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Abstract: Wheezing is a critical indicator of various respiratory conditions, including asthma and
chronic obstructive pulmonary disease (COPD). Current diagnosis relies on subjective lung aus-
cultation by physicians. Enabling this capability via a low-profile, objective wearable device for
remote patient monitoring (RPM) could offer pre-emptive, accurate respiratory data to patients.
With this goal as our aim, we used a low-profile accelerometer-based wearable system that utilizes
deep learning to objectively detect wheezing along with respiration rate using a single sensor. The
miniature patch consists of a sensitive wideband MEMS accelerometer and low-noise CMOS interface
electronics on a small board, which was then placed on nine conventional lung auscultation sites
on the patient’s chest walls to capture the pulmonary-induced vibrations (PIVs). A deep learning
model was developed and compared with a deterministic time–frequency method to objectively
detect wheezing in the PIV signals using data captured from 52 diverse patients with respiratory
diseases. The wearable accelerometer patch, paired with the deep learning model, demonstrated high
fidelity in capturing and detecting respiratory wheezes and patterns across diverse and pertinent
settings. It achieved accuracy, sensitivity, and specificity of 95%, 96%, and 93%, respectively, with an
AUC of 0.99 on the test set—outperforming the deterministic time–frequency approach. Furthermore,
the accelerometer patch outperforms the digital stethoscopes in sound analysis while offering immu-
nity to ambient sounds, which not only enhances data quality and performance for computational
wheeze detection by a significant margin but also provides a robust sensor solution that can quantify
respiration patterns simultaneously.

Keywords: asthma; chronic obstructive pulmonary disease (COPD); accelerometer contact
microphone; deep learning; remote patient monitoring (RPM); wheezing

1. Introduction

Respiratory-related diseases, such as asthma and chronic obstructive pulmonary
disease (COPD), are chronic conditions that can lead to many symptoms, such as difficulty
in breathing, coughing, chest tightness, and respiratory wheezing. Asthma and COPD are
the two leading chronic respiratory disorders, which each affect approximately 300 million
people globally [1–7]. In addition, asthma is expected to affect 400 million people by 2025,
and COPD is expected to be the global leading cause of death in 10 years, both due to
increased exposure to environmental allergens and pollutants and sub-optimal primary care
systems [6,8,9]. Globally, it has been estimated that asthma and COPD are underdiagnosed
by 20–70% and 80%, respectively [10,11]. A major cause of underdiagnosis is lack of access
to quality health care and poor self-management [12,13]. Addressing the issue involves
improving access to quality healthcare for early detection and tracking the progression of
asthma and COPD. This can be achieved through cost-effective and noninvasive remote
patient monitoring (RPM), facilitating the identification of pre-symptomatic or subclinical

Biosensors 2024, 14, 118. https://doi.org/10.3390/bios14030118 https://www.mdpi.com/journal/biosensors

https://doi.org/10.3390/bios14030118
https://doi.org/10.3390/bios14030118
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com
https://orcid.org/0000-0001-9054-8958
https://doi.org/10.3390/bios14030118
https://www.mdpi.com/journal/biosensors
https://www.mdpi.com/article/10.3390/bios14030118?type=check_update&version=2


Biosensors 2024, 14, 118 2 of 19

respiratory changes [14–17]. RPM can be enabled by novel wearable patch solutions [18,19].
However, for accurate and comprehensive monitoring of respiratory health changes, it is
essential to employ robust diagnostic patches. These robust wearable patches are needed
to monitor and detect relevant respiratory changes that could signal physicians to provide
more timely and effective healthcare to patients [20].

1.1. Lung Auscultation

Lung auscultation stands out as a clinically proven, non-invasive method for pul-
monary diagnosis, highlighting its potential for pulmonary monitoring. For many years,
physicians have used auscultation to subjectively listen to the acoustics of the lungs for
adventitious lung sounds like wheezing, a key indicator of airway obstructive disorders
such as asthma and COPD. Wheezing is due to air flowing through narrowed airways and
other mechanical forces, which causes a high-pitched whistling sound emanating from
the lungs that is transmitted to the patient’s chest walls [21–23]. The frequency of the
whistling sound could also provide clinically relevant information about the respiratory sta-
tus, more specifically, whether the patient has monophonic or polyphonic wheezing [24,25].
In addition, due to the possible focality of wheezing found in some acute and/or chronic
respiratory disorders, such as COPD, and the relatively large size of the lungs, a compre-
hensive anatomically based examination of a patient’s lungs is needed to provide a more
accurate clinical diagnosis [26]. In summary, wheeze characteristics, such as its frequency,
presence during inspiration or expiration, and its lung anatomical location, can provide
physicians with a more specific diagnostic framework for the presence of decompensated
respiratory disorders like asthma and COPD, which can facilitate a more refined clinical
treatment plan [25,27,28].

While lung auscultation remains a powerful diagnostic tool, even with advancements
like digital stethoscopes being able to record chest sounds [29], barriers to widespread pul-
monary remote patient monitoring use persist. Challenges include the lack of continuous
monitoring via auscultation, the bulkiness of current digital stethoscopes, and the necessity
for a trained medical professional to validate traditional and/or digital findings. [30,31]. In
addition, stethoscopes are often used in uncontrolled environments and can pick up inter-
fering ambient sounds (e.g., people talking, monitoring device alarms, etc.), which makes it
challenging to distinguish sounds along with the source of those sounds [29,31–33].

To circumvent these problems, a promising, novel approach is to capture only the
acoustic vibrations of the chest walls using a chip-scale wideband accelerometer, which
acts as a contact microphone by measuring the vibrations of a surface that it is mounted
on while also isolating from ambient sounds [29,30,34–39]. This is used in a miniature
wearable patch and deploys objective and validated methods, like computation detection,
to detect wheezing [32,40–43].

This study introduces robust computational methods for automated wheeze detec-
tion in patients, leveraging data from a sensitive wearable accelerometer patch capturing
pulmonary-induced vibrations (PIVs). Benchmarking a deterministic time–frequency
analysis and a deep learning model, these methods, when combined with the wearable
accelerometer patch, offer a standardized approach to detect respiratory wheezing and
monitor the pulmonary system while also not being sensitive to ambient sounds.

1.2. Accelerometer-Based Wearable Patch

The sensor used in this work is a hermetically sealed micro-electromechanical system
(MEMS) accelerometer with very high out-of-plane sensitivity, enabling micro-g/rtHz noise
resolution in a wide dynamic range of ±6 g and a wide bandwidth of 10 kHz (Figure 1a).
The device can act as a conventional DC accelerometer and a wideband vibrometer, i.e.,
a contact microphone, to enable the detection of low-frequency chest movements due
to breathing as well as high-frequency vibrations on the chest due to PIVs, as shown
in Figure 2. The accelerometer contact microphone (ACM) patch shown in Figure 1b is
provided by StethX Microsystems, Atlanta, GA, USA, and can capture wideband PIVs from
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chest wall movements to 10 kHz due to its 20 kHz sampling rate without sensitivity to
airborne sounds. The MEMS chip is interfaced with a custom high-bandwidth, low-noise
CMOS (complementary metal-oxide semiconductor) ASIC (application-specific integrated
circuit) for converting the MEMS capacitive output to a 24-bit digital signal, which can
be manufactured together for a few USD. The velocity random walk (VRW), which is
a representation of the thermal noise in the system, is measured at 6.7 µg/

√
Hz for the

MEMS + ASIC configuration, as shown in Figure 1c, with 20× lower noise compared
to the previous version, which used off-the-shelf data conditioning electronics [30]. The
wearable sensor is placed on the chest wall via medical tape. The sensor is attached to a
data-acquisition unit, programmed in C# with a custom lower-level library communication
protocol, which interfaces with a computer to view the data through a GUI (graphical user
interface), as shown in Figure 3 (all provided by StethX Microsystems).
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Figure 1. (a) The MEMS sensor is a wideband accelerometer with out-of-plane sensitivity and micro-g
resolution made from a suspended silicon membrane operating in vacuum employing differential
nano-gap capacitive transducers. (b) Accelerometer patch with compact size, which encompasses
the CMOS ASIC. (c) Measured Allan Deviation of MEMS + ASIC exhibiting state-of-the-art noise
performance of 6.7 µg/

√
Hz (20× lower noise than [34]).
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Figure 2. Accelerometer patch bandwidth, which encompasses the frequency of respiratory phase,
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Figure 3. The accelerometer patch is attached to data-acquisition unit hub attached via USB C wire to
the computer for data acquisition.
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2. Methodology
2.1. Participants

Lung sound recordings were taken from 52 patients admitted to Grady Memorial
Hospital in Atlanta, GA, USA, in either an outpatient pulmonary asthma clinic or in the
hospital setting (emergency room or general hospital bed) to provide a more representative
sample pool and dataset of the use of auscultatory devices in real-world environment. The
patients had varying demographics, such as age, height, weight, and body mass index,
(BMI) as shown in Tables 1 and 2. All the human subjects participated voluntarily with
informed consent. In the outpatient asthma clinic, patient selection was guided by a diverse
range of severity of asthma and lung sounds, whereas in the hospital, patients were chosen
through blind referrals given to the physician for patients likely to exhibit adventitious
lung sounds. The protocol was approved by Emory University and Georgia Institute of
Technology Institutional Review Board (IRB #00105563). The process of data collection
from patients was supervised by experienced and authorized physicians.

Table 1. Patient characteristics of 52 patients tested at Grady Memorial Hospital.

Patient Characteristics Values

Gender (Male/Female) 23/29
Emergency Room/In Clinic 34/18

Age: mean (standard deviation: SD), range 56.74 (13.63), 33–87
Height (m): mean (SD), range 1.71 (0.11), 1.47–1.96
Weight (kg): mean (SD), range 96.32 (35.41), 55.3–215

BMI: mean (SD), range 31.76 (9.14), 18.55–62.9

Table 2. Detailed description of each patient tested, along with lung auscultation notes, diagnosis
provided by physician, and where they were tested.

Patient # Age (Years
Old) Sex Height (m) Weight

(kg) BMI Lung Auscultation
Notes Diagnosis Testing

Location

1 53 M 182.9 83 24.8 Polyphonic
Wheezing Severe Asthma Clinic

2 50 M 195.6 112.9 29.5 No Wheezing Mild Asthma Clinic

3 61 F 152.3 77.6 33.4 No Wheezing ACOS Clinic

4 60 M 182.2 85.3 25.5 No Wheezing Mild Asthma Clinic

5 67 M 185.4 108 31.4 No Wheezing Severe Asthma Clinic

6 52 F 157.5 55.8 22.5 Wheezing Severe Asthma Clinic

7 45 F 172.7 97.5 32.7 No Wheezing Mild Asthma Clinic

8 63 F 167.6 102.1 36.3 No Wheezing Mild Asthma Clinic

9 53 F 170.2 126.1 43.5 Wheezing Severe Asthma Clinic

10 36 F 157.5 109.3 44.1 No Wheezing Moderate Asthma Clinic

11 58 F 147.3 83.9 38.7 Wheezing Severe Asthma Clinic

12 50 F 167.6 106.6 37.9 No Wheezing Chronic Hives Clinic

13 70 M 185.4 66.2 19.3 Wheezing Severe ACOS Clinic

14 39 F 172.7 65.8 22 Wheezing Severe Asthma Clinic

15 57 F 165.1 78.5 28.8 Wheezing Severe Asthma Clinic

16 75 F 178 87.3 27.62 No Wheezing Acute Respiratory
Failure

Emergency
Room

17 50 F 165 124.7 46.1 No Wheezing Acute Respiratory
Failure

Emergency
Room
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Table 2. Cont.

Patient # Age (Years
Old) Sex Height (m) Weight

(kg) BMI Lung Auscultation
Notes Diagnosis Testing

Location

18 75 F 155 71.2 29.6 No Wheezing COPD
Exacerbation

Emergency
Room

19 56 M 185 98.4 28.8 No Wheezing ADHF Emergency
Room

20 58 M 172 55.3 18.55 No Wheezing COPD
Exacerbation

Emergency
Room

21 79 F 168 90 32.12 No Wheezing ESRD Emergency
Room

22 38 F 170 210 32.89 No Wheezing ADHF Emergency
Room

23 67 F 165 215 35.84 No Wheezing COPD
Exacerbation

Emergency
Room

24 55 F 157.5 79.4 31.2 Wheezing Severe Asthma Clinic

25 63 M 170.2 62.6 21.6 No Wheezing Bilateral Pleural
Effusion

Emergency
Room

26 33 M 167.6 93 33.1 No Wheezing CAP Emergency
Room

27 62 F 170.8 106.1 36.6 Wheezing Moderate Asthma Clinic

28 57 F 165.1 80.3 29.5 Wheezing Severe Asthma Clinic

29 36 M 188 98.4 27.9 Polyphonic
Wheezing Severe Asthma Emergency

Room

30 60 M 175.3 100.7 32.8 No Wheezing COPD
Exacerbation

Emergency
Room

31 43 F 167.5 150.6 53.6 No Wheezing Sarcoid Emergency
Room

32 87 F 152.7 91.2 39.26 Wheezing and
Crackle

Reactive Airway
Disease

Emergency
Room

33 35 F 160 161 62.9 Wheezing Severe Asthma Emergency
Room

34 63 M 175.2 90.7 29.53 Wheezing and
Crackle

Reactive Airway
Disease

Emergency
Room

35 43 F 175.6 63.5 20.7 Wheezing Asthma
Exacerbation

Emergency
Room

36 35 M 165.1 72.6 26.63 No Wheezing Pneumonia Emergency
Room

37 64 M 180.3 92.5 28.06 Wheezing Acute Respiratory
Failure

Emergency
Room

38 77 M 177.8 76.7 24.36 Wheezing COPD
Exacerbation

Emergency
Room

39 59 F 162.2 99.3 37.6 Wheezing COPD
Exacerbation

Emergency
Room

40 72 M 162 59 22.5 Wheezing COPD
Exacerbation

Emergency
Room

41 missing F 167.7 63 22.4 Wheezing Severe Asthma Emergency
Room

42 40 F 165.8 81.6 29.7 Wheezing Acute Respiratory
Failure

Emergency
Room
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Table 2. Cont.

Patient # Age (Years
Old) Sex Height (m) Weight

(kg) BMI Lung Auscultation
Notes Diagnosis Testing

Location

43 56 M 180.3 120.2 37 Wheezing and
Crackle ADHF Emergency

Room

44 84 M 188 147.4 41.7 Wheezing ADHF + CAP Emergency
Room

45 67 F 170 89.4 37.2 Wheezing and
Crackle

COPD
Exacerbation

Emergency
Room

46 65 F 167.6 44.9 16 Wheezing and
Crackle

COPD
Exacerbation

Emergency
Room

47 72 M 178 100.2 31.7 Wheezing and
Crackle

COPD
Exacerbation

Emergency
Room

48 80 M 180 83 25.5 Wheezing Right Upper Lobe
Mass

Emergency
Room

49 49 M 185.4 91.2 26.5 Wheezing and
Crackle

Acute Respiratory
Failure

Emergency
Room

50 43 M 190.5 68 18.7 Wheezing Severe Asthma Emergency
Room

51 27 M 175.3 74.8 24.3 Wheezing Severe Asthma Emergency
Room

52 55 F 154.9 123.9 51.6 Wheezing Severe Asthma Emergency
Room

Asthma–Chronic Obstructive Pulmonary Overlapped Syndrome is denoted as ACOS. Chronic Obstructive
Pulmonary Disorder is denoted as COPD. Acute Decompensated Heart Failure is denoted as ADHF. Community-
Acquired Pneumonia is denoted as CAP.

2.2. Study Protocol

The accelerometer patch was placed on the patient’s chest walls and secured via
3M Medipore H-Soft Cloth Surgical Tape. Each patient was asked to sit or lie down and
was then asked to take continuous deep breaths for 30 s intervals for each of the nine
auscultation areas, as shown in Figure 4, while the accelerometer patch collected data. The
accelerometer sensor board was connected via wire to a data-acquisition hub unit and
then connected to a computer, as shown in Figure 3. A traditional stethoscope along with
a digital stethoscope embedded in the same traditional stethoscope, specifically the Eko
Core 3.0 (Berkeley, CA, USA) [44], was used by physicians, to which they applied direct
pressure of the stethoscope diaphragm to the chest walls to listen and record lung sounds
from the same auscultation areas. In the hospital/emergency room setting, the physician
conducted their pulmonary examination with a traditional stethoscope, and then both the
accelerometer patch and digital stethoscope were tested simultaneously in all auscultation
sites close to each other from sites 1 to 9, as shown in Figure 5a. In the outpatient asthma
clinical setting, the physician first conducted their traditional pulmonary examination
with their stethoscope, provided auscultation notes, and then recorded respiratory sounds
from the digital stethoscope on all or majority of auscultation sites. Some auscultation
sites, specifically auscultation site 3, were not tested in outpatient asthma clinics due to
clothing access restrictions. To address time constraints in the clinic, accelerometer patch
data collection was conducted following the patient’s routine check-up. After testing in
the hospital and clinical setting, the sound recordings of the accelerometer patch were
played along with the gold standard—the digital stethoscope—based on auscultation sites
to the physician, who then blindly labeled whether they heard wheezing or no wheezing,
as shown in Figure 5b. Finally, the diagnosis of the patient’s clinical disease was provided
by the physician after clinical evaluation and/or chart review, as shown in Table 2.
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Figure 4. The sensor was typically placed on each of the nine auscultation sites used in common lung
examination, which include the anterior and posterior of the chest. The site labels use a three-letter
code: R represents right, M represents middle, L as the 1st letter represents left, L as the 2nd represents
lower, and L as the last letter represents lobe.
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Figure 5. (a) Data were collected at auscultation sites by both the accelerometer patch, highlighted
in red outline, and the digital stethoscope. For the accelerometer patch data, each recording was
separated into five-second segments, and a bandpass filter (BPF), Savitzky–Golay filter (SGF) and
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discrete wavelet transform (DWT) were applied to the segment. The digital stethoscope recordings
with a pulmonary filter were also segmented into 5-second bits with no further preprocessing.
(b) Afterwards, mel spectrogram from the accelerometer patch and digital stethoscope segments
were created via Fast Fourier Transform (FFT). In addition, both the accelerometer patch and digital
stethoscope audios were analyzed while the accelerometer patch recording segments were played
and labeled by physician. (c.i) Afterward, with the accelerometer patch/digital stethoscope mel
spectrograms, a time–frequency approach was taken to detect if there was a wheeze and other
characteristics of a wheeze. (c.ii) In addition, a deep learning approach with a 2D convolutional
neural network was used with all the accelerometer patch/digital stethoscope mel spectrogram files
with a 5-fold cross validation and test set to determine if a wheeze was present.

2.3. Signal Denoising and Analysis

With the accelerometer patch, the PIVs were captured, further processed, and denoised
in MATLAB_R2021a, as shown in Figure 5a. Specifically, the PIVs were filtered with a
band pass filter of 60 Hz to 2000 Hz, corresponding to the main lung sound frequencies
and to remove the majority of heart sounds and motion artifacts from the signal, with
a filter order of 10 [42]. The PIVs were then smoothened with a Savitzky–Golay Filter
(SGF) with a window width of nine samples, as similarly used in digital stethoscope signal
smoothening [45]. Afterward, the PIVs were denoised with Daubechies(db)3 Wavelet
through discrete wavelet transform (DWT) to make the signal, when played, sound more
similar to wheezes [46]. The data were then segmented into five-second segments and
scaled from −1 to 1 for audible sound playback. For benchmarking the accelerometer
patch with the Eko digital stethoscope, the Eko Core pulmonary filter was applied. Ac-
celerometer patch, acting as a contact microphone, and digital stethoscope recordings were
played to a physician to determine whether the audio contained wheezing or not. The
accelerometer patch’s five-second clips were then labeled to be used later for computa-
tional wheeze detection. Since respiratory sounds have a wide range of frequencies with
wheezes specifically ranging from 100 Hz–2 kHz [25,41], the accelerometer patch PIVs and
the digital stethoscope recording were analyzed via mel spectrograms—a popular visual
representation of the audio signals to showcase the frequency spectrum of how human
perceive sounds—where the x-axis represents time (s), y-axis represents frequency (Hz),
and the color scale represents power in sound decibel (dB), as shown in Figure 5b [41,47].
To create mel spectrograms, spectrograms from the scaled accelerometer data were first
created via Fast Fourier Transform (FFT) with a Hann window length of 1024 samples
(approximately 50 ms) with a 50% overlap, and the shown frequency range was set from
60 to 1200 Hz with 64 bands. Digital stethoscope spectrograms were also first created via
FFT with a Hann window length of 256 samples (approximately 60 ms) with a 50% overlap,
and the shown frequency range was set from 60 to 1200 Hz with 64 bands. The spectro-
gram parameters were chosen to reduce spectral leakage and time domain distortion. The
spectrogram frequency axis, y-axis, was then converted into mel scale (m), a logarithmic
scale correlated to how humans perceive pitch/frequency ( f ), as shown in Equation (1), to
create mel spectrograms:

m = 2595 log10

(
1 +

f
700

)
(1)

To extract the chest wall movements for respiration rate and phase estimation from
the accelerometer data, a low-pass filter of 5 Hz with a filter order of 10 was applied along
with a moving average smoothing filter to show when these adventitious lung sounds
occur based on the respiration phase, and mean centering was applied to show the overall
amplitude range of the chest wall movements throughout the patient’s respiratory cycle.
The accelerometer patch, based on an out-of-plane capacitive accelerometer, allows for
extraction of near DC levels to measure chest wall movements directly linked to respiration
phase. Since the patients were sitting upright and asked to take deep breaths, the upward
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ramps of amplitude plots indicate inspiration, while the downward ramps indicate expira-
tion. All expiration is represented in the chest wall movement plots as shaded blue boxes.
The accelerometer patch and digital stethoscope recordings with sound playback were then
analyzed by physician and labeled to determine accuracy and agreement of both devices.

2.4. Wheeze Detection Time–Frequency Analysis

To determine the optimal objective wheeze-detection method, two automatic wheeze-
detection methods were formulated: a deterministic time–frequency approach to detect
wheezes via its features like frequency and sound decibel (dB), and a deep learning model,
specifically a 2D convolutional neural network (CNN), to determine if wheezing is present
in a specific recording segment from the accelerometer patch. For the deterministic ap-
proach, mel spectrograms showed the frequencies of sound, as shown in the flow chart in
Figure 5c.i. Using the mel spectrograms, local maximum peaks could then be determined
at each time point, and the maximum peaks were extracted if they were above the constant
value of the mel spectrogram. These extracted local maximum peaks were also to be
determined within a range of 50 Hz of the next time segment local maximum peaks, as a
wheeze is defined as a constant sound with the same frequency range. Afterward, calcula-
tions were performed to determine if the local maximum peaks were to be continuous for
greater than 100 ms to differentiate between other peaks, such as breath sounds or other
adventitious lung sounds, and to confirm wheezing based on previously standardized
computational wheeze characteristics [48]. Finally, the output was examined to determine
if and when wheezing was present in the five-second segments. The accuracy rate was
determined by comparing the outputs with the physician’s labeling using their traditional
lung auscultation.

2.5. Classification of Wheezing via Convolutional Neural Network (CNN)

By using the 5 s segment mel spectrograms from 52 patients, a 2D CNN from Ten-
sorFlow GPU and Keras was created with a total of 1356 respiratory wheezing sounds
and 1334 normal breath sounds mel spectrograms with no padding, as shown in the flow
chart in Figure 5c.ii. The 2D CNN model was chosen for its low latency along with its high
performance in speech detection. Initially, 20% of the data was randomly designated as
test data, while the remaining data were used as training data. The training data were
separated for a five-fold cross-validation method and were used to validate performance
of hyperparameter optimization. Early stopping was utilized to monitor validation loss.
No additional pre-processing of the data, such as data augmentation, was performed. This
model utilized four filters of 32, 64, 128, and 256 with a kernel size of (3,3). Each of the
four convolutional layers was followed by a dropout of 0.25 and then a max pooling 2D
step with a filter size of (2,2) and rectified linear unit (ReLU) activation [49]. After all
the convolutional layers, the data were then flattened. A dense linear layer with ReLU
activation was applied, followed by a dropout of 0.5. Afterward, another dense linear layer
followed. Finally, a dense output was created. The variables were optimized using the
Adam optimization algorithm with a learning rate of 0.001. Accuracy, sensitivity, specificity,
and the area under the curve (AUC) of the receiver operating characteristic (ROC) and
Precision Recall (PR) were measured.

2.6. Digital Stethoscope Computational Wheeze Detection

In addition, the deterministic time–frequency analysis and the deep learning classifier
wheeze detection methods were tested on the data captured from the digital stethoscope
on the same patients to determine whether the accelerometer patch or digital stethoscope
provided higher-quality data for computational wheeze-detection methods. The deter-
ministic time–frequency method was unchanged. The wheeze digital stethoscope deep
learning classifier retained the structure of the accelerometer patch deep learning model but
included the mel spectrograms of 1210 wheezing sounds and 1402 normal breath sounds
from the digital stethoscope.
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3. Results
3.1. Patient Clinical Characteristics

We studied 52 patients with a diverse demographic and a wide variety of clinical
characteristics examined in either an outpatient asthma clinic or the hospital setting, as
shown in Tables 1 and 2. With the accelerometer patch placed on a patient’s chest wall
auscultation sites, the patient’s PIVs can be captured along with their synchronous chest
wall movements that correspond to their respiratory phase, as outlined in the Methods.
Combining the mel spectrogram with the synchronized time domain respiratory phase
enables a more comprehensive analysis for physicians, as knowing if the wheeze is during
expiration or inspiration can be clinically relevant [22].

The recordings of the accelerometer patch and digital stethoscope had great alignment
via sound playback to a physician. In accordance with what the physician heard from
the digital stethoscope recordings, the presence of a wheeze matched with the physician’s
traditional stethoscope auscultation findings. The physician also determined that the
accelerometer patch and digital stethoscope recordings were found to align in their classifi-
cation of wheezing and non-wheezing sounds, as the agreement was 97.51% accurate with
a 95.14% sensitivity and 98.56% specificity. The majority of these inconsistencies were from
testing in outpatient clinics when the accelerometer patch and digital stethoscope were
tested separately, as time and increased repetition of deep breaths along with coughs can
cause the wheezing to move to different locations in the airways, flare, disappear.

After collecting data from 52 patients from 8 to 9 auscultation sites for 30 s each, a
total of 1356 wheezing and 1334 non-wheezing five-second segments were captured and
utilized in the computational wheeze detections. Out of those 52 patients, 16 of the patients
had wheezing respiratory sounds, 20 of the patients had normal breath sounds, and 16 of
the patients had both.

3.2. Comparing Time–Frequency Wheeze Detecting with Deep Learning Wheeze Classifier Using
Accelerometer Mel Spectrograms

After the physician labeled the mel spectrograms of each recording segment, the
accelerometer patch time–frequency wheeze detection and 2D CNN wheeze detection
were benchmarked with each other as followed in Figure 5c.i and Figure 5c.ii, respectively.
The deterministic time–frequency analysis and the deep learning method are recognized
as the standard for objective wheeze detection in other studies on digital stethoscope
recordings [32,40–42,48]. We aim to benchmark the two established concepts with the
PIV mel spectrogram collected from the accelerometer patch for accuracy, sensitivity, and
specificity to determine the optimal approach for wheeze detection.

The time–frequency method was used for each mel spectrogram to find the dominant
frequency bands louder than the constant sound level, which represented wheezing, es-
pecially if the frequency band was greater than 100 Hz. In addition, the frequency band
variation must be within 50 Hz, and the band duration must be longer than 100 ms, as
shown in the flow chart in Figure 5c.i [32,43]. The time–frequency approach accurately
extracted wheezing 87.45% of the time when compared with the study physician’s labeling
with 81.39% sensitivity and 92.53% specificity. In addition, the time–frequency analysis
showed that wheezing from the PIVs was consistently captured by the accelerometer patch
and consistently exhibited frequency content similar to that captured with the digital stetho-
scopes. In addition, since the PIVs were bandpass-filtered, as shown in Figure 5a, signals
like heartbeats or chest wall movement did not interfere as much with the deterministic
time–frequency detection method due to their low-frequency content. A potential root for
inaccuracy in the time–frequency method is that wheezing frequency variation may exceed
50 Hz, especially during the beginning or end of a patient’s respiration cycle [43]. However,
this criterion is necessary to reduce the impact of white noise interference; ignoring this
criterion would increase the false positive rate of the wheeze detection and lower its speci-
ficity. Therefore, a more robust computational detection method, such as a deep neural
network, is desirable.
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One popular deep learning model for image classification is CNN [40,41,50–52]. Since
the captured PIVs were represented as mel spectrogram images, the accelerometer patch
mel spectrograms can be used as inputs for this deep learning model. Due to the wide
variety of patient data collected and the robustness of the sensor, no data augmentation
was necessary. The dataset was initially partitioned with a dedicated test set to provide a
more substantial gauge of the predictive model’s generalizability in real-world scenarios.
Additionally, a five-fold cross-validation was also utilized on the remaining dataset to
reduce overfitting and for hyperparameter optimization. In the 2D CNN model, convolu-
tional layers were utilized to extract features of the mel spectrogram where the (3,3) kernel
size allowed for the model to extract the wheezing frequency variation in the 64-band
mel spectrograms. Dropout and max pooling were also implemented in tandem with the
convolutional layers to improve generalization performance and reduce overfitting. In
addition, ReLU activation function was utilized to provide non-linearity, which allowed
the model to learn the curvature of the wheezing frequency variation, which was captured
and shown in mel spectrogram—for example, in Figure 5b. The deep learning model
folds consistently outperformed the deterministic time–frequency method in wheezing
classification, with an average accuracy, sensitivity, specificity rate of 94.59%, 95.82%, and
93.41% over the five-fold cross validation. The model’s average AUC of the ROC and
PR of the 2D CNN model was 0.9969 and 0.9842, respectively. On the test set, the deep
learning model maintained its superior performance over the deterministic method with an
accuracy, sensitivity, and specificity of 94.52%, 93.45%, and 96.16%, respectively, showing
its ability generalizability in real-world scenarios. The AUC of the ROC and PR on the test
set was 0.9864 and 0.9852, respectively, which shows the quality of the binary deep learning
classifier. A comparison of the deterministic method and the deep learning classifier on the
test set is shown in Table 3, with the AUC of the ROC curve of the five folds and the test set
shown in Figure 6a.

Table 3. Comparison of deterministic time–frequency detection and deep learning classifier tested on
test data from accelerometer patch PIVs and digital stethoscope recordings.

Detection Method Accuracy (%) Sensitivity (%) Specificity (%)

Accelerometer Patch Time–Frequency Analysis 87.45 81.39 92.53

Accelerometer Patch 2D CNN on Test Set 94.52 93.45 95.72

Digital Stethoscope Time–Frequency Analysis 86.83 82.98 87.52

Digital Stethoscope 2D CNN on Test Set 88.95 91.36 86.65

3.3. Digital Stethoscope Computational Wheeze-Detection Method Performance

Both computational wheeze detection methods were also tested on the same patient
set with the data captured from the digital stethoscope. The computational methods
were tested on the digital stethoscope data to determine whether the accelerometer patch
or digital stethoscope provided better data quality for computational wheeze-detection
methods. The digital stethoscope’s time–frequency analysis wheeze detection on this
patient set had an average accuracy, sensitivity, and specificity of 86.83%, 88.98%, and
84.52% over the five-fold cross-validation. The digital stethoscope deep learning model
also outperformed the digital stethoscope deterministic method, with an average accuracy,
sensitivity, and specificity rate of 89.54%, 92.34%, and 84.24%, respectively. The model’s
average AUC of the ROC and PR of the 2D CNN model were 0.962 and 0.9274, respectively.
On the test set, the digital stethoscope deep learning classifier showed similar performance
with an accuracy, sensitivity, and specificity of 88.95%, 91.36%, and 86.65%, respectively,
with AUC of the ROC and PR of 0.9381 and 0.8886. The AUC of the ROC curve of
the five folds and the test set is shown in Figure 6b. The accelerometer patch wheeze-
detection methods surpassed the digital stethoscope computational detection method
performance, as shown in Table 3, which compares accuracy, sensitivity, and specificity. The
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computational methods performed worse on the digital stethoscope data in the detection
and classification of wheezing or no wheezing due to increased noise in its data, which was
from other people’s voices and ambient sounds in the mel spectrograms. The accelerometer
patch’s superior data quality, unaffected by ambient sounds such as the accelerometer,
only captures the patient’s PIVs, resulting in fewer false positives compared to the digital
stethoscope data.
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3.4. Patient Data

Both models were computed from a wide variety of patient data captured from
the accelerometer patch to provide robustness for real-world applications and to objec-
tively determine which computational wheeze-detection method had higher performance.
Data included patients who had overlapping respiratory diseases, patients with high
BMI, patients who were recently discharged from the hospital, and patients recorded in
noisy environments.

To accumulate the diverse dataset, the accelerometer patch was tested on patients
with overlapping respiratory diseases, where other adventitious lung sounds may occur
along with wheezing. One example is patient 34, who had a BMI of 29.5 and was tested
on each of the nine auscultation sites in the hospital emergency room. As shown in the
mel spectrogram of Figure 7a, this patient had monophonic wheezing, represented by the
thick harmonic yellow bands in the white box, as adventitious lung sounds are louder
than breath sounds [21]. After the wheezing occurred in the mel spectrogram, crackles
were also captured, as shown by the patchy, non-harmonious, brighter yellow hue, with
an example encompassed within the black box of the mel spectrogram. Crackle is another
adventitious respiratory sound, which sounds like a rapid succession of crackling sounds.
This recording containing both adventitious respiratory sounds was captured from the
posterior right lower lobe of the lung, where the estimated expiration respiratory phase was
highlighted by the blue box of the chest wall amplitude plot in Figure 7a. By analyzing the
mel spectrogram along with the coincided respiration phase, this patient was determined to
have expiratory monophonic wheezing with early inspiratory crackles following afterward.
Expiratory wheezing is a known marker for intrathoracic airway obstruction, as seen in
asthma, while the early inspiratory crackles could be another strong indicator of COPD, as
there have been studies that correlated early inspiratory crackles with COPD, especially
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since this accelerometer patch mel spectrogram recording was taken from the patient’s
lower lobes [53]. Audio playback of both the accelerometer patch and digital stethoscope
recordings to the physician agreed with the notion of expiratory wheezing along with
coarse early inspiratory crackles. The patient was characterized and diagnosed with
asthma-COPD overlap syndrome (ACOS), which depicts an asthmatic patient who has
developed chronic lung damage manifesting as COPD determined by lung function testing.
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Figure 7. (a) Accelerometer patch mel spectrogram of a patient with asthma overlapped with COPD
from the posterior right lower lobe containing wheezing, as shown with the thick bands encompassed
within the white box, along with crackles, as shown with the higher sound amplitudes encompassed
within the black box. In the accelerometer amplitude plot, wheezing occurred during expiration,
as highlighted by the blue boxes. Crackles in the mel spectrograms occurred after wheezing and
were estimated to occur during early inspiratory respiration phase. (b) Accelerometer patch mel
spectrogram shows wheezing with the thick bands captured from the left lower back of a patient
with a BMI of 62.9. Wheezing coincided with expiration respiration phase, as shown in the amplitude
plots highlighted by the blue boxes. (c) Accelerometer patch mel spectrogram shows faint wheezing
from a recently discharged patient, matched with expiration. All audio recordings are provided in
the Supplementary Materials.

The accelerometer patch’s ability to capture PIVs from patients with obesity (BMI > 30)
was also examined, as patients with obesity have a higher risk of asthma and COPD [54].
Patient 33 had a very high BMI of 62.9, with the examination performed in the hospital
setting (emergency room). For obese patients, the accelerometer patch was placed and
secured with a medical tape with no external pressure applied, while for typical auscultation
examinations, physicians apply direct pressure to their stethoscope against the body to be
able to listen to the acoustics of the lung. For the majority of obese people, auscultation sites
correlating to the posterior lower lung lobes contain the highest chest wall fat content. Even
when the accelerometer patch was placed on these sites to evaluate their posterior lower
lobes, the device was still able to clearly capture the PIVs of the monophonic wheezes from
the lung, as the patient’s mel spectrogram had thick bands representing the monophonic
wheezing, as shown in the mel spectrogram in Figure 7b. In addition, the amplitude plot
of Figure 7b shows the estimated expiration determined from the patient’s chest wall
movement, as highlighted by the blue boxes. By analyzing the mel spectrogram and the
coincided respiration phase, monophonic wheezing was determined to occur during the
patient’s expiration. Audio playback of the accelerometer patch and digital stethoscope
recordings to the physician confirmed the recording to be monophonic wheezing. Clinically,
this patient was diagnosed with moderately persistent asthma.
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The accelerometer patch was also tested on a patient who was recently hospitalized
with acute asthma and was recently discharged at the time of testing. Even though the
patient, patient 35, with a BMI of 20.7, was discharged, the patient still exhibited faint mono-
phonic wheezing according to the physician’s auscultation with the traditional stethoscope,
as shown in Table 2. The accelerometer patch was able to capture faint wheezing from the
posterior lower left lobe, as shown in Figure 7c, where faint wheezes were captured and
illustrated. The color scale amplitude of the thick band in the mel spectrogram is not as
high relatively compared to other patients’ wheezing mel spectrograms. The patient’s faint
wheezing was also found to occur during expiration.

3.5. Comparison of Accelerometer Patch and Digital Stethoscope in a Noisy Environment

Since respiratory wheezing occurs due to airflow limitations in the airways, multiple
auscultation sites can capture the same high-pitched sounds. Therefore, to benchmark
the accelerometer patch with the digital stethoscope, more specifically in a noisy hospital
environment, simultaneous testing of the two sensors was performed in the emergency
room, where other voices and machine noises are prevalent, as hospitals are a known source
of high noise pollution [55,56]. Since we were testing patients in the hospital emergency
room, the testing protocol allowed for the accelerometer patch and digital stethoscope to
simultaneously capture data from the same breath sounds, although placed in different
auscultation zones.

In this example, the accelerometer patch was placed across the anterior upper right
lobe zone, and the digital stethoscope was placed in the anterior upper left lobe zone on
patient 32, who had a BMI of 39.26. As shown in the mel spectrogram of Figure 8a, the
accelerometer patch captured thick bands in the mel spectrogram, which represent the
monophonic wheezing. The amplitude plot of Figure 8a shows the estimated expiration
determined from the patient’s chest wall movement, as highlighted by the blue boxes.
Therefore, by analyzing the mel spectrogram along with the coincided estimated respira-
tion phases, this patient was estimated to have monophonic wheezing during expiration.
However, the digital stethoscope mel spectrogram showed not only the thick bands related
to the monophonic wheezing but also artifact noises, such as human voices and the hospital
monitor device alarm, which were present in the background, as shown in Figure 8b, which
agreed with the physicians’ notes based on sound playback. More specifically, the digital
stethoscope mel spectrogram showed that the voices and other artifact noises that were
picked up were in the similar frequency range of wheezes with similar attributes, which
may lead to uncertainty in the interpretability of the signal along with the source of the
signal in a time–frequency approach or a deep learning model, thus leading to more false
positives in both computational wheeze detection performance. Therefore, the accelerome-
ter patch is ideal for robust automatic detection of wheezing in all environments, especially
noisy ones, as it only captures the PIVs of the lungs. This patient was diagnosed with
ACOS. All the audio files of the accelerometer patch and digital stethoscope recordings are
provided in the Supplementary Materials.
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Figure 8. (a) Simultaneously recordings were performed on a patient in the emergency room with the
accelerometer patch placed on the anterior left upper lobe, which captured monophonic wheezing, as
shown by the mel spectrogram’s thick bands. The amplitude plot showed that the wheezing occurred
during expiration, as highlighted by the blue boxes, while (b) the digital stethoscope captured
monophonic wheezing from the anterior right upper lobe of the lungs. Noise artifacts, such as other
people’s voices and hospital machines, were also present in digital stethoscope recordings and mel
spectrograms. Both audio recordings are provided in the Supplementary Materials.

4. Discussion

Utilizing objective computational wheeze-detection methods with a low-profile wear-
able accelerometer patch that is insensitive to ambient sounds can provide patients at risk
of respiratory disorders like asthma with a remote and extended monitoring tool that can be
used for pre-emptive, in-depth longitudinal analysis of the respiratory status of their lungs.

Both computational wheeze-detection methods using the accelerometer patch data
were shown to have a high accuracy rate when using the diverse, real-world patient
dataset. The time–frequency analysis method was utilized to detect wheezing automatically
and to also show that the wheezes captured from the accelerometer patch share similar
characteristics as wheezes captured from the digital stethoscope. In comparison, the deep
learning 2D CNN model integrated with the accelerometer patch showed that it could be
used to detect wheezing from the adult population with a higher accuracy, sensitivity, and
specificity rate compared to the time–frequency approach. In addition, these computational
wheeze-detection methods also outperformed when utilizing accelerometer patch data
compared to digital stethoscope data when captured on the same patient set, as shown
in Table 3, as the accelerometer patch only captured the patient’s PIVs. This shows the
robustness of the accelerometer patch and deep learning model system.

Individuals with asthma, COPD, and other respiratory disorders exhibit diverse
demographic profiles, with notable variations observed, particularly in relation to obesity,
as obesity is an important risk factor for airway obstruction diseases [54]. The accelerometer
patch excels in capturing PIVs, showcasing its effectiveness even in scenarios where fat
content on extremely obese people poses a potential obstacle for sound transmission.
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Moreover, the inclusion of data on individuals with ACOS in the algorithm becomes
crucial, as wheezing and crackles serve as vital features that can offer deeper insights for
physicians [57]. Both of these features have been shown to be captured by the accelerometer
patch, as shown in Figures 7a and 7b, respectively.

By collecting the PIVs from a wide range of patients, including those with extreme
levels of obesity and those with overlapping adventurous lung sounds, the application of
the accelerometer patch and deep learning model framework, which integrates the collected
data, is fortified as a valuable tool for detecting wheezing in individuals with varying fat
content. To further enhance the deep learning model framework, additional data collection
from patients with other adventitious lung sounds would provide more distinctions. To
strengthen the deep learning model, gathering diverse lung sound data can enhance its
ability to identify wheezing in individuals at risk of asthma or COPD.

These wheeze-detection findings were also shown to be robust, as the accelerometer
patch collected data on patients in vastly different environments, especially in the hospital
emergency room, where patient monitoring is essential. The accelerometer patch has also
shown high fidelity in capturing lung wheezing, especially as the accelerometer patch is not
sensitive to ambient sounds, as shown in Figure 8a. This robustness is also illustrated by the
high performance of the accelerometer patch computational wheeze-detection method. By
utilizing the full extent of the accelerometer, not only can the PIVs be used to automatically
detect and characterize wheezes, but also extract the macro body movements, such as
respiratory rate/phase, to determine additional key features for respiratory care, such as
if the wheezing is inspiratory or expiratory and the patient’s chest wall amplitude range,
to help with respiratory disease diagnosis. Additionally, since the accelerometer patch
can capture faint wheezing, especially in patients who were recently discharged from the
hospital, as shown in Figure 7c, this framework could be deployed via telehealth as the
accelerometer patch can be used longitudinally and has a small form factor. Moreover,
the objective, automatic methods can provide a robust approach to detecting respiratory
wheezing in patients.

Furthermore, the accelerometer patch algorithm can be adapted to detect various
adventitious lung sounds and respiratory indicators, such as crackles and coughing, as-
sociated with diseases like asthma and COPD [4,6,58–60]. Coughing, a natural defense
mechanism, can be characterized by various sounds, such as wet or brassy [58,60–63].
Coughing consequently triggers significant chest wall movements, which can be distinctly
captured by an accelerometer [64]. Further data collection and physician labeling can
enhance the algorithm’s capability to identify these additional respiratory signals.

5. Conclusions

This work builds toward the goal of an automatic, accurate, and objective means
for monitoring and detecting wheezing by using a robust, wearable accelerometer patch.
This accelerometer patch allows for the PIVs of wheezing from a multitude of patients
with varying BMIs, respiratory disorders, and at different stages of their treatment to
be captured and detected with the use of deep learning. The deep learning classifier
has exhibited great performance, surpassing the deterministic time–frequency classifier
in terms of accuracy, sensitivity, and specificity, achieving rates of 94.52%, 93.45%, and
96.16%, respectively, on the test data set. Additionally, the AUC of ROC and PR curves
has a value of 0.9864 and 0.9852, respectively, which further validates the efficacy of the
binary classifier. Furthermore, the computational wheeze-detection methods demonstrated
superior performance when using data captured from the accelerometer patch compared
to the digital stethoscope data collected from the same set of patients. The respiratory
phase and the chest wall movement can also be extracted by the accelerometer and used
as indicators of asthma and COPD. As a result, this framework, combining a wearable
accelerometer patch and deep learning, holds potential for remote patient monitoring and
integration within telehealth platforms. Providing a non-invasive, rapid, and cost-effective
analysis of a patient’s respiratory and lung status can help physicians deliver more precise
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and expedited treatment to their patients. Future directions include testing more patients
with different adventitious lung sounds with the accelerometer patch to capture different
PIVs, such as crackles and decreased breath sounds. This broader dataset will bolster
the deep learning classifier framework, enabling the classification of various abnormal
lung sounds.
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www.mdpi.com/article/10.3390/bios14030118/s1, Audio S1: ACM_Patient32_Loc2.wav, Audio S2:
ACM_Patient33_Loc9.wav, Audio S3: ACM_Patient34_Loc4.wav, Audio S4: ACM_Patient35_Loc7.wav,
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