch size of 100. MSE is used as a default loss function
for the forecasting task. The optimization strategy uses Adam, and the initial learning rate
is set to 0.001.

An LSTM model with a hidden layer of {50, 100, 200} cells is defined. The number
of cells in the hidden layer is independent of the number of time steps in the input and
output sequences. The final output represents the prediction results for the next 24 h. The
optimizer is SGD [36]. The learning rate is set to 0.05, and the reduction rate is 0.3.

For the GRU model, we used a hidden layer of {64, 128, 256} units. The final output
is a vector with 24 elements, which is the predicted result for the next 24 h. Adam [37] is
used as the optimizer. The learning rate and reduction rate are the same as those of the
LSTM model.

In the ConvLSTM encoder–decoder model, the shape of the input data is [timestep,
row, column, channel]. Timestep is selected from {1, 3, 7}. Row is set to 1. Column is selected
from {24, 72, 144}. Channel is selected from {2, 8, 10}. The optimization algorithm uses SGD.
The learning rate is also set to 0.05. The size of all input-to-state and state-to-state kernels is
1 × 3.

For the TCN network, a hidden layer of {30, 50, 100} units is defined. The size of the
convolution kernel is 1 × 3.

The MTCAN model uses Adam as the optimization strategy, and the initial learning
rate is set to 0.001.

The MTCAN implementation is built on the Keras (Chollet, F. (2015). Keras. GitHub
Repository: https://github.com/fchollet/keras, accessed on 10 March 2021) library and
the Python-based TensorFlow backend. We conducted experiments on a machine with an
NVIDIA 1080GPU (Santa Clara, CA, USA).

https://github.com/fchollet/keras
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Algorithm 1 Algorithm of learning rate

Input: min_lr, init_lr
Output: new_lr

1: f actor = 0.7; epoch = 200; new_lr = init_lr; n
2: if n < epoch then
3: n+ = 1; wait+ = 1
4: if best_socre > cur_score then
5: best_lr = cur_score; wait = 0
6: save model
7: else
8: if wait == 8&&new_lr > min_lr then
9: new_lr = new_lr ∗ f actor

10: new_lr = max(new_lr, min_lr)
11: wait = 0
12: end if
13: end if
14: end if
15: return new_lr

We use three evaluation metrics here, root-mean-square error (RMSE), relative root
error (RRSE), and empirical correlation coefficient (CORR) of multivariate prediction to
assess the performance of the model. The formula for calculating the three indicators is
as follows:

RMSE =

√√√√ 1
N

N

∑
i=1

(Pi − Ti)2 (8)

RRSE =

√
∑n

i=1(Pi − Ti)2

∑n
i=1(Pi − T̄)2 (9)

CORR =
1
n

n

∑
i=1

∑t(Pit − P̄i)(Tit − T̄i)√
∑t(Pit − P̄i)2(Tit − T̄i)2

(10)

In the formula, Pit is the predicted value and Tit is the actual value, P̄i is the mean
value of the predicted value and T̄i is the mean value of the actual value. The smaller the
value of RMSE and RRSE, the more accurate the prediction result of the model. The larger
the value of CORR, the stronger the correlation between the predicted result and the actual
value of the model. From the values of these three evaluation parameters, we can also
evaluate the validity and accuracy of a model more clearly.

The training process of the model is shown in the Figure 5.
Step 1: Preprocess the time-series dataset. The original time-series dataset is divided

into a training set and a test set, while the inputs and outputs are extracted from them
separately.

Step 2: Initialize the parameters and hyperparameters of the proposed model.
Step 3: Train the MTCAN time-series prediction model. The Adam optimization

algorithm and the mean squared loss function are used. The mean squared loss function
is obtained from the predicted and actual values. The RRSE is calculated to save the
model with the smallest RRSE, and the learning rate is changed if the loss value has been
unchanged.

Step 4: Terminate the model training or loop the third step. If the maximum number
of training times is reached, the training process of MTCAN is ended, and the optimized
weights and biases of the model are obtained. If not, repeat step 3 until the termination
condition is met.
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Figure 5. The flowchart presenting the training procedures.

4.3. Experimental Results

In this section, we evaluate the performance of the prediction model over different time
horizons. The ISO-NE dataset, Beijing PM2.5 dataset, and Jana Climate dataset are used for
prediction. We use three datasets with different numbers of parameters, different domains,
and different amounts of data, so that we can evaluate a model more comprehensively. The
time prediction range is between 1 and 24 h. This section compares the performance of our
proposed MTCAN method with LSTM, TCN, ConvLSTM, and GRU.

Table 2 shows the results of the overall RRSE, CORR, and RMSE metrics for the
multivariate test set from 1 to 24 h. The output sequence length is set to 24, representing
the prediction time period from 1 to 24 h. In multivariate time-series prediction tasks, the
longer the prediction time, the more difficult the prediction is. Therefore, our experiments
were performed to analyze the results in detail within this time frame. The best results in
each dataset are highlighted in bold. For RMSE and RRSE, lower values are better, while
for CORR, higher values are better.

The effectiveness and generalization of the MTCAN model are stronger than the
comparison models. The GRU model works well on the Beijing PM2.5 dataset but less
well on the ISO-NE dataset and the Jena climate dataset. The LSTM is more balanced on
the three datasets, but it is not as good as the MTCAN model. The ConvLSTM model
works well on the ISO-NE dataset but not well enough on the other two datasets. The TCN
model, on the other hand, has even worse generalization and has better results only on the
ISO-NE dataset and the results on the other two datasets are very poor and not meaningful
for comparison.
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Table 2. Results summary (in RMSE, RRSE, and CORR) of all methods with three datasets: each row
has the results of a specific method in a particular metric.

Methods Metrics
ISO-NE Dataset Beijing PM2.5 Dataset Jane Climate Dataset

Length = 24 Length = 24 Length = 24

GRU

RMSE 844.65 67.96 3.13

RRSE 0.3149 0.7263 0.9199

CORR 0.9497 0.6885 0.9199

LSTM

RMSE 784.50 68.37 2.93

RRSE 0.2925 0.7281 0.3695

CORR 0.9570 0.6873 0.9298

ConvLSTM

RMSE 688.05 82.50 4.88

RRSE 0.2564 0.8803 0.6160

CORR 0.9670 0.4870 0.7914

TCN

RMSE 726.07 113.84 8.45

RRSE 0.2693 1.1460 1.0087

CORR 0.9603 0.0074 0.1766

MTCAN

RMSE 645.60 65.02 2.72

RRSE 0.2341 0.6949 0.3428

CORR 0.9773 0.7210 0.9401

Figure 6 shows in detail the specific performance of the four models on the three
datasets. From this figure, it can be concluded that the MTCAN model has smoother
fluctuations in its curves due to several other models both in terms of generalizability and
accuracy. We do not depict the experimental data curves of the TCN model because of its
too poor generalizability.

Figure 6. The RMSE, RRSE, and CORR for each lead time from 1 to 24 h vs. different algorithms over
the ISO-NE Dataset, Peijing PM2.5 Dataset, and Jane Climate Dataset.
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4.4. Ablation Experiments

For complex model structures, we do not know whether the added structure has a
beneficial effect on the performance of the model. To better explain the validity of our
proposed model, we conducted a careful further study. An ablation experiment was
designed to demonstrate the effectiveness of the self-attention layer.

Figure 7 shows the repeat block structure of this model in detail. In this repeat block,
we remove the self-attentive network layer. In this test, there is no change in the network
except for this point.

Figure 7. Repeat block structure of model.

Through Table 3, we can conclude that our addition of the self-attentive layer helps
the network achieve more accuracy and better generalization, and it reduces the size of
the number of model parameters. The number of parameters of the MTCAN model is
about 25% that of the model, which greatly improves the model training efficiency. All
components of the MTCAN model ensure the effectiveness and generalization of the model
as well as reduce the size of the model and improve the learning efficiency.

Table 3. Results summary (in RMSE, RSE, and CORR) of all methods with three datasets: each row
has the results of a specific method in a particular metric.

Methods Metrics
ISO-NE Dataset Beijing PM2.5 Dataset Jane Climate Dataset

Length = 24 Length = 24 Length = 24

Model

RMSE 649.50 65.53 2.76

RRSE 0.2421 0.6989 0.3484

CORR 0.9705 0.7159 0.9387

Params 3,822,700 15,253,228 19,063,404

MTCAN

RMSE 645.60 65.02 2.72

RRSE 0.2341 0.6949 0.3428

CORR 0.9773 0.7210 0.9401

Params 977,004 3,870,444 4,834,924

5. Conclusions

The MTCAN model is proposed and the network structure design is highlighted,
which is designed by incorporating a one-dimensional dilated convolutional network
as the basic unit, asymmetric residual blocks, and a self-attentive network at the end
to enhance the capture of the mapping relationships within the time series to improve
the performance of multivariate time-series prediction. The model is validated by three
datasets—PM2.5, ISO-NE, and Jane Climate that have been compared with existing models
LSTM, GRU, ConvLSTM, and TCN. The prediction results show that the model proposed
in this paper has significantly improved calculation efficiency, prediction accuracy, and
generalization. This improvement is attributed to the explainability of the self-attention
mechanism, which shall be further investigated.
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agreed to the published version of the manuscript.
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