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Abstract: Polluted air and the presence of numerous airborne pathogens affect our daily lives. The
sensitive and fast detection of pollutants and pathogens is crucial for environmental monitoring and
effective medical diagnostics. Compared to conventional detection methods (PCR, ELISA, metabolic
tests, etc.), biosensors bring a very attractive possibility to detect chemicals and organic particles
with the mentioned reliability and sensitivity in real time. Moreover, by integrating nanomaterials
into the biosensor structure, it is possible to increase the sensitivity and specificity of the device
significantly. However, air quality monitoring could be more problematic even with such devices.
The greatest challenge with conservative and sensing methods for detecting organic matter such as
bacteria is the need to use liquid samples, which slows down the detection procedure and makes it
more difficult. In this work, we present the development of a polyacrylonitrile nanofiber bioreceptor
functionalized with antibodies against bacterial antigens for the specific interception of bacterial cells
directly from the air. We tested the presented novel nanofiber bioreceptor using a unique air filtration
system we had previously created. The prepared antibody-functionalized nanofiber membranes for
air filtration and pathogen detection (with model organisms E. coli and S. aureus) show a statistically
significant increase in bacterial interception compared to unmodified nanofibers. Creating such a
bioreceptor could lead to the development of an inexpensive, fast, sensitive, and incredibly selective
bionanosensor for detecting bacterial polluted air in commercial premises or medical facilities.

Keywords: nanofibers; nanofiber biosensor; immuno-nanosensor; bacterial detection

1. Introduction

Nowadays, the rapid and eminent development of biomedicine and environmental
monitoring is mainly due to the possibility of easy, fast, precise, and sensitive diagnostics
and detection [1–3]. For such a development, sensors are the tools of great interest. In
addition, combined with bioactive molecules (antibodies, enzymes, nucleic acids, etc.),
(bio)sensors allow for the reliable detection of different biological and chemical markers.
The main attractivity of biosensors stands especially on particular and sensitive biological
interactions between analytes and the recognition bioactive element of the sensor (so-called
bioreceptor) [1]. The most common biosensors commercially used are glucometers—sensors
for glucose monitoring in blood [4,5]. However, in addition to monitoring and detecting
glucose and other chemical analytes and biomarkers (hormones, enzymes, lipids, etc.), fast
and so-called online detection of pathogens is also a significant priority.

Biosensors have become an exciting alternative to pathogen detection in microbiology
and epidemiology. Today, the most common methods for determining bacteria and viruses
are ELISA, PCR, and metabolic tests [6–9]. However, biosensors reduce costs (in some
cases up to 96% [9], but on average, around 40% [10] and time (from hours with PCR
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to units to tens of minutes with biosensors [11]). Among other things, device sensitivity
can be increased by incorporating nanomaterials [12–18] into the biosensor system, and
it is possible to achieve LoD in fM concentration [12,13]. This increase in sensitivity is
secured mainly using nanofibers. Their characteristic structure with the immense number
of pores [19–21] creates an enormous active surface that can be modified, enriched, or
functionalized [22,23].

Functionalization is a process of immobilizing bioactive molecules in the matrix
structure [24]. Nanofibers modified by this process are the subject of recent studies. Whether
it is functionalization with nucleic acids (such as DNA immobilization for the detection of
Salmonella [25]) or antibodies (specific antibodies against Pseudomonas aeruginosa [26],
Helicobacter pylori [27], or Streptococcus agalactiae [28]), low detection limits in the units
of CFU·mL−1, high sensitivity, and fast response characterize these biosensors. These
mentioned studies are dedicated to pathogen detection from liquid samples. However,
many pathogens are transmitted through the air, and in addition to causing respiratory
diseases, they also cause nosocomial infections. Pathogen detection directly from the air is
becoming an attractive and desired method for the environmental monitoring of polluted
air. Although many different biosensors exist, their use for detecting analytes from air
faces challenges in bioreceptor preservation [29–32]. Nevertheless, pathogen monitoring in
the air could help prevent respiratory disease epidemics or the emergence of nosocomial
infections in operating rooms, intensive units, and hospitals in general.

The main goal of this work was to prepare antibody-functionalized nanofibers as
bioreceptors for the interception and detection of selected bacterial organisms. In this work,
we present the needleless electrospinning process of polyacrylonitrile nanofiber fabrication;
the process of their functionalization; and finally, the evaluation of the bioreceptor’s bacte-
rial interception effectiveness through optical density measurement. This work is directly
linked to the conference paper from the EHB 2023 conference but expands the mentioned
paper with more detailed methodology and new results (supplemented results of detecting
E. coli and added new results of detecting S. aureus) [33].

2. Materials and Methods

Considering nanofibers’ characteristic structure, a mechanically and chemically durable
synthetic polymer material with the possibility of functionalization had to be chosen to
prepare desirable filtration membranes. The immobilization of proper bioactive molecules
(antibodies) secured the functionalization of nanofiber membranes. For the required appli-
cation, specific antibodies were selected as a biorecognition element for detecting the model
bacteria (Escherichia coli and Staphylococcus aureus). After preparing and characterizing the
prepared bioreceptor, functionalized nanofiber membranes were tested in the laboratory.

2.1. Materials

Polymer polyacrylonitrile (PAN) was purchased from Sigma-Aldrich (USA) to fabri-
cate electrospun nanofibers. This polymer was chosen due to its mechanical and chemical
endurance and the possibility of surface functionalization. The functionalization of PAN
nanofibers was performed by the immobilization of specific antibodies. For the interception
of Gram-negative model bacteria, Rabbit polyclonal IgG anti-Escherichia coli antibodies
(4329–4906) were purchased from Bio-Rad (USA). Anti-Staphylococcus aureus LTA antibodies
(SAB4200883-100UL) from Sigma-Aldrich (USA) were immobilized to nanofibers to detect
the Gram-positive model bacteria Staphylococcus aureus.

The University of Chemistry and Technology, Prague, provided Gram-negative model
bacteria Escherichia coli reference strains (O26:B6, E. coli DBM 3125—collection CCM
3988). The Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of
Medicine, Charles University in Prague, provided Gram-positive bacteria Staphylococcus
aureus (STAV) strains.
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2.2. Nanofiber Fabrication, Modification, and Characterization

For the biosensor matrix, polyacrylonitrile nanofibers were fabricated using the electro-
spinning method. Electrospinning uses the charge polymer solution under a high-voltage
electric field to prepare ultrafine fibers with diameters of hundreds of nanometers [34].
Electrospun nanofibers are characterized by extremely high surface-to-volume ratio, high
porosity, low weight, and excellent mechanical and chemical properties. Nevertheless, all
the properties can be customized by adequately selecting a polymer solution and setting
the process parameters of the fabrication method [19,35,36].

Polyacrylonitrile (PAN) polymer is suitable for preparing fine nanofibers with excellent
mechanical and chemical stability. Fibers fabricated from polyacrylonitrile are ideal for
filtration and the creation of biosensor matrices (mats). These fibers are also suited for
surface functionalization by immobilizing bioactive molecules [37,38].

To fabricate suitable nanofibers, the powder of polyacrylonitrile was mixed with N, N-
dimethylformamide (DMF) and homogenized for 2 h at 35 ◦C. Electrospun PAN nanofibers
were fabricated (roller electrospinning—Figure 1) using Nanospider NS 1WS500U (Elmarco,
Liberec, Czech Republic). The process parameters are shown in Table 1.
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Figure 1. Setup of Nanospider device for fabrication of electrospun nanofibers [33].

Table 1. Set process parameters of the electrospinning (with the deviation given by the Nanospider
NS 1WS500U device) [33].

Fabrication Parameters Values

Solution PAN + DMF

Solution concentration [%] 15

Diameter of the wire electrode [mm] 0.2

Distance between electrodes [cm] 25

Temperature [◦C] 20

Relative humidity [%] 20

Voltage [kV] 50–90

After fabrication, samples of nanofibers were gilded and characterized through the
scanning electron microscope Vega3 SB (Tescan, Brno, Czech Republic).

The created nanofibers were later modified and functionalized. PAN nanofibers’
surface modification (reduction) ensures the formation of functional groups suitable for
bonding bioactive molecules [39]. Specific antibodies against bacteria E. coli and S. aureus
were then covalently immobilized in the structure of PAN nanofibers. The concentration
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of bonded antibodies was determined by infrared spectroscopy IRAFfinity-1 (Shimadzu,
Kyoto, Japan), and the absorbance of 1685 cm−1, characteristic of the peptide bond, was
used. The calibration curve was determined using avidin and measuring the remaining
protein in the solution after immobilization [40,41].

The functionalized nanofibers were prepared and preserved in a saline buffer with
sodium azide. Samples preserved this way were stored in the fridge. Previous testing
shows that preserved functionalized nanofiber membranes can be stored in the fridge for
at least 2 months without changing the antibody activity.

2.3. Bacterial Cultivation

Both model organisms—E. coli and S. aureus—were cultured on a solid agar medium
prepared from 2.5 g of yeast extract, 2.5 g of peptone, 1.125 g of NaCl, and 5 g of agar.
Individual media components were mixed in 250 mL of distilled water, homogenized,
heated, and sterilized before being poured into the Petri dishes.

From the reference strains, a single colony of bacteria was transferred to the agar
medium using the streak plate method; passaged bacteria were cultured at 37 ◦C in the
incubator (mini-incubator ICT 18, FALC Instruments, Treviglio BG, Italy). E. coli was
incubated for 21 h and S. aureus for 24 h to achieve adequately grown bacterial colonies.

2.4. Testing of the Nanofiber Bioreceptor

A unique pump system was designed to test the detection effectivity of the functional-
ized nanofibers. The created system consists of a mechanical pump enabling the filtration
of the air sample through the nanofiber membrane in a sealed chamber. A sample container
with a volume of 1.5 l is connected directly to the sealed chamber. The whole pump system
is closed and provided with filters and thus does not allow bacteria to escape from the
experimental setup. Moreover, this unique pump system was designed to maintain suitable
conditions for the immobilized antibodies by continually humidifying filtered air. The
detailed layout (Figure 2) and function of the air filtration system are presented in the
original paper from 2024 [42].
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Figure 2. The layout of the air filtration system consisting of a mechanical pump, a 1.5 l sample
container, a sealed container with a nanofiber membrane, and a humidifier sustaining the proper
environment for the antibody immobilized to the nanofiber structure [42].

Nanofiber membranes were tested as a bioreceptor for the interception of bacterial cells.
Before use, membranes were washed in distilled water so the saline buffer and preservative
residues would not affect the detection. After washing, the nanofiber membrane was evenly
spread to the holder in the sealed chamber. The volume of contaminated air in the sample
container was then filtered through the functionalized nanofiber membranes using the
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mechanical pump. After the filtration, membranes were cleansed for 10 s in 1× PBS buffer
to wash out bacterial cells that did not bind to the antibodies.

The functionalized PAN nanofibers as bioreceptors were tested in different condi-
tions, namely dry air filtration and air filtration with additional humidification of the
nanofiber membranes.

Nanofiber membranes were transferred to the liquid growth medium and incubated
at 37 ◦C for 21 h (E. coli) or 24 h (S. aureus). After the incubation, 1 mL of homogenized
bacterial suspension was transferred to the spectrophotometric cuvette. The bacterial
suspensions’ optical density (wavelength 600 nm) was measured through the spectropho-
tometer UV-3600 (Shimadzu, Kyoto, Japan) to evaluate the number of captured bacteria.
The parameters of the used spectrophotometer are shown in Table 2.

Table 2. Spectrophotometer hardware parameters [33].

Hardware Parameters Values

Wavelength range [nm] 185–3300

Wavelength accuracy for UV and VIS [nm] ±0.2

Wavelength accuracy for IR [nm] ±0.8

Photometric range [Abs] −6–6

Photometric accuracy [Abs] for 1 Abs ±0.003

Photometric accuracy [Abs] for 0.5 Abs ±0.002

2.5. Data Analysis and Evaluation of Bioreceptor Effectivity

The bioreceptor effectivity evaluation dataset consists of 144 measurements for E. coli
and 90 measurements for S. aureus. For both model organisms, three types of samples were
used: functionalized nanofibers FNn for humid air filtration, FNs for dry air filtration, and
unmodified nanofibers NN for humid air filtration. Using a series of samples ensured the
reproducibility and repeatability of the experiments. The individual series were compared
with each other, and the comparison was evaluated.

For E. coli, 24 nanofiber membranes (8 for each type) were used. A series of 15 nanofiber
membranes were tested through air filtration polluted by the model organism S. aureus.
After the air filtration through the membranes and membrane incubation, bacterial sus-
pensions were created, and the optical density (OD600) was measured (spectrophotometer
UV-3600, Shimadzu, Kyoto, Japan).

The optical densities dataset consists of six measured values for each nanofiber sample,
ranging from OD600 of 0.164 to 1.677 for E. coli and OD600 of 0.456 to 1.132 for S. aureus.
From these values, the mean and the median were calculated and then compared for each
type of nanofiber membrane (FNn, FNs, and NN). In addition, the statistical significance
(p = 0.05) of the obtained data was determined through the t-test.

R software with an EZR plug-in was used to analyze the data and graphically represent
the results [43].

3. Results
3.1. Preparation and Characterization of PAN Nanofibers

PAN nanofibers were prepared using the roller electrospinning method (needleless
electrospinning) and functionalized by immobilizing the specific antibodies. Due to the
high surface-to-volume ratio, even a small part of the functionalized nanofiber obtains
many antibodies. The final concentration of antibodies was determined by IR spectroscopy
to be 108 ± 12 µM/g.

The structure of PAN nanofibers was characterized through SEM. Predominantly
regular fibers with a mean diameter between 500 and 900 nm were observed (Figure 3).
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From the prepared nanofibers, circle membranes with a diameter of 1.5 cm were cut.
Due to the use of a 3D-printed stand for the nanofiber membranes, the real functional
diameter was limited to 1 cm (the part through which the air was filtered).

The nanofiber membranes were stored in a saline buffer, so the antibody was preserved.
For longer preservation, sodium azide was added to the saline buffer. Before their use as
filters, nanofiber membranes were washed from chemical residues and preservatives with
distilled water.

3.2. The Detection of Bacteria and Evaluation of Bioreceptor Effectiveness

The effectiveness of the bacterial interception by nanofiber membrane was evaluated
through the optical density of created bacterial suspensions. The obtained results are
divided according to the detected model organisms in the following subsections:

3.2.1. Detection of Escherichia coli

To detect E. coli bacteria from sufficiently humid air (an average of 60%), unmodified
and anti-E. coli PAN nanofiber targets were used and compared (Figure 4). In addition,
filtration under different conditions was tested. To determine the extent of the proper
environment, anti-E. coli PAN nanofibers were used to detect bacteria during humid air and
dry air filtration, and the bacterial interception was compared (Figure 4). The measurements
were divided into eight series always consisting of the three samples (FNn, FNs, and NN).

For better clarity, Figure 5 compares the filter effectiveness between unmodified and
functionalized (FNn/NN and FNs/NN) nanofiber membranes and the two used filtration
methods under different conditions (FNn/FNs).

3.2.2. Detection of Staphylococcus aureus

As explained previously for bacteria E. coli, two experiments were performed for Gram-
positive bacteria Staphylococcus aureus. Functionalized anti-S. aureus PAN nanofibers (FNn)
were compared to the unmodified ones (NN). In addition, a comparison of the bacterial
interception of the functionalized nanofibers under different conditions was performed.
The estimated optical densities of both experiments are shown in Figure 6. Five series
consisting of the three nanofiber samples (FNn, FNs, and NN) were evaluated.

A more detailed comparison of the interception effectivity is shown in Figure 7.
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Figure 5. Comparison of the interception effectivity for functionalized and unmodified nanofibers
and two types of filtrations. The dark part and percentages show the increase in the effectivity of
functionalized nanofibers (FNn and FNs) compared to unmodified nanofibers NN (FNn/NN for
humid air filtration and FNs/NN for dry air filtration). The third column shows the increase in
interception effectivity of functionalized nanofibers during humid air filtration (FNn) compared to
dry air filtration (FNs).
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and two types of filtrations. FNn/NN shows the difference in the interception effectivity of the
functionalized and unmodified nanofibers during humid air filtration. FNs/NN shows the same
difference but during dry air filtration. The FNn/FNs column then shows the increase in intercep-
tion effectivity of functionalized nanofibers during humid air filtration (FNn) compared to dry air
filtration (FNs).
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4. Discussion

This work presents the creation and the bacterial interception effectivity evaluation of
a novel immunoreceptor based on antibody-functionalized PAN nanofibers. To detect air-
borne bacteria (E. coli and S. aureus) directly from the air, electrospun nanofibers with great
mechanical and chemical durability were used as filtration membranes. PAN nanofibers
were selected due to their exceptional filtration ability and the possibility of surface func-
tionalization. Although electrospun PAN nanofiber membranes are capable of bacterial
interception itself and with great effectivity (up to 99%) [44], antibody-functionalized
nanofibers capture bacterial cells with specific biochemical bonds (antigen-antibody reac-
tion). In the case of nanofiber bioreceptors, the mechanical interception of bacterial cells
is undesirable due to the rapid clogging of the filtration membranes. In comparison with
a previous study dealing with the filtration effectivity of PAN nanofibers [44], the area
density of functionalized membranes for bacterial detection was reduced to 2.5 g/m2, so
the mechanical interception was suppressed.

As mentioned earlier, PAN nanofibers were functionalized by immobilizing specific
antibodies against E. coli and S. aureus. Bioactive molecules, such as antibodies, used as a
biosensing layer of biosensors are dependent on stable and specific conditions (temperature,
pH, humidity, and electrostatic repulsion). When detecting antigens directly from the air,
humidity is the most challenging condition to maintain. Without additional moisturization,
immobilized antibodies lose their bioactivity [45,46]. For this reason, bacterial detection,
whether using conservative methods (ELISA, PCR, etc.) or (bio)sensors, is performed in
liquid samples (water, body fluids, food, etc.) [26,29,30,47,48]. Airborne samples, thus,
must undergo post-collection processing [31,49–51]. However, with the use of a previously
designed air filtration system [42], the presented nanofiber bioreceptor was used and tested
for the detection of bacterial cells directly from the air. This system humidifies nanofiber
membranes during air filtration and protects immobilized antibodies from desiccations
and, thus, inactivation (Figures 4 and 6) [42].

To evaluate the bioreceptor effectiveness, bacterial interception through unmodified
and functionalized nanofibers was compared. The increase in the optical density of bacterial
suspensions (around 41 % for E. coli and 36 % for S. aureus, as seen in Figures 5 and 7)
belonging to the functionalized nanofiber membranes testing shows the effectivity of
immobilized antibodies (the specific binding reaction of the bioreceptor). For both model
organisms, the increase in interception effectivity due to the antibodies’ activity was found
to be statistically significant at the significance level of p < 0.05. Thus, in comparison
with other mentioned nanofiber biosensors for bacterial detection [26–28], the designed
nanofiber bioreceptor combines both biosensing and filtration abilities. In further research,
a combination of such a bioreceptor with a proper transducer could be a pioneering
alternative for fast, sensitive, and continual environment monitoring presented in recent
years [52–55].

As in other studies [56–58], PAN nanofibers have been proven to be membranes
with extraordinary air filtration abilities. After enrichment by metal particles (TiO2, ZnO,
Ag, etc.) [57] or bioactive molecules (enzymes and antibodies), PAN membranes show
additional abilities, such as antibacterial [57] or biosensing activity, in relation to bacteria.
Presented antibody-functionalized PAN nanofibers, thus, show great potential as a novel
sensitive bioreceptor for detecting Gram-negative and Gram-positive bacteria such as E. coli
and S. aureus.

5. Conclusions

Herein, we presented the preparation and use of the novel antibody-functionalized
PAN nanofibers as bioreceptors for bacterial detection from the air. To detect model bacte-
rial organisms E. coli and S. aureus, PAN nanofiber membranes were fabricated through
the needleless electrospinning process and later functionalized by immobilizing corre-
sponding antibodies. The specific structure of electrospun nanofibers enables the use
of the membranes for air filtration. In addition, antibody functionalization significantly
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increases the bacterial interception effectivity of the membrane (on average about 40%) and
facilitates the formation of special biochemical bonds with detected antigens (bacteria). In
combination with the system for air filtration presented in previous work, the designed
antibody-functionalized PAN nanofiber bioreceptor enables reliable, specific, and sensitive
detection of Gram-negative and Gram-positive bacteria directly from the air and without
inactivation and disintegration of the immobilized bioactive layer. Our finding opens the
door for the development of a novel solution for continual environment monitoring. In
addition, further studies will focus on combining the presented bioreceptor with a suitable
electrode and the development of an ultrasensitive biosensor for bacterial detection.

Author Contributions: Methodology, L.V., B.S.; validation and data analysis, L.V. and B.S.; writing—
original draft preparation, L.V.; writing—review and editing, L.V., B.S., P.K. and T.J.; visualization, L.V.;
supervision, P.K. and T.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Student Grant Competition of CTU (SGS22/199/OHK4/3T/17)
provided by Czech Technical University in Prague, Czech Republic.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request.

Acknowledgments: We thank the Department of Natural Sciences, FBME, CTU in Prague, and
UCEEB, CTU in Prague, for providing the laboratories for our experiments. We would also like to
acknowledge the doc. Dana Gášková and Tomáš Bartl from the Faculty of Mathematics and Physics,
Charles University, and Evžen Amler from the Second Faculty of Medicine, Charles University, for
the advice and all help on the study.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Bhatia, D.; Paul, S.; Acharjee, T.; Ramachairy, S.S. Biosensors and their widespread impact on human health. Sens. Int. 2024, 5,

100257. [CrossRef]
2. Kim, E.R.; Joe, C.; Mitchell, R.J.; Gu, M.B. Biosensors for healthcare: Current and future perspectives. Trends Biotechnol. 2023, 41,

374–395. [CrossRef] [PubMed]
3. Murzin, D.; Mapps, D.J.; Levada, K.; Belyaev, V.; Omelyanchik, A.; Panina, L.; Rodionova, V. Ultrasensitive Magnetic Field

Sensors for Biomedical Applications. Sensors 2020, 20, 1569. [CrossRef] [PubMed]
4. Fiedorova, K.; Augustynek, M.; Kubicek, J.; Kudrna, P.; Bibbo, D. Review of present method of glucose from human blood and

body fluids assessment. Biosens. Bioelectron. 2022, 211, 114348. [CrossRef]
5. Yoon, J.-Y. Introduction to Biosensors: From Electric Circuits to Immunosensors, 2nd ed.; Springer: New York, NY, USA, 2016; ISBN

978-1-4419-6021-4.
6. Yanagihara, K.; Kitagawa, Y.; Tomonaga, M.; Tsukasaki, K.; Kohno, S.; Seki, M.; Sugimoto, H.; Shimazu, T.; Tasaki, O.; Matsushima,

A.; et al. Evaluation of pathogen detection from clinical samples by real-time polymerase chain reaction using a sepsis pathogen
DNA detection kit. Crit. Care 2010, 14, 159. [CrossRef]

7. Wolk, D.; Mitchell, S.; Patel, R. Principles Of Molecular Microbiology Testing Methods. Infect. Dis. Clin. N. Am. 2001, 15,
1157–1204. [CrossRef]

8. Váradi, L.; Luo, J.L.; Hibbs, D.E.; Perry, J.D.; Anderson, R.J.; Orenga, S.; Groundwater, P.W. Methods for the detection and
identification of pathogenic bacteria: Past, present, and future. R. Soc. Chem. 2017, 46, 4818–4832. [CrossRef] [PubMed]

9. Alahi, M.E.; Mukhopadhyay, S.C. Detection Methodologies for Pathogen and Toxins: A Review. Sensors 2017, 17, 1885. [CrossRef]
10. Myatt, C.J.; Delaney, M.; Todorof, K.; Heil, J. Low-Cost, Multiplexed Biosensor for Disease Diagnosis. In Proceedings of the SPIE

Proceedings, Frontiers in Pathogen Detection: From Nanosensors to Systems, San Jose, CA, USA, 24–29 January 2009; Volume
1767, p. 716703. [CrossRef]

11. Malhotra, S.; Pham, D.S.; Lau, M.P.H.; Nguyen, A.H.; Cao, H. A Low-Cost, 3D-Printed Biosensor for Rapid Detection of
Escherichia coli. Sensors 2022, 22, 2382. [CrossRef]

12. Fernando, L.M. Nanobiosensors for Detection of Pathogens. In Proceedings of the 16th Engineering Research and Development
for Technology Conference, Pasay, Philippines, 25 October 2019.

13. Song, M.; Yang, M.; Hao, J. Pathogenic Virus Detection by Optical Nanobiosensors. Cell Rep. Phys. Sci. 2021, 2, 100288. [CrossRef]
14. Yang, L.; Li, Y.; Fang, F.; Li, L.; Yan, Z.; Zhang, L.; Sun, Q. Highly Sensitive and Miniature Microfiber-Based Ultrasound Sensor for

Photoacoustic Tomography. Opto-Electron. Adv. 2022, 5, 200076. [CrossRef]

https://doi.org/10.1016/j.sintl.2023.100257
https://doi.org/10.1016/j.tibtech.2022.12.005
https://www.ncbi.nlm.nih.gov/pubmed/36567185
https://doi.org/10.3390/s20061569
https://www.ncbi.nlm.nih.gov/pubmed/32168981
https://doi.org/10.1016/j.bios.2022.114348
https://doi.org/10.1186/cc9234
https://doi.org/10.1016/S0891-5520(05)70190-2
https://doi.org/10.1039/C6CS00693K
https://www.ncbi.nlm.nih.gov/pubmed/28644499
https://doi.org/10.3390/s17081885
https://doi.org/10.1117/12.811129
https://doi.org/10.3390/s22062382
https://doi.org/10.1016/j.xcrp.2020.100288
https://doi.org/10.29026/oea.2022.200076


Biosensors 2024, 14, 234 11 of 12

15. Yu, W.; Yao, N.; Pan, J.; Fang, W.; Li, X.; Tong, L.; Zhang, L. Highly Sensitive and Fast Response Strain Sensor Based on
Evanescently Coupled Micro/Nanofibers. Opto-Electron. Adv. 2022, 5, 210101. [CrossRef]

16. Eivazzadeh-Keihan, R.; Noruzi, E.B.; Chidar, E.; Jafari, M.; Davoodi, F.; Kashtiaray, A.; Gorab, M.G.; Hashemi, S.M.; Javanshir,
S.; Cohan, R.A.; et al. Applications of Carbon-Based Conductive Nanomaterials in Biosensors. Chem. Eng. J. 2022, 442, 136183.
[CrossRef]

17. Štukovnik, Z.; Fuchs-Godec, R.; Bren, U. Nanomaterials and Their Recent Applications in Impedimetric Biosensing. Biosensors
2023, 13, 899. [CrossRef] [PubMed]

18. Dong, T.; Pires, N.M.M.; Yang, Z.; Jiang, Z. Advances in Electrochemical Biosensor Based on Nanomaterials for Protein Biomarker
Detection in Saliva. Adv. Sci. 2023, 10, 2205429. [CrossRef] [PubMed]

19. Bayrak, E. Nanofibers: Production, Characterization, and Tissue Engineering Applications. In 21st Century Nanostructured
Materials—Physics, Chemistry, Classification, and Emerging Application in Industry, Biomedicine, and Agriculture; IntechOpen: London,
UK, 2022. [CrossRef]

20. Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun nanofibers: New concepts, materials, and applications. Acc. Chem. Res. 2017, 50,
1976–1987. [CrossRef] [PubMed]

21. Al-Abduljabbar, A.; Farooq, I. Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers 2023, 15, 65.
[CrossRef]

22. Chakrapani, G.; Ramakrishna, S.; Zare, M. Functionalization of electrospun nanofiber for biomedical application. J. Appl. Polym.
Sci. 2023, 140, e53906. [CrossRef]

23. Pashchenko, A.; Stuchlíková, S.; Varvařovská, L.; Firment, P.; Staňková, L.; Nečasová, A.; Filipejová, Z.; Urbanová, L.; Jarošíková,
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