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Abstract: Deep learning technology has been widely adopted in the research of automatic arrhythmia
detection. However, there are several limitations in existing diagnostic models, e.g., difficulties in
extracting temporal information from long-term ECG signals, a plethora of parameters, and sluggish
operation speed. Additionally, the diagnosis performance of arrhythmia is prone to mistakes from
signal noise. This paper proposes a smartphone-based m-health system for arrhythmia diagnosis.
First, we design a cycle-GAN-based ECG denoising model which takes real-world noise signals as
input and aims to produce clean ECG signals. In order to train its two generators and two discrimi-
nators simultaneously, we explore an unsupervised pre-training strategy to initialize the generator
and accelerate the convergence speed during training. Second, we propose an arrhythmia diagnosis
model based on the time convolution network (TCN). This model can identify 34 common arrhythmia
events using eight-lead ECG signals, and we deploy such a model on the Android platform to develop
an at-home ECG monitoring system. Experimental results have demonstrated that our approach
outperforms the existing noise reduction methods and arrhythmia diagnosis models in terms of
denoising effect, recognition accuracy, model size, and operation speed, making it more suitable for
deployment on mobile devices for m-health monitoring services.

Keywords: arrhythmia diagnosis; ECG signal denoising; m-health service; deep learning

1. Introduction

Cardiovascular disease has become a major global health threat, with sudden car-
diac death being a significant cause of mortality. According to the World Heart Federation
(WHF) World Heart Report 2023 [1], the number of deaths from cardiovascular disease in-
creased from 12.1 million in 1990 to 18.6 million in 2019. In 2021, approximately 20.5 million
people died from cardiovascular disease, accounting for about one-third of total global
deaths. Arrhythmia, a common cardiovascular disease caused by abnormal cardiac elec-
trical conduction, poses significant risks to human health. Even benign arrhythmias also
indicate that the body’s heartbeat is irregular and may be potentially risky. Therefore, heart
beat monitoring serves as a significant reminder for patients.

Given the increasing significance of cardiovascular health, real-time and continuous
heart monitoring is imperative to avert potential accidents when individuals encounter
cardiovascular diseases or related symptoms. Electrocardiogram (ECG) emerges as a safe,
reliable, and noninvasive diagnostic method extensively employed in the clinical diagnosis
and treatment of arrhythmia [2–4]. Nevertheless, the specialized medical knowledge
required for arrhythmia diagnosis heavily relies on manual assessments, which are time-
consuming and labor-intensive.

Currently, deep learning methods, such as convolutional neural networks (CNNs) [5]
and recurrent neural networks (RNNs) [6], are widely employed for arrhythmia detec-
tion [7–10]. However, existing arrhythmia diagnosis models have certain limitations.
CNN-based models always struggle to extract the time series features in ECG signals,
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which reflect the rhythm and regularity of cardiac activity which are crucial for arrhythmia
diagnosis. While RNN-based models partially address this issue, their large number of
parameters and inability to perform parallel operations make them unsuitable for mobile
deployment. Therefore, developing an arrhythmia diagnosis model with high recogni-
tion accuracy, small model size, fast operation speed, and suitability for mobile terminal
deployment is of great significance for the development of ECG monitoring at home.

Furthermore, unlike professional medical equipment, wearable m-health sensors are
susceptible to various factors during data collection and transmission, resulting in noisy
ECG signals. Such noise directly affects the accuracy of arrhythmia diagnosis. Existing ECG
signal denoising methods are designed for specific types of analog noise, but real-world
environments produce much complex noise. Consequently, effectively separating clean
ECG signals from noisy sensory readings poses another challenge in this study.

This paper concentrates on designing and implementing an m-health system for ECG
monitoring. Our contributions include:

• We propose an ECG denoising model based on cycle-GAN [11] to mitigate the impact
of noise on arrhythmia diagnosis. The model employs a denoising autoencoder
(DAE) structure as the generator, which enhances the noise reduction performance by
adding analog noise to input signals. Experimental results have demonstrated that
our approach outperforms the existing noise reduction methods.

• We devise an arrhythmia diagnosis model based on a time convolution network (TCN)
to identify 34 common arrhythmia events [12] using eight-lead ECG signals. The
model extracts effective healthcare features through two-dimensional convolution
layers and parallel TCN modules and captures temporal information during long-
term sequences. Experimental results have indicated that our approach surpasses
existing arrhythmia diagnosis models in terms of recognition accuracy, model size,
and operation speed.

This paper is organized as follows: Section 2 describes related work, Section 3 intro-
duces our ECG noise reduction algorithm, Section 4 presents our arrhythmia diagnosis
algorithm, Section 5 provides evaluation results, and Section 6 concludes the research.

2. Related Work

Traditional ECG signal denoising methods include adaptive filtering [13], empiri-
cal mode decomposition (EMD) [14,15], wavelet transform [16,17], and FIR filtering [18].
Among them, Rahman et al. [13] proposed a method using an adaptive filter based on
error normalization to reduce ECG signal noise. This filter does not require a multi-
plier in the weight update process and exhibits good computational performance. Kabir
et al. [14] proposed a windowing method integrated with EMD to remove noise from the
initial intrinsic mode function (IMF). By performing windowing in the EMD domain, this
method effectively reduces IMF noise while preserving the QRS complex, resulting in a
cleaner ECG signal.

With the continuous development and maturation of deep learning technology, ECG
signal denoising methods based on deep learning have also emerged [19–24]. These
methods eliminate the need to distinguish noise types and can effectively remove noisy
data. Among them, Qian Wei et al. [19] proposed a multi-layer noise reduction self-
encoder method for ECG signal denoising. Peng et al. [20] introduced the use of stacked
compression noise reduction self-encoders (CDAE) and an improved version of noise
reduction self-encoder DAE to remove noise data from ECG signals.

Common traditional arrhythmia diagnosis methods include support vector machines
(SVMs) [25], the k-nearest neighbor (KNN) algorithm [26], principal component analysis
(PCA) [27], etc. Although these methods enable the automatic diagnosis of arrhythmia,
they require manual feature extraction from ECG signals. Due to the temporal nature of
ECG signals, many researchers have focused on using recurrent neural networks (RNNs) to
extract ECG characteristics. The most commonly used RNNs are long short-term memory
(LSTM) networks and gated recurrent units (GRUs). For instance, Georgios et al. [28]
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proposed a hybrid network composed of a CNN and LSTM for detecting atrial fibrillation.
T. M. Ingolfsson et al. [29] presented an arrhythmia diagnosis algorithm based on the
time convolution network (TCN) [30]. Shorda [31] utilized a CNN and bidirectional LSTM
based on a residual network for arrhythmia classification. Cui Kaixing [32] and Hu Lin [33]
constructed arrhythmia diagnosis models based on a CNN and LSTM.

Existing ECG monitoring systems have certain limitations. Firstly, most systems only
collect single-channel or dual-channel ECG signals, neglecting the use of full-lead ECG
signals, which limits the captured ECG information. Refs. [34,35] show that the 12-lead
electrocardiogram (ECG) is a common method of recording the electrical activity of the
heart, which uses multiple electrodes in different locations to record the heart’s electrical
signals. In contrast, the single-lead ECG uses only one electrode to record the heart’s
electrical activity. Obviously, doctors are able to observe the heart’s electrical activity in
different directions at the same time with 12-lead ECGs, thus obtaining more comprehensive
information, which helps them make more accurate diagnoses and treatments for heart
lesions. Since the 12-lead ECG signals in III-lead, AVR-lead, AVL-lead, and AVF-lead can
be derived from the other leads with linear operations, we select the 8-lead ECG signals to
use in this paper. Secondly, some systems fail to consider the impact of ECG signal quality
on diagnosis results. Household ECG sensors are susceptible to environmental interference
and may collect noisy signals. Noisy ECG signals can adversely affect the diagnosis results
of algorithms. Thus, a noise reduction strategy is necessary to improve signal quality and
ensure reliable diagnosis results.

3. ECG Denoising Algorithm

This section introduces our ECG denoising algorithm. ECG signals reflect a person’s
heart activity in a specific state, making it challenging to collect corresponding clean and
noisy ECG data simultaneously. Current solutions involve manually adding simulated
noise, but the limited types of simulated noise significantly differ from real-world noise.

To address this, we propose a cycle-GAN-based ECG signal denoising model, using
noise from a real-world environment as input and aiming to produce clean ECG signals
(shown in Figure 1). Two generators facilitate the conversion between noise and clean sig-
nals without requiring matching relationships in training data. Additionally, the generator
is based on a denoising autoencoder (DAE) [36] to enhance noise reduction performance
and model robustness by incorporating simulated noise into the real noise signal. Next,
we delineate the comprehensive architecture of the denoising model, encompassing the
structures of both the generator and discriminator.

Real Noise
Signal

Signal after Noise
Reduction

Discriminator
Dis_N2C

Clean Signal

Reversed Generated
Noise Signal

Generated Noise
Signal

Discriminator
Dis_C2N

Noise
Signal

Generated Clean
Signal

Noise
Reduction
Generator
Gen_N2C

Noise
Reduction
Generator
Gen_N2C

Reverse
Generator
Gen_C2N

Reverse
Generator
Gen_C2NAdditive

Analog Noise

Clean
Signal

Consistency

Consistency

Figure 1. ECG noise reduction architecture.
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The ECG signal denoising model specially trains two generators and two discrimi-
nators simultaneously to perform the conversion between noise signals and clean signals.
The denoising generator (Gen_N2C) converts noise signals into clean signals, while the
reverse generator (Gen_C2N) converts clean signals back into noise signals. The discrim-
inator (Dis_N2C) and the discriminator (Dis_C2N) are used to judge whether the data
generated by the two generators are close to the real data distribution. Through this cycle,
the capabilities of the generators and discriminators are significantly improved, and finally
it enhances the effectiveness of denoising.

The entire conversion process mainly includes four stages: adversarial training, re-
verse generation, cycle consistency training, and identity constraint training. In particular,
adversarial training refers to the adversarial process between the generator and discrimina-
tor; reverse generation refers to the fact that the inputs and target outputs of the denoising
generator (Gen_N2C) and the reverse generator (Gen_C2N) are opposite; cycle consis-
tency training refers to the fact that the main content of the noise data remains unchanged
after one cycle of conversion; and identity constraint training refers to the fact that the
effective data is not affected after the noise-carrying signal is denoised.

In the ECG signal denoising model, the denoising generator (Gen_N2C) and the
reverse generator (Gen_C2N) have the same structure, both based on a denoising auto-
encoder. Each generator includes an encoder and a decoder. The encoder encodes the input
signal, extracts high-dimensional features, and the decoder reconstructs the data, mapping
the feature values to the same dimension as the input signal. The specific structure of the
generator is shown in Figure 2.

Figure 2. The structure of the generator for ECG denoising.

As depicted in Figure 2, the generator adopts a five-layer noise reduction self-encoder
structure. The encoder component comprises five lower sampling blocks, while the de-
coder component consists of five upper sampling blocks. Each subsampling block is
constructed with a one-dimensional convolution layer (‘conv1d’), a regularization layer
(‘instancenorm1d’), and an activation function layer (‘tanh’). Similarly, each upsampling
block is comprised of a one-dimensional deconvolution layer (‘convtranspose1d’), a reg-
ularization layer (‘instancenorm1d’), and an activation function layer (‘tanh’). The de-
tailed structures of the lower sampling block and the upper sampling block are illustrated
in Figure 3.
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Downsampling Block

nn.Conv1d

nn.InstanceNorm1d

nn.Tanh

Upsampling Block

nn. ConvTranspose1d

nn.InstanceNorm1d

nn.Tanh

Figure 3. The structures of downsampling block and upsampling block.

Corresponding to the generator, the structure of the two discriminators is identical.
Each discriminator is constructed with five subsampling blocks and one one-dimensional
convolution layer. The detailed structure is illustrated in Figure 4.

Figure 4. The structure of the discriminator for ECG denoising.

The total loss value comprises three components: the adversarial loss, the cycle
consistency loss, and the identity loss. We present the calculation of loss function in
Equation (1), i.e.,

Loss = LossGAN + αLosscycle + βLossidentity (1)

In particular, LossGAN represents the adversarial loss and serves to assess the gen-
eration and discrimination capabilities of the generators and discriminators during the
adversarial evolution. The objective of employing adversarial loss is to minimize the dispar-



Biosensors 2024, 14, 201 6 of 20

ity between the distribution of real samples and the distribution of generated samples. This
facilitates the generator in producing more authentic and clean ECG signals, while enabling
the discriminator to more effectively distinguish real samples from the generated ones.
Equation (2) presents its definition, i.e.,

LossGAN = LossGAN(GN2C, DN2C, N, C) + LossGAN(GC2N , DC2N , C, N)

= En∼Pdata(n)[log DN2C(n)] + EC∼Pdata(c)[log(1 − DN2C(GN2C(c)))]

+ Ec∼Pdata(c)[log DC2N(c)] + En∼Pdata(n)[log(1 − DC2N(GC2N(n)))]

(2)

Losscycle refers to the loss of cycle consistency, which is used to measure the difference
between the data after two conversions and the original data. Its function is to maintain
the consistency of the data during the cycle, that is, to ensure that the semantics and
main contents of the original data remain unchanged after the ECG signal is denoised and
re-converted, as Equation (3) shows:

Losscycle = En∼Pdata(n) ∥ GC2N(GN2C(n))− n ∥1 +EC∼Pdata(c) ∥ GN2C(GC2N(c))− c ∥1 (3)

Finally, Lossidentity represents the identity loss. Its primary function is to ensure that the
generator does not alter the main characteristics of the input image. In other words, it
aims to minimize the difference between the input and output of the generator, ensur-
ing that the generated signal retains authenticity and preserves essential information.
Equation (4) presents its definition:

Lossidentity = En∼Pdata(n) ∥ GC2N(n)− n ∥1 +EC∼Pdata(c) ∥ GC2N(c)− c ∥1 (4)

In Equations (2)–(4), GN2C and GC2N represent the noise reduction generator and
reverse generator, respectively, DN2C and DC2N represent corresponding discriminators, N
represents the noise signal data distribution, C represents the clean signal data distribution,
n represents the noise signal sample, and c represents the clean signal sample.

4. Arrhythmia Detection

Presently, the most widely employed and fundamental method for examining
heart diseases involves the use of the 12-lead ECG signal. It encapsulates a wealth of
information related to the state of cardiac activity, serving as a crucial reference for the
clinical diagnosis and treatment of cardiac morphology, heartbeat rhythm, and arrhythmia.
Analyzing the waveform of the 12-lead ECG allows for a more accurate judgment of cardiac
activity abnormalities.

The core of the arrhythmia diagnosis algorithm lies in automatically detecting abnor-
malities in the ECG waveform based on the input ECG signals. Since each input ECG
sample may correspond to one or more arrhythmia events, the diagnosis algorithm should
be conceptualized as a supervised multi-label classification task.

We design our model to identify various arrhythmia events, including sinus tachycar-
dia, sinus bradycardia, sinus arrhythmia, and so forth. Figure 5 shows the comprehensive
structure of the model. In particular, the network structure can be broadly categorized
into four parts from top to bottom, i.e., the input layer, two-dimensional convolution and
residual network layer, time convolution layer, and output layer. Referring to [37], we set
the convolution kernel size to 50.
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input
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Figure 5. Network structure of arrhythmia detection model.

The dilated causal convolution layer in the TCN block is a crucial structure to extract
temporal features. Causal convolution ensures that the operation at time t only uses
the information before that time, as shown in Equation (5). In other words, there is no
information leakage during the operation, which is consistent with the generation order of
ECG sequence.

p(x) =
T

∏
t=1

p(Xt|X1, . . . , Xt−1) (5)

In contrast to the regular convolution operation, dilation convolution employs a sparse
sampling method that enhances a large receptive field. Equation (6) calculates the receptive
field size in dilation convolution:

f ield = (k − 1)× ∑ d × n + 1 (6)

where f ield is the size of receptive field, K is the size of convolution kernel, D is the
expansion factor of operation, and N is the number of expansion causal convolution layers
in the TCN block. In our model, three parallel TCN structures carry convolution kernels
with lengths of 3, 5 and 7. The expansion factors of the three TCN blocks in each TCN
structure are set as 1, 2 and 4, and the number of expansion causal convolution layers in
the TCN blocks is two.

Thus, the receptive field size of a TCN structure with a convolutional kernel length of
3 is 29; with a kernel length of 5, the receptive field size is 57; and with a kernel length of 7,
the receptive field size is 85. We conclude that in our model, the TCN structures in parallel
have a maximum receptive field of 85. Furthermore, features within a distance of 57 and 29
from the current feature will be repeatedly captured, effectively increasing their weight in
the final classification.
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Figure 6 illustrates the operation of the TCN structure with a convolutional kernel size
of 3. The same concept applies when the kernel size is 5 or 7.

Figure 6. Receptive field of TCN structure (kernel_size = 3).

In addition, the output layer of our model consists of three parallel average pooling
layers and a fully connected layer (Figure 7). The high-dimensional features extracted by
the TCN layer first undergo initial processing through the average pooling layer, which
downsamples the high-dimensional features and reduces data dimensionality while pre-
serving key feature information. Subsequently, such features are connected, fused, and
fed into the fully connected layer. The output length of the fully connected layer is 34,
equivalent to a linear classifier.

Avgpool
LinearFeature

Fusion

Temporal Convolutional Network Layer

Average Pooling Layer Fully
Connected
Layer

Figure 7. Output layer, where three colors denote three parallel layers.

5. Evaluation

A. Methodology

Dataset: we use two large-scale public datasets to train and test our model, including:

• Alibaba Tianchi Dataset: This data set comes from the Engineering Research Centre of
the Education Ministry of Mobile Health Management System, Hangzhou Normal
University, and it contains a total of 40,000 real medical electrocardiogram samples,
which are taken from patients of different age groups and genders.

• CPSC2020 Dataset [38]: This data set was collected from wearable ECG signal record-
ing devices and contains ECG data from 10 patients with cardiovascular diseases, with
each record lasting for about 24 h.
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From Figure 8, it is evident that, similar to the traditional architecture of IoT platforms,
the overall structure of the smart home ECG monitoring system is divided into three layers:
the perception layer, the transmission layer, and the application layer.

Perception layer

Transport layer

Application layer

ECG Sensor

Data Transfer 
Protocol

Wireless communication 
technology

Visual user interface

ECG signal acquisition and 
preprocessing

ECG data visualization

Intelligent diagnosis Explanation of diagnosis results

Data persistent  storage

Figure 8. Architecture of intelligent ECG monitoring system.

The perception layer, positioned at the bottom of the system architecture, plays a
critical role in information collection. It can be likened to the “skin and senses” of the
IoT, and commonly used devices in the perception layer include card readers, cameras,
and sensors. In the context of this system, the perception layer refers to the ECG sensor,
responsible for capturing the electrical signals generated by human heart activity. These
ECG signals are then transmitted to the application layer through the transmission layer
for processing and utilization.

The transmission layer functions as the channel for data transmission, employing
specific data transmission protocols and wireless communication technologies. Given that
the transmission layer in this system is intended for the short-range data transmission
of wearable ECG sensors, low-power Bluetooth communication technology is adopted.
Additionally, the data transmission protocol used is the anonymous host protocol, which
will be elucidated in subsequent sections of this chapter.

The application layer, also known as the processing layer, constitutes the top layer of
the three-layer IoT architecture. It interfaces directly with users, providing services tailored
to their needs. Serving as the bridge between the IoT system and users, the application layer
closely integrates with user requirements and primarily addresses information processing,
data management, and human–computer interaction. In this system, the application layer
is further divided into three sub-layers: the data persistence layer, the service layer, and
the visualization interface layer. The data persistence layer stores long-term data in the
SQLite database provided by the Android system, supporting the service layer. The service
layer implements business requirements and provides services to the interface layer. The
visualization interface layer serves as an interface for direct interaction with users. The
specific implementation of arrhythmia diagnosis is depicted in Figure 9.
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Connecting
sensors

View ECG Intelligent
diagnosis

T-ware change

(1) Intelligent arrhythmia diagnosis (2) Signal display (3) Results and analysis

T-wave changes refer to alterations in
the morphology and amplitude of the
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Various changes can be caused by
different conditions. For instance,
T-wave flattening or inversion is
commonly seen in myocardial
ischemia, myocarditis, and
cardiomyopathy. Elevated T-waves are
often observed in variant angina,
frequently accompanied by slanting
elevation of the S-T segment.

(This interpretation is for reference
only. If you experience any discomfort,
please seek medical attention
promptly.)

T-ware change

Figure 9. Implementation of arrhythmia diagnosis.

B. Mobile Deployment

Before applying the noise reduction model, three essential steps are undertaken: model
format conversion, model deployment, and model loading. Now, each step is described
in detail:

• Model format conversion: The network model trained in the Python 3.8.8 environment
is generally in.pth format . However, the network model supported by Android is in
the .pt format. Therefore, it is necessary to use the pytorch Library in the Python envi-
ronment for model format conversion. First, read the trained model into memory, and
then use the method optimizer_for_mobile in the package torch.util.mobile_optimizer
to converse and save the model in the .pt format.

• Mobile deployment: Mobile terminal deployment refers to the deployment of the
model to the Android terminal intelligent ECG monitoring system. First, create a
new assets folder in the application directory and put the format converted model
into this directory. The assets directory in Android project is specially used to save
various external files. The application will not process the files in this directory when
compiling but will package them into. Apk files, so it is more suitable for storing
model files.

• Model loading and Application: Before applying the model, the file needs to be loaded
from the assets directory into memory. Then, use the load method in the Module
class of the pytorch_android library to read the model and save the loaded model
as a Module-type object. Finally, call the forward() method of the model object to
complete inference.

C. Test of ECG Denoising Algorithm

This article records the changes in the loss values and their components during the
model training process, including the total loss (loss), generator loss (loss_G), discriminator
loss (loss_D), cycle consistency loss (loss_cycle), and identity loss (loss_identity). The
changes in each loss are shown in Figure 10.
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Figure 10. Changes in losses during training.

From the above figure, the following observations can be made:

- The top-left position in Figure 10 represents the variation in the total loss.
- The top-right position in Figure 10 shows the trends in cycle consistency loss and

identity loss. In the early stages of model training, these losses rapidly decrease and
gradually converge as the training progresses. Due to pre-training of the generator,
the identity loss is initially smaller than the cycle consistency loss, but their trends are
similar. Additionally, since these two losses have a significant impact on the total loss,
the overall trend of the total loss aligns with them.

- The bottom-left and bottom-right positions in Figure 10 represent the variations in
generator and discriminator losses, respectively. Due to pre-training, the generator
performs better than the discriminator in the initial stages, with lower loss values
and faster reduction. During the model training process, both the generator and
discriminator losses exhibit significant fluctuations, showing a fluctuating pattern. As
the training progresses, the generator loss stabilizes around 0.3, while the discriminator
loss stabilizes around 0.7.

To verify the impact of using a pre-training strategy to initialize generator parameters
in the denoising model for electrocardiogram signals, this study conducted three sets
of comparative experiments. The generator parameters were initialized using random
parameter initialization, normal distribution parameter initialization, and pre-training
methods, respectively, and the change in total loss during model training was observed.
The results of the comparisons are shown in Figure 11.

The three curves in the figure correspond to the three initialization strategies, with the
bottom curve representing the loss change curve when using the pre-training method to
initialize generator parameters. Comparing it with the other two curves, we can observe
that when the pre-training method is used for parameter initialization, the initial value of
the loss function is the smallest. The loss descends, and the model converges at the fastest
rate, with the final loss value slightly smaller than the other two initialization strategies.
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Figure 11. Comparative experimental results.

D. Test of System Performance

Firstly, we test the noise reduction performance of the ECG signal. To verify the
denoising performance of the model, this study first added Gaussian white noise and
baseline drift simulated noise signals to clean electrocardiogram signals. Such noise is
consistent with the the practical noise. Although such training data is noisy, our model still
works effectively with impulse noise.

Then, the proposed model was compared with commonly used traditional denoising
methods, including FIR filtering [18], wavelet denoising [17], and deep learning-based
denoising methods such as DeepFilter [21] and GAN [22] to denoise the noisy signals, and
the denoising effects were compared. The comparison results are shown in Figure 12.
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Figure 12. Example of ECG signal noise reduction, where the red line denotes the clean ECG signal
for comparison.
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In addition, to quantitatively evaluate the denoising effects and performance of the
model, this study calculated the signal-to-noise ratio (SNR) and mean square error (MSE)
of the signals after denoising with different methods. SNR represents the ratio of the useful
signal to the noise in the electrocardiogram signals. A higher SNR value indicates better
signal quality. When the noise signal dominates, the SNR value may be negative. The
specific definition of the SNR is shown in Equation (7).

SNR = 10lg
n

∑
i=1

X(i)2

[X(i)− Y(i)]2
(7)

In the equations, X represents the clean electrocardiogram signal, and Y represents
the denoised electrocardiogram signal. MSE refers to the difference between the denoised
signal and the clean signal. A smaller MSE value indicates that the denoised signal is closer
to the clean electrocardiogram signal, indicating a better denoising effect. The specific
definition of MSE is shown in Equation (8).

MSE =
1
n

n

∑
i=1

[X(i)− Y(i)]2 (8)

In the equations, X represents the clean electrocardiogram signal, and Y represents the
denoised electrocardiogram signal. The SNR and MSE values of different denoising models
are shown in Table 1. From the data in the table, we can see that the proposed model has the
highest SNR value and the lowest MSE value, indicating that its denoising performance
is better than other denoising methods. Combined with the denoising effect graphs in
Figure 12, it can be seen that FIR filtering and GAN [39] methods do not completely remove
high-frequency noise. Wavelet denoising effectively removes high-frequency noise but
cannot remove baseline drift noise, resulting in the lowest SNR value compared to the
clean signal. After DeepFilter denoising, the peak position changes significantly, which
may have a significant impact on the diagnostic results.

Table 1. Comparison of MSE before and after noise reduction.

SNR MSE

Before noise reduction −9.197 0.559
Model in this article 7.642 0.011

FIR filtering 6.206 0.016
wavelet denoising −8.789 0.509

DeepFilter 3.521 0.029
GAN 4.689 0.022

In addition, considering that the model needs to be deployed on mobile devices [7],
this study compared the denoising time of different denoising methods to evaluate the
real-time performance of the model. The comparison results are shown in Table 2.

Table 2. Noise reduction time for different models.

Model Our Model FIR Wavelet DeepFilter GAN

Noise reduction time (ms) 12.1 292.5 53.1 21.9 13.2

From Table 2, we can see that the proposed model has the shortest denoising time.
Traditional denoising methods such as FIR filtering and wavelet denoising take much
longer than deep learning-based denoising methods. This is because deep learning-based
methods only need to use a trained network model to complete signal denoising with one
forward pass, while traditional denoising methods have a more complex computation
process. In addition, the DeepFilter network has more layers and takes longer to run than
the proposed model. The generator in the GAN method is an eight-layer autoencoder
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structure, while the proposed model is a five-layer structure. Therefore, the denoising time
of the GAN method is slightly longer than that of the proposed model.

Secondly, we test the arrhythmia diagnosis algorithm. As shown in Figure 13, the
number of sample data of different categories in the training data set varies greatly, and
the data distribution is very uneven. The samples of some common arrhythmia categories
account for a large proportion in the data set, such as sinus bradycardia, sinus tachycardia,
or T wave changes. The samples of some less common arrhythmia categories in clinical
practice account for a small proportion in the data set, such as QRS low voltage pacing
heart rate, non-specific ST segment abnormalities, etc.
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Figure 13. Data distribution in training data set.

To enhance the diagnostic model’s ability to identify abnormal cases comprehensively,
all data were retained during the training process. However, due to significant disparities in
the sample sizes across different categories, this study employed the weighted loss function
BCEWithLogitsLoss as the model’s training loss function. Different weights were assigned
to the loss for each category to address the issue of uneven sample distribution. The weight
for each category is proportional to that category’s data in the dataset. The calculation
method for the weighted loss is presented in Equation (9).

lossn = −wn[yn · logxn + (1 − yn) · log(1 − xn)] (9)

In the equation, xn represents the predicted value, yn represents the true value, and
wn represents the class weight.

To validate the impact of the loss function on the model’s accuracy, this study trained
the model using three different loss functions, BCEWithLogitsLoss, FocalLoss, and MSELoss,
and monitored the changes in the model’s accuracy. As shown in the comparison results in
Figure 14, when training the model using the weighted loss function BCEWithLogitsLoss,
the model achieved the highest diagnostic accuracy. This indicates that using BCEWithLog-
itsLoss can effectively address the problem of imbalanced class distribution in the training
dataset and improve the accuracy of the model.

The time convolution network’s TCN layer serves as the cornerstone of the feature
extraction module within the proposed arrhythmia diagnosis model. It holds the utmost
significance in influencing the model’s performance. This paper explores the optimal
performance of the model by adjusting the structure and parameters of the TCN layer.
Refer to Table 3 for details of the model settings during the exploration process.
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Figure 14. Influence of loss function on model accuracy.

Table 3. Model settings.

Model TCN Structure Convolution Kernel Size k Expansion Factor D

Model_1 single 3 1, 2, 4
Model_2 single 5 1, 2, 4
Model_3 single 7 1, 2, 4
Model_4 paralleling 3, 5, 7 1, 2, 4
Model_5 paralleling 3, 5, 7 1, 4, 8

See Figure 15 for model performance under different network structures and parame-
ter settings.

From the comparison results, we can see that when three parallel TCN structures
are used for feature extraction, the convolution kernel size is set to 3, 5, and 7 and the
expansion factor is set to 1, 2 and 4, the model performance is the best. When a single TCN
structure is used for feature extraction, the performance of the model becomes better as
the convolution kernel becomes larger. The parallel TCN structure can greatly improve the
performance of the model. On the basis of the parallel TCN structure, when the receptive
field is increased by increasing the expansion factor, the performance of the model becomes
slightly worse, which may be caused by the excessive number of holes introduced in the
process of feature calculation.

Related works [40–50] and other works have shown that ResNet18 [51], SE-ECGNet [52]
and ECGNet [53] are three models commonly used in the field of ECG signal detection.
This paper compares the performance of the proposed model with three commonly used
deep learning models for arrhythmia classification from several dimensions, including
model prediction accuracy, recall rate, and F1 score. In particular, ResNet18 is based on
residual connections, SE-ECGNet is based on the convolutional neural network (CNN),
and ECGNet is based on the long short-term memory (LSTM) network. The mainstream
solutions [37,51,54] and other works are all similarly deployed on the basis of these. The
performance comparison results are shown in Figure 16.
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Figure 15. Comparison of model performance with different structures and parameters.

Figure 16. Model performance comparison.

From Figure 16, we can see that the proposed TCN-based arrhythmia diagnosis model
has the best performance, outperforming the other three models in terms of model accuracy,
recall rate, and F1 score. Among them, ResNet18 has the poorest performance, which may
be due to the large number of sample points contained in the ECG data and the long-term
sequence dependency of the data, resulting in limited ability of the network to extract
temporal features. The SE-ECGNet model based on CNN extracts features using parallel
two-dimensional convolution blocks and one-dimensional convolution blocks, gradually
reducing the kernel size to extract features from different ranges. With a wider feature
extraction range, it has better performance than ResNet18. The ECGNet model based on
LSTM has slightly worse performance than SE-ECGNet, with a hidden state size of 128
and a hidden layer depth of two. The reason for the slightly poorer performance may
be information loss during forward propagation, resulting in the LSTM not capturing
sufficiently long ECG signal features.

In addition, considering the need for mobile deployment of the model, this article
compares the model from two dimensions: model size and computational speed, as shown
in Figure 17.
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Figure 17. Comparison of model size and computational speed.

The comparison results in Figure 17 reveal that our proposed arrhythmia diagnosis
model is approximately one-third the size of SE-ECGNet and ECGNet. Additionally, in
terms of computational speed, SE-ECGNet requires about 8 minutes for one round of
training. Although ECGNet has a smaller scale as SE-ECGNet, its computation time is the
longest due to the inability to perform parallel computations in the LSTM layer. In contrast,
our proposed model demonstrates the shortest training time compared to other models.
Based on these findings, we can conclude that the TCN-based arrhythmia diagnosis model
is the most suitable for deployment on mobile devices, taking into account both model size
and computational speed.

6. Conclusions

In summary, we propose a model for diagnosing arrhythmia that accurately iden-
tifies multiple common arrhythmia events and is well suited for deployment on mobile
devices. Additionally, we introduce a denoising model for ECG signals to reduce the
impact of noise and enhance system robustness, effectively removing mixed noise from
ECG signals. Currently, our system meets the basic requirements of ECG signal acquisition
and arrhythmia diagnosis in a home environment. However, our system design is not yet
perfect, and there are several areas for improvement and optimization in the future:

- Conducting in-depth research on arrhythmia diagnosis algorithms: This involves
incorporating information fusion methods to enhance the accuracy and reliability of
the arrhythmia diagnosis.

- Performing dynamic training and optimization of the arrhythmia diagnosis model:
Continuously refining and updating the model through dynamic training to adapt to
evolving conditions and improve overall performance.

- Further expanding and optimizing the functionality of the system: Exploring addi-
tional features and functionalities to enhance the overall capabilities of the system,
making it more comprehensive and user-friendly.

These areas of improvement and optimization will contribute to the ongoing refine-
ment and advancement of our ECG monitoring system for home environments.
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