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Abstract: Bimetallic coordination polymers (CPs) have two different metal ions as connecting nodes
in their polymer structure. The synthesis methods of bimetallic CPs are mainly categorized into
the one-pot method and post-synthesis modifications according to various needs. Compared with
monometallic CPs, bimetallic CPs have synergistic effects and excellent properties, such as higher gas
adsorption rate, more efficient catalytic properties, stronger luminescent properties, and more stable
loading platforms, which have been widely applied in the fields of gas adsorption, catalysis, energy
storage as well as conversion, and biosensing. In recent years, the study of bimetallic CPs synergized
with cancer drugs and functional nanomaterials for the therapy of cancer has increasingly attracted
the attention of scientists. This review presents the research progress of bimetallic CPs in biosensing
and biomedicine in the last five years and provides a perspective for their future development.
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1. Introduction

Coordination polymers (CPs) or coordination networks are inorganic or organometallic
polymer structures with infinite structures formed through the self-assembly of transition
metals and organic ligands [1–3]. CPs exhibit unique properties by combining the char-
acteristics of both polymers and coordination compounds [4]. Since the concept of CPs
was introduced in 1964, a large number of CPs with different structures and compositions
have been designed and synthesized using various metal ions and organic ligands under
different reaction conditions [5–7]. Some of them are able to form crystal morphology
and X-ray crystallography can then be used to resolve their structural composition at the
atomic level [8]. Among them, metal-organic frameworks (MOFs) are currently one of the
most studied classes due to their rigid [9], ordered, and highly porous structures, which
have been found widely potentials in gas storage and separation [10–12], catalysis [13–15],
sensing [16,17], and biomedicine [18].

Bimetallic CPs comprised of second metal ions in the coordination node have abundant
structures and compositions, ensuring their more versatile properties and application in
comparison with monometallic CPs. The presence of two metal ions in bimetallic CPs
produces synergistic and cooperative effects on their functionality, and the ratio of the
metal ions can be adjusted, offering the possibility of controllable synthesis of bimetallic
CPs with specific physicochemical properties [19,20]. For example, bimetallic d-f CPs
were constructed using d-block metal chromophores as sensitizers to achieve luminescence
through effective d → f energy transfer, which effectively overcame the problem of low f → f
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conversion efficiency [21]. In the field of catalysis, for example, the NiFeCP/NF (NF = nickel
foam, terephthalate as the ligand) electrode exhibited excellent oxygen evolution reaction
(OER) catalytic activity and was a promising catalyst for oxygen-absorbing materials [22].
Magnetic bistable materials with hysteretic properties, which consisted of parallel cyanide
bridge [FeII-Wv] coordination chains linked together by rigid double (imidazole) benzene
ligands, were comparable to basic binary units and were expected to be used in switching
and memory devices [23]. In the field of environment, compared with the monometallic
zinc CPs, the bimetallic CPs contain [Zn2M2O]6+ (M = Co or Ni) bimetallic cluster nuclei and
more open metal sites (OMS) showed distinct isosteric heats of adsorption and surface area,
owing to their open Lewis acidic sites of solvent-free state. Moreover, bimetallic CPs can
also remove oil spills from water surfaces in powder and particle form with a clearance rate
of up to 385 wt% (clearance rate = mass of adsorbed oil spill/mass of materials), providing
a roadmap for the design and manufacture of novel superhydrophobic porous composite
materials in combination with OMS to offer better water and thermal stability [24]. These
works have been well reviewed and discussed for their potential in gas storage [25] and
catalysis [26]

For another aspect, bimetallic CPs with exotic structure of porous morphology and
regular topologies have intriguing optical and electronic properties, favoring their ability
in biosensing and biomedicine [27,28]. However, there is still a lack of comprehensive
discussion dedicated to the fields of bio-related applications. This paper describes recent
advances in bimetallic CPs for biosensing and biomedical applications with the aim of filling
this gap (Figure 1). Synthesis strategies of bimetallic CPs including the one-pot method and
post-synthesis modifications are first classified and discussed. The applications of bimetallic
CPs in sensing and drug delivery fields such as luminescent probes, electrochemical sensing,
enzyme mimicry, drugs, and immunotherapy for cancer are then successively presented.
Finally, this review offers an outlook for the possible development of bimetallic CPs in
biological applications.
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2. The Synthetic Strategies for Bimetallic CPs

CPs contain two core components, connectors and linkers, which are defined as the
original reagents that build the main framework of the CPs. Their important character-
istics are the number and orientation of their binding sites (coordination number and
coordination geometry). Transition metal ions are commonly employed as multifunctional
connectors in structures of CPs and the coordination number changes depending on the
type of metal and its oxidation state. Organic molecules and anions often act as linkers
providing abundant attachment sites and tuning the strength and orientation of the bind-
ing [1]. In addition, a wide variety of CP materials have been successfully synthesized
by introducing different synthesis conditions from coordination chemistry and zeolite
chemistry, including room temperature (RT), conventional electric (CE), microwave heating
(MW), electrochemical (EC), mechanochemistry (MC), and ultrasonic (US) methods [29].

This section focuses on two strategies for the synthesis of bimetallic CPs: one-pot
methods and post-synthesis modifications. One-pot synthesis refers to the process of the
second ion added before the formation of polymer structure. On the contrary, post-synthesis
modifications are the methods of adding a second ion after the polymer structure has been
constructed. The development of instrumental analysis has provided technical support for
characterizing the composition and structure of bimetallic CPs. X-ray diffraction (XRD)
can be used to identify the crystalline phase of bimetallic CPs [30]. Atomic absorption
spectroscopy (AAS) and energy dispersive X-ray spectroscopy (EDX) can be coupled to
calculate the concentration and distribution of the two metals in the CPs [31]. X-ray
photoelectron spectroscopy (XPS) and X-ray absorption fine structure analysis (XAFS) can
determine the nodal position of each metal in the bimetallic CPs [32,33]. The specific surface
area, pore volume, and pore size distribution of the bimetallic CPs can be determined from
the N2-sorption desorption isotherm [34]. The combination of different techniques to
accurately characterize the synthetic bimetallic CPs exploits the potential for applications
in various fields [35–37].

2.1. One-Pot Methods

One-pot methods involve the addition of a second ion before the polymer structure
has been constructed, which encompasses self-assembly methods of two metal ions with
the ligand and metal-ligand methods with the metal-ligand as the site (Figure 2). The
simplicity and rapidity of this method have led to widespread applications in the synthesis
of bimetallic CP materials on a large scale.
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2.1.1. Self-Assembly Methods

Conventionally, monometallic CPs have been self-assembled by mixing organic lig-
ands and metal salts in a one-pot manner [38,39]. Bimetallic CPs have similarly been
synthesized in large quantities using self-assembly methods in past studies. The assembly
process of bimetallic ions with organic ligands is usually disordered, and thus the synthesis
of ordered self-assembly of bimetallic CPs requires specific reaction conditions such as
solvothermal [40], ultrasonic [41], or microwave methods [42] to spontaneously change
the system from disordered to ordered through the driving of internal forces. Meanwhile,
parameters such as the type and concentration ratio of metal ions [43], as well as the pH of
the reaction [44] need to be finely selected and controlled to achieve controlled doping.

Metal ion pairs with similar characteristics, such as ionic radius, charge, and Lewis
acidity, are most often used to synthesize identically charged bimetallic CPs in a self-
assembly manner due to the fact that two metal ions can form almost identical secondary-
building units (SBUs), referring to the smallest repeating unit of CPs formed by one metal
ion and multiple ligands. A large number of bimetallic CPs have been synthesized, for
example Co2+-dopped ZIF-8(Zn2+) (ZIF stands for the zeolitic imidazolate framework) [45],
Ce3+-dopped Tb-CPNs(Tb3+) (CPNs stand for coordination polymers nanoparticles) [46],
Co2+-dopped Ni3HITP2(Ni2+) (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) [47], Cu2+-
dopped ZIF-67(Co2+) [48], Fe3+-dopped Cr-BTC(Cr3+) (BTC = 1,3,5-benzenetricarboxylic
acid) [49], Hf4+-dopped Zr-MOF(Zr4+) [50] and Ce4+-dopped UiO-66(Zr4+) (UiO stands
for University of Oslo, 1,4-benzenedicarboxylic acid as the ligand) [51]. The crystalline
phases of the obtained bimetallic CPs are unchanged from those of monometallic CPs
due to the almost identical coordination properties of these metal pairs. On the other
hand, the self-assembly synthesis of ion pairs with different coordination abilities has also
been widely reported such as Mg2+-Cr3+ MIL (MIL stands for Materials Institute Lavoisier,
terephthalic acid as a ligand) [52], Ni2+-Gd3+ CPs [53], Fe2+-Gd3+ CPs [54], Fe3+-Ni2+

CPs [22], Na+-In3+ CPs [55], Cu2+-Zr4+ UiO-66 [56], Ag+-Zn2+ MOF [57] and Mn2+-Fe3+

MOF [58]. The addition of metal ions with different coordination abilities generates new
SBUs leading to the changes in the crystalline phase, exhibiting different structures and
properties. The simplicity and flexibility of the self-assembly methods have led to it being
the most commonly used method for synthesizing bimetallic CPs.

2.1.2. Metal-Ligand Methods

In order to control the synthesis of bimetallic CPs more efficiently, the use of designed
SBUs is a promising regulatory approach. The metal-ligand methods refer to forming
bimetallic CPs by reacting with target metal ions using metal complexes with donor sites
instead of conventional organic ligands. Pre-synthesized metal complexes designed as
SBUs can better control the structure and size of bimetallic CPs and endow them with
superior properties.

Ferrocene (Fc) is a metal complex formed by the strong interaction of Fe (II) and
cyclopentadienyl, which has good thermal stability and oxygen resistance thus facili-
tating the synthesis of various derivatives [59]. The synergistic effects of the excellent
electrochemical properties of Fc and the structural properties of CPs have attracted great
research interest in Fc-CP materials in the fields of electrochemistry and capacitors [60].
María et al. [61] first reported a 3D metal-organometallic network (MOMN) with a rhomboid-
like network topology containing 1,1′-ferrocene dicarboxylate ligands. Two new distinct
structures, [Zn(4,4′bipy)2(O2CFcCO2)2]·0.5H2O and [Cu(4,4′-bipy)2(O2CFcCO2)2] 0.5H2O,
exhibiting a 3-fold interpenetrating structure with a topology according to point symbols
for a net with loops, {66}{6}2, have been successfully synthesized via hydrothermal re-
action. The electrochemical properties of two Fc-CPs were evaluated by solution-state
differential pulse voltammetry. Van Wyk and co-workers [62] have developed Fc@NU-1000
(NU-1000 = Zr-MOF) CPs using well-established pyrene-based MOF NU-1000 samples fol-
lowed by modifying with ferrocene carboxylate via a SALI-based (SALI = solvent-assisted
ligand incorporation) node functionalization technique. In dielectric-related charge transfer
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(CT) kinetic experiments, the CT products are immobilized in the porous NU-1000 frame-
work, which avoid the interference of electrolyte counterions in changing the dielectric
constant in conventional electrochemical experiments. It is shown that the process involves
large reorganization energy, which requires polarization node-bound hydroxyl/water
ligands, and the findings can provide an important reference for the future design of
MOF-based electrocatalytic and photoelectrochemical systems.

Cyano (CN−)-based metal complexes are another widely used metal ligands in the
synthesis of bimetallic CPs. For example, K3Fe(CN)6 was successively reacted with
Cu2+ and Ni2+ to obtain core-shell nanoparticles of CuFe-PBA@NiFe-PBA (PBA = Prus-
sian blue analogs) [63]. The [Nb(CN)8]4− anion can bridge two [Mn(R-mpm)2]2+ units
(mpm = α-methyl-2-pyridinemethanol) and a crystalline H2O molecule to form 2D cyano-
bridged molecular ferromagnet {[MnII(R-mpm)2]2[NbIV(CN)8]}·4H2O [64]. In addition,
[WV(CN)8]3− building blocks and FeII-based spin crossover (SCO) units can be linked
to construct the cyanide-bridged alternating FeII-WV chain by the rigid diatopic bib lig-
ands (bib = 1,4-bis(1H-imidazol-1-yl)benzene) to form a flexible framework{[WV(CN)8]-
[(FeII)(bib)2]-(bibH)}·2CH3OH [23].

Exceptionally, bimetallic coordination polymers with different valence states
of the same element have been synthesized by the Metallo-ligand methods. Hou
et al. reported that novel bimetallic CPs {[CuII(SalImCy)](CuII)2·DMF}n were fab-
ricated by combining copper(II)-salen catalysts CuII(SalImCy) (SalImCy = N,N’-bis-
[(imidazol-4-yl)methylene]cyclohexane-1,2-diamine) with copper(I) iodide clusters
via a direct solvothermal approach, which can be used as highly efficient multiphase
multifunctional catalysts for the asymmetric synthesis of α-aminonitriles [65]. Su-
chithra et al. prepared bimetallic CPs of the [TAG][FeIIFeIII(ClCNAn)3]-(solvate) type
(TAG = tris(amino)-guanidinium, ClCNAn2− = chlorocyanoanilate dianionic ligand),
which was the first report of the use of TAG in such CPs [66]. TAG cation has C3
symmetry and is able to form intermolecular hydrogen bonds with the chlorine atoms
of the ligand and crystallize on the polar non-centrosymmetric space group P3. This
paper followed up with an in-depth study of the magnetic and conductive properties
of such FeII-FeIII CPs. The synthesis of bimetallic CPs with various functionalities
requires the use of metal ligands with open metal sites and corresponding functionali-
ties. Careful design and precise preparation of metal ligands are significant for this
synthetic approach.

2.2. Post-Synthesis Modifications

Bimetallic CPs can be fabricated by synthesizing monometallic CPs followed by the
addition of second ions, for example, ion exchange, template, and seed methods, whereas
direct synthesis may not be possible. While the structure of CPs is preserved intact, the
addition of new metal ions can bring new features and enhanced functions.

2.2.1. Ion-Exchange Methods

Massive replacement of metal ions in CP systems by different metals with similar prop-
erties not only preserves the original structure but also provides additional functions [10].
The coordination number of SBUs, the valence of the metal ions, and the type of solvent
have a significant impact on the rate and extent of the ion exchange [67].

Cu2+ is the most commonly used ion in ion exchange methods and tends to displace
most of the other transition metal ions (Zn2+ and Mn2+) due to the energy gain by additional
splitting of the d-orbitals by distortion of the octahedral coordination geometry of Cu2+ [68].
Prasad et al. prepared novel CPs {[Zn2(bdcppi)(dmf)3]·6DMF·4H2O}n(SNU-51) using Zn2+

and N,N’-bis(3,5-dicarboxyphenyl)pyromellitic diimide (H4BDCPPI) [69]. The Zn2+ in
SNU-51 was ion-exchanged with exogenous Cu2+ and retained the PtS-type mesh structure.
A microporous Mn-based MOF termed MnMnBTT (BTT = 1,3,5-benzenetetrazolium) was
ion-exchanged by three ions i.e., Fe2+, Cu2+, and Zn2+, and the relative cation occupancy
of different metal ions in the MOFs was successfully determined with multi-wavelength
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anomalous X-ray dispersion [70]. The results suggested that Cu2+ and Zn2+ exhibited
excellent ion exchange performance at the C4v site after ion exchange with an occupancy
rate of 88.8% and 74.8%, respectively, much higher than Fe2+ with an occupancy rate
of 19.5%.

Moreover, the Chen group synthesized nickel-based CPs and further introduced Co2+

through a cation exchange process to construct NiCo bimetallic CPs (2,5-dihydroxyterephthalic
acid as the ligand) [71]. The experimental results showed that Co2+ doping can activate the
electrochemical activity of Ni2+ in CPs, promote ion/electron diffusion, and reduce the polaron
migration barrier, thereby improving the reversible capacity of the cell and structural stability
during repeated cycling. Kim and co-workers prepared the first Ti (IV) analog of the robust
UiO-66(Zr) framework using an ion exchange process [72]. The experimental results indicated
that the amount of exchanged Ti4+ depended on the type of metal salt, with TiCl4 (THF)2
(THF = tetrahydrofuran) having the highest level of substitution while TiBr4 has the lowest.
Even highly robust MOFs such as UiO-66(Zr), MIL, and ZIF can be fabricated by means of
ion-exchange to prepare new functional materials that are currently unavailable through other
synthetic methods.

2.2.2. Seed Methods

The principle of the seed method is to utilize two CPs with similar lattice parameters to
assemble core-shell bimetallic CPs by epitaxial growth. The matching of the crystal lattice
ensures the continuous connection of pores at the crystal interface and the altered crystal
structure affects the mobility as well as diffusion of the adsorbent. Furukawa et al. synthe-
sized core-shell bimetallic CPs single crystals by seed epitaxial growth for the first time and
determined the structural relationship between the shell and the core utilizing surface XRD
analysis [73]. The analytical results revealed that the bimetallic MOFs with the core-shell
structure consist of [{Zn2(ndc)2-(dabco)}n] as the core crystals and [{Cu2(ndc)2(dabco)}n] as
the shell crystals (ndc = 1,4-naphthalenedicarboxylate, dabco = diazabicyclo[2.2.2]octane).
It is essentially impossible to synthesize these two components with opposite core-shell
compositions because the core crystals can be grown into single crystals with a cubic
morphology, while the shell crystals can only be obtained as microcrystalline powders. In
addition, bimetallic ZnZr-MOF with core-shell structure was also fabricated by seeding
method and employed as an aptamer sensor platform for the detection of cancer marker
protein tyrosine kinase-7 (PTK7) [74]. The results demonstrated that the crystal structure
and surface functional groups of the bimetallic MOFs can be modulated by changing the
order of addition between metal precursors and organic ligands. The ZnMOF-on-ZrMOF
hybridized material presented a hierarchical leaf-like structure, while ZrMOF-on-ZnMOF
showed a multilayer nanosheet structure.

3. Biosensing Applications of Bimetallic CPs

Due to the synergistic effect of different metals, bimetallic CPs have the advantages of
tunable porosity, flexible luminescence, and high electrocatalytic activity, which make them
versatile materials with wide applicable potentials and promising prospects in biosensing.
Meanwhile, the doping of the second metal ions in unstable SBUs can greatly improve the
stability of CPs, which greatly solves the disadvantage of the instability of CP materials
in storage and use [75,76]. In addition, some studies have pointed out that when two or
more metal ions are embedded in the structure of CPs, the bio affinity of CPs also increases,
which is more favorable for application in living systems [77]. We review the work on
the applications of bimetallic CPs in biosensing and biomedicine over the last five years
including the detection of metal ions, small biomolecules, nucleic acids, and detection
based on immune response.

3.1. Detection of Metal Ions

Metal ions exist widely in living organisms and are involved in many key physiological
processes such as material transport, energy conversion, information transmission, and
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metabolic regulation. When metal ions are deficient or in excess, many health problems
ensue [78]. Fe3+ and Cu2+ are involved in regulating body homeostasis and determining
cellular functions, disturbances in their concentration levels in the body can lead to organ
loss and serious diseases. Moreover, heavy metal ions of Hg2+, Pb2+, Cd2+, etc. accumulated
in the human body through the food chain would lead to the occurrence of several serious
diseases. Therefore, the exploration of reliable means of detecting metal ions with high
sensitivity and selectivity is of great importance.

3.1.1. Detection of Fe3+

Iron(III) (Fe3+), a metal ubiquitous in the environment and in biological systems, plays
an integral role in a variety of important cellular functions such as oxygen delivery in
hemoglobin, oxygen metabolism, and electron transport processes in the synthesis of DNA
and RNA [79]. Inadequate or excessive intake of Fe3+ can lead to serious chronic diseases.
Therefore, it is of great significance to monitor the concentration of Fe3+ in the environment
as well as in the human body for early diagnosis of many diseases [80,81]. Song and
co-workers reported a bimetallic Eu0.6Tb0.4 MOF which possessed the maximum KSV
(KSV = kinetic quenching constant) quenching constant for Fe3+, approximately 36.6%
higher than that of monometallic Eu MOF. Furthermore, a metal-centered induced structural
transition from EuMOF-1 to TbMOF-2 was achieved by changing the ratio of Eu to Tb [82].
Geng et al. successfully synthesized a series of bimetallic Cd/Zr-UiO-66 materials for
fluorescence quenching probes of trace Fe3+ and fluorescence turn-on probes of trace As5+

by one-pot methods [83]. Experimental analysis showed that the fluorescence quenching of
Fe3+ was mainly due to the competitive absorption of the excitation source and resonance
energy transfer (RET), while the fluorescence enhancement of As5+ was mainly due to
the absorbance-caused enhancement (ACE) mechanism. The fluorescent probe has good
selectivity and high sensitivity, and it can maintain high luminescence stability under a
variety of extreme environments. Furthermore, the same research group also developed
the bimetallic Ag/Zn-ZIF-8 with strong photoluminescence properties using the one-pot
method for sensing traces of Fe3+ and Cu2+ (Figure 3A) [84]. The obtained bimetallic
Ag/Zn-ZIF-8 showed excellent fluorescence burst response to Fe3+ and Cu2+ with high
selectivity and sensitivity, as well as good immunity to interferences with the detection
limits of 3.9 µM and 6.7 µM, respectively (Figure 3B). The mechanism of the luminescence
burst was investigated in detail. The resonance energy transfer (RET) and competing
absorption of the excitation source from the interaction of 2-methylimidazole with Fe3+ and
Cu2+ in the ZIF-8 framework may have led to efficient fluorescence bursting.

3.1.2. Detection of Cu2+

Copper(II) (Cu2+) is an essential ion in biometabolic systems such as various redox
processes and enzyme catalysis in living organisms. However, disturbances in the concen-
tration of Cu2+ in the body can often lead to serious illnesses, such as blood and neurological
disorders due to Cu2+ deficiency, gastrointestinal disorders, liver and neurological damage,
and other illnesses due to Cu2+ excess [85]. Therefore, the concentration of Cu2+ in the envi-
ronment and in humans should be strictly controlled and measured. Wu et al. synthesized
the green light-emitting bimetallic 3D framework material [MgZn(1,4-NDC)2(DMF)2](1,4-
NDC = 1,4-naphthalene dicarboxylic acid) [86]. Interestingly, the material showed blue
fluorescence after milling, which was the first reported magnesium-based bimetallic MOF
with mechanoresponsive fluorescence. The milled blue-emitting CP material maintained
the same framework structure as before milling. As a result, this material can not only
produce a fluorescence-quenching effect on Fe3+ but also act as an effective luminescent
detector of CS2 and some nitro-explosive compounds. Peng and co-workers reported that
Ti3+ functionalized Tb3+@UiO-66-(COOH)2 was developed as an excellent luminescent
probe [87]. This probe can visually monitor Cu2+ in aqueous media through fluores-
cence quenching effect and has the advantages of high selectivity and sensitivity, wide
linear concentration range (0–200 µM), low detection limit (0.23 µM) and fast response
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time (within 1 min). The mechanism of quenching luminescence is the coordination of
Cu2+ with the free carboxylic acid group of Tb3+@UiO-66-(COOH)2, which leads to a de-
crease in the energy transfer efficiency from the ligand to the Tb3+ ions and thus quenches
the fluorescence.
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3.1.3. Detection of Other Metal Ions

Along with the rapid industrial development in modern society, heavy metal pollution
in the environment is growing at an alarming rate [88]. Excess heavy metals will gradually
accumulate in the food chain and eventually pose a serious threat to human health. Heavy
metal-induced toxicity and carcinogenicity involve many mechanistic aspects. For instance,
lead (Pb) poisoning can cause serious damage to the human nervous, skeletal, and immune
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system [89]. Chromium (Cr) is considered one of the most carcinogenic elements and can
cause lung cancer, prostate enlargement, and other diseases [90]. Mercury (Hg), the heavy
metal that readily accumulates in the food chain, would damage the respiratory system as
well as the central and peripheral nervous systems, exceeding the safe levels in the human
body [91]. Even excessive accumulation of zinc (Zn), one of the essential trace elements,
can lead to zinc poisoning and acute renal failure [92]. Therefore, the development of rapid
detection methods for heavy metal ions in the environment and the human body is an
urgent need. Chen and co-workers used a modified sodium hydroxide mediated method
to synthesize ZIF-67 doped with Mn2+, Fe3+, and Ni2+, the resulting product was used to
construct an electrochemical sensing interface for detection of Hg2+ through square wave
anodic stripping voltammetry [93]. The results showed that the electrochemical signals
for Hg2+ detection were enhanced when ZIF-67 was doped with metal ions compared to
pure ZIF-67. Among them, the Fe3+-modified ZIF-67 showed excellent performance in
the trace detection of Hg2+. Its sensitivity (41.5 µA/µM) and LOD (7.82 nM) (LOD = limit
of detection) exceeded the requirements of the World Health Organization’s analytical
method for the detection of Hg2+ in drinking water. The Sun group reported a novel BiCu
MOF-derived carbon film encapsulating BiCu alloy nanoparticles (BiCu-ANPs) integrated
into an electrochemical sensing system for real-time on-site ultrasensitive detection of Pb2+,
Cd2+, and Zn2+ in different human biofluids and environmental water [94]. The results
revealed that the novel bimetallic material significantly improved the electrocatalytic
activity and stability, which was attributed to the strain and electronic effects induced
by the encapsulated structure of the hybrid metal and carbon framework. As a result,
the constructed electrochemical sensing system had multiple active sites, good electrical
conductivity, fast enrichment time and high stability, which consequently improved the
overall performance and reliability of the sensing system.

3.2. Detection of Small Molecules

Precise monitoring and rapid screening of disease-marking small molecules in blood,
saliva, sweat, urine, and tears are critical for early prevention of many diseases [95–97].
Compared to monometallic CPs, bimetallic CPs with uniform distribution of two metal
elements and well-controlled morphology exhibit superior luminescence, and catalytic,
conductive, and energy-converting properties through the synergistic effect of multiple
components. In practical applications, bimetallic CPs are often combined with other
nanomaterials (for example, nanoparticles, field-effect transistors, and natural enzymes) to
form composite biosensors for rapid and sensitive detection of small molecules as disease
markers in complex and variable sensing environments [98–100].

3.2.1. Detection of Glucose

Diabetes mellitus is intricately associated with blood glucose levels, sensitive and
rapid detection of blood glucose is important for early monitoring and timely treatment
of diabetes mellitus [101]. Assays using bimetallic CPs for glucose detection are mainly
divided into non-enzymatic electrochemical assays and peroxidase-mimicking assays.

Due to the synergistic effect of the two metals, bimetallic CPs possess superior electro-
catalytic properties and are widely used as efficient electrocatalysts. The sensing mechanism
is that strong electronic interactions between the two ions and the ligand greatly enhance
the electrochemical catalytic oxidation of glucose to achieve signal amplification. Li et al.
successfully prepared novel vertical 2D NiCo bimetallic organic framework (NiCo-MOF)
parallelogram nanosheet arrays on the nanoporous gold surface using a bottom-up ap-
proach (Figure 4A) [102]. The vertical alignment feature of the MOF nanosheets exposed
more electrocatalytically active sites and facilitated the charge transfer for electrochemical
reactions (Figure 4B). The 2D NiCo-MOF nanosheet array electrode has excellent glucose
detection performance with a linear range of 1 µM~8 mM, fast response time of less than
1 s, sensitivity of 0.6844 mA·mM−1cm−2 and LOD as low as 0.29 µM (Figure 4C). Zha and
co-workers used a simple solvothermal method to synthesize 3D nanoflower-like bimetallic
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NiCo-MOF consisting of 2D nanosheets as electrode materials for micro-supercapacitors
and sensing materials for glucose sensors [103]. The designed enzyme-free glucose elec-
trochemical sensor has a high sensitivity of 0.31 µA·µM−1 and a low LOD of 10 µM for
sensitive and rapid detection of glucose in blood. In addition, a wearable non-invasive sen-
sor system was developed by integrating the glucose sensor with a micro-supercapacitor
(MCS) on a flexible polyethylene terephthalate (PET) substrate, which has significant
potential in the field of non-invasive sweat glucose detection.
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CPs, as a new type of mimetic enzyme, are widely used in the field of biosensing
due to their low cost, simple preparation, high stability, and good recyclability compared
with natural enzymes [104]. Bimetallic CPs contain multiple active sites, which drasti-
cally improve the catalytic activity more than monometallic CPs with a single site. In
addition, porous MOF materials are likewise immobilized loading platforms for many
natural enzymes to improve the stability of natural enzymes in use [105]. Bimetallic CPs
are often used together with natural enzymes to form composite biosensors for sensitive
and rapid detection of glucose. The Duan group prepared a novel glucose biosensor
based on bimetallic Ni/Cu-MOFs (GOD-GA-Ni/Cu-MOFs-FET, GOD = glucose oxidase,
GA = glutaraldehyde, FET = field-effect transistor) by a simple one-step hydrothermal
method [106]. Due to the dual role of Ni/Cu-MOF as a peroxidase mimic and a protective
coating, the obtained multi-enzyme system possesses both peroxidase-like activity and
the biological activity of natural enzymes. Accompanied by the properties of segmental
linearity over a wide range of 1 µM–20 mM, high sensitivity (26.05 µA·cm−2mM−1), and
low LOD (0.51 µM) in the low concentration range of 1~100 µM, the glucose sensor has
the advantages of high specificity, good reproducibility, and good short-term stability.
In addition, the Fe3Ni-MOF nano-enzymes synthesized by Mu and co-workers showed
excellent peroxidase-like catalytic activity and the mechanism was investigated by cyclic
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voltammetry and electron spin resonance (ESR) [107]. The results suggested that the elec-
tron transfer from TMB (TMB = 3,3’,5,5’-tetramethylbenzidine) to H2O2 was enhanced by
the incorporation of Ni into Fe-MOF. At the same time, the redox capacity of Fe3Ni-MOF
was improved due to the enhanced electron transfer between Fe2+ and Fe3+, which subse-
quently promoted the generation of hydroxyl radicals (·OH), and thus the peroxidase-like
activity. Together, these two mechanisms significantly enhanced the peroxidase-like activity
of Fe3Ni-MOF. Taking advantage of the excellent peroxidase-like activity of Fe3Ni-MOF, a
biosensor (Fe3Ni-MOF/GOx) (GOx = glucose oxidase) for the detection of glucose was pre-
pared by adsorbing GOx onto Fe3Ni-MOF. A one-step colorimetric method was established
and successfully applied to the detection of glucose in human serum samples.

3.2.2. Detection of Dopamine (DA)

Dopamine (DA) is an important catecholamine neurotransmitter widely distributed
in the central nervous system, cardiovascular system, hormones, and kidneys [108]. Ab-
normal DA concentrations often lead to neurological disorders such as schizophrenia and
Parkinson’s disease. Therefore, the establishment of an analytical method for the sensi-
tive and rapid detection of DA is essential for disease assessment. In the physiological
environment, DA usually coexists with ascorbic acid (AA) and uric acid (UA), whose
oxidation potentials are very close to each other, resulting in poor selectivity, high LOD,
and difficult detection. The diversity of types and arrangements of active metal sites in
bimetallic CPs has been proved to be more beneficial for the transfer and exchange of
electrons in the system, thereby achieving the purpose of regulating the type and number
of active sites in CP materials. Moreover, multiple ions tend to have a synergistic promo-
tion effect, which can remarkably enhance the catalytic activity of CPs, resulting in better
electrocatalytic performance than that of the monometallic system. Duan et al. fabricated
bimetallic Fe2Ni-MIL-88B material as an enzyme-free DA sensor employing hydrothermal
methods [109]. The Fe2Ni MIL-88B/GCE constructed by modifying Fe2Ni MIL-88B onto
a glassy carbon electrode (GCE) exhibited satisfactory electrochemical catalytic perfor-
mance for DA, with a linear range of 1.2 µM~1.8 mM, LOD of 0.40 µM and sensitivity of
124.7 µA·mM−1 cm−1. The electrochemical sensor demonstrates acceptable specificity,
stability, and reproducibility in the analysis of real samples. Ma and co-workers adopted
a simple surfactant-assisted method to synthesize 2D Co/Zn porphyrin (Co/Zn-TCPP)
[TCPP = tetrakis(4-carboxyphenyl) porphyrin] MOF nanomaterial known as Co25Zn75-
TCPP and constructed a new DA sensing method based on this material [110]. The doping
of metal ions not only improved the chemical environment of the original pores but also
multiplied the type and spatial arrangement of the MOF active sites, which was conducive
to electron transfer and exchange with DA. The active centers of the two metal ions were
synergistically promoted, resulting in a significant enhancement of the electrocatalytic
activity of the MOF. The constructed sensor had a linear range of 5 nM–177.8 µM with a de-
tection limit of 1.67 nM (S/N = 3) at a potential of 0.1 V and exhibited promising selectivity
for DA. The Shuang group has fabricated CoNi-MOF@ERGO (ERGO = electrochemically
reduced graphene oxide) composite combining CoNi-MOF with ERGO on a glassy carbon
electrode by electrochemical reduction method [111]. Co2+ and Ni2+ in the composites
served as active sites to accelerate electron transfer and 2-methylimidazole as adsorption
sites to enhance the enrichment of DA. The results indicated that the synergistic effect of
CoNi-MOF and ERGO enhanced the catalytic performance with good selectivity for DA
detection. In addition, the sensor was able to detect DA in a real environment of human
serum samples with a satisfactory recovery range.

3.2.3. Detection of Hydrogen Sulfide (H2S)

Hydrogen sulfide (H2S) is a signal-regulating molecule in the central nervous system
and has been classified as the “third gas transmitter” after carbon monoxide (CO) and
nitric oxide (NO). H2S is closely related to physiological activities such as cell growth,
vasodilatation, diagnosis, inflammation, and renal function, its abnormal concentration
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levels are highly correlated with persistent diseases [112]. Therefore, it is crucial to con-
struct reliable biosensors for rapid and sensitive detection of H2S. Luminescent bimetallic
CPs have received considerable attention due to their versatile and tunable optical prop-
erties [113]. The fluorescence properties of bimetallic CPs are determined by the energy
transfer between the metal ions and the ligands. The secondary doping of the metal
ions provides more versatility in the sensing process, making bimetallic CPs a superior
sensing and detection platform. Zhu and co-workers reported a new bimetallic MOF,
FexAl1-x-MIL, for the detection of H2S in aqueous systems [114]. In this bimetallic MOF,
two transition metals with low cost and abundant reserves (Fe3+ and Al3+) were used as
metal nodes, while 2-aminobenzene-1,4-dicarboxylic acid (BDC-NH2) was used as the
bridging ligand. The presence of the -NH2 group endowed the Al-based MOF to exhibit
strong blue fluorescence. Owing to the transposition of partial Fe3+ with Al3+ in the Fe3+-
doped Al-MIL-NH2, a strong ligand-to-metal charge transfer (LMCT) between Fe3+ ions
and BDC-NH2 ligands was generated, making the bursting effect within FexAl1-x-MIL
much effective. When Fe0.05Al0.95-MIL was exposed to H2S (0–38.46 µM), the fluorescence
intensity showed a good linear correlation with H2S concentration, indicating that the
bimetallic MOF could be used for selective and sensitive detection of H2S. The mechanism
of fluorescence enhancement in this system was unveiled. In the H2S sensing process, Fe3+

in Fe0.05Al0.95-MIL after H2S treatment was “pulled out” and captured by S2−, then the
quenching effect was lifted and the released BDC-NH2 ligand acted as a true fluorophore,
which contributed to the fluorescence enhancement. Huang group reported a simple and
robust strategy based on bimetallic Ni-Co-MOF with poly(3,4-ethylenedioxythiophene)
(PEDOTs) and poly(ophenylenediamine) (PoPDA) to fabricate a real-time H2S sensor [115].
The PEDOTs@Ni-CoMOF/GCE H2S sensor showed an enhanced catalytic performance
with a concentration range of 1 nM to 250 µM, low LOD (0.186 nM), and high sensitivity
(7.29 µA µM−1 cm−2). The sensing system utilized an endogenous sensor to continuously
measure the H2S levels in organic donors and live cells, which provided a new research
idea for the electrochemical detection of H2S in physiological and pathological processes.

3.2.4. Detection of Uric Acid (UA)

Uric acid (UA) is an important product of purine metabolism, deviations in UA
levels are suggestive of a variety of diseases, such as hyperuricemia, gout, Lesch–Nyan
disease, etc. [116]. Therefore, the detection of UA is vital for health monitoring and disease
diagnosis. Han and co-workers reported the first MOF nano-enzymatic source proportional
fluorescent UA sensor based on the Fe3Ni-MOF-NH2-propelled UA/uricase/phthalimide
tandem catalytic reaction [117]. Unlike previous reports, this work exploited both the
peroxidase-like and fluorescence properties of Fe3Ni-MOF-NH2. In the absence of UA,
only blue fluorescence of MOF at 430 nm was observed, whereas the addition of UA
would trigger the catalytic reaction of UA/uricase catalyzed by the MOF mimetic enzyme,
and the generated H2O2 would oxidize o-phenylenediamine to the highly luminescent 2,3-
diaminophenazine (DAP) (emission wavelength = 565 nm). Coincidentally, the fluorescence
of MOF can be quenched by DAP through an internal filtering effect, resulting in a lower
I430nm value and a higher I565nm value. Therefore, a ratiometric fluorescence sensor for
detecting UA was constructed by monitoring the opposite fluorescence changes described
above. The LOD of this sensor was 24 nM, much lower than most previous reports. In
addition, intelligent portable sensing of UA was conveniently achieved using the same
sensing system and smartphone-based RGB (RGB = red, green, and blue) analysis. Further-
more, molecular antilogical calculations initiated by nanoenzyme catalysis were performed.
This work not only provides a cost-effective, portable, and solid prototype for a highly
sensitive and reliable MOF mimetic enzyme-based multifunctional ratiometric fluorescent
biosensor to detect UA but also opens up novel frontiers for future logic-engineered POCT
(POCT = point of care testing) biomarker analysis and disease diagnosis.
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3.2.5. Detection of Methylglyoxal (MGO)

Methylglyoxal (MGO) contains a reactive dicarbonyl group and is produced mainly
by glycolysis in living cells. Studies have shown that MGO causes protein misfolding
and unfolding in the lumen of the endoplasmic reticulum (ER) as well as abnormalities
in calcium metabolism [118]. Also, the disturbances in its concentration are strongly as-
sociated with obesity, diabetes, and Alzheimer’s disease (AD) [119]. Detection of MGO
in vivo is important for diagnosis and even study of the pathological process of its cor-
responding diseases. Zheng et al. have designed and developed two novel composites
based on Tb(III) and Yb(III) functionalized Cu(II) CPs with enhanced thermal and water
stability as well as fascinating fluorescence properties [120]. Among them, Tb@Cu-Hcbpp
(Hcbpp = 1-(4-carboxylbenzyl)-3-(pyrzin-2-yl) pyrazole) exhibits broad ligand-centered
emission and weak typical Tb3+ ion emission, which can be used as an excellent ratio-
metric fluorescent sensor for the human N,N-dimethylformamide (DMF) metabolite N-
methylformamide (NMF) (LOD = 0.02 µM). In addition, Yb3+ ions can be doped into
Tb@Cu-Hcbpp to obtain multi-doped luminescent CP materials with enhanced lumines-
cence properties. In particular, the fluorescence enhancement intensity of Tb0.85Yb0.15@Cu-
Hcbpp is almost 9.6 times higher than that of the pure Tb3+ system, and it also has a high
fluorescence burst efficiency for methylglyoxal (MGO), which can be used for the sensitive
detection of MGO (LOD = 0.25 µM). Based on these results, the developed biosensor has
been successfully applied to detect NMF and MGO in urine and serum samples with
satisfactory results.

3.3. Detection of Biomacromolecules

Detection of biomacromolecules is important for health monitoring and early di-
agnosis of diseases. A large number of monometallic CPs have been applied to detect
biomolecules (for example, nucleic acids, alkaline phosphatase, extracellular vesicles, carci-
noembryonic antigen, immunoglobulins G, etc.), but the performance of the assays was
unsatisfactory [95]. Bimetallic CPs comprised of two kinds of metal ions, such as Cu2+

and Zn2+, have shown superior performance in the detection of biomolecules, such as
nucleic acids and peptides, due to the synergistic effect of the bimetals, which are gradually
applied for sensitive, rapid and selective detection [121].

3.3.1. Detection of Nucleic Acid

Different kinds of miRNAs, such as miRNA-126, miRNA-224, and miRNA-30d-5p,
are cancer promoters overexpressed in lung cancer tumor cells [122]. The selective and
sensitive detection of different kinds of miRNAs is of great significance. Bimetallic MOFs
have emerged as promising materials for the construction of electrochemical biosensors,
owing to their enhanced electrochemical activity compared to conventional monometallic
MOFs [123]. The porous structure with adjustable voids enriches free miRNAs and ensures
rapid and sensitive detection. The Du group formulated a bimetallic CoNi-MOF and
employed it to construct biosensors for sensitive and selective detection of miRNA-126 [124].
The mixed coordination of the metal centers of Co and Ni with carboxyl and pyridyl groups
greatly enhanced the electron transfer and amplified the electrochemical signals, thus
eliminating the need for electrochemical indicators and blockers to eliminate the non-
specific adsorption between miRNA-126 and CoNi-MOF. The assay results demonstrated
that the biosensor had an ultra-low LOD of 0.14 fM in the range of 1 fM~10 nM, which
was suitable for the selective, sensitive and reproducible detection of miRNA-126. Dou
et al. built an efficient DNA walker attached to a stable AuNP-coated bimetallic MOF
electrocatalyst for H2O2 reduction to detect DNA methylation (Figure 5A) [125]. The
wedge-shaped segments on the tracks were designed to be continuously complementary to
the target methylated DNA, thus inhibiting its separation from the tracks. The bimetallic
MOF carrying the fuel strand not only promoted the gradual movement of the target strand
but also acted as an efficient catalyst for H2O2 reduction on the sensing platform (Figure 5B).
After implementing the aforementioned innovative design, the sensor achieved sensitive
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monitoring of methylated DNA within 20 min (Figure 5C) with a detection limit as low as
200 aM (Figure 5D). Moreover, the serum detection exhibited acceptable recoveries ranging
from 97.9 to 106.5%, displaying the potential application of this biosensor for real sample
detection (Figure 5E).
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3.3.2. Detection of Alkaline Phosphatase (ALP)

Alkaline phosphatase (ALP) is a membrane-bound enzyme with the ability to catalyze
dephosphorylation. This hydrolase is also involved in the transduction of in vivo signals
and the regulation of intracellular growth and apoptotic processes [126]. Overexpression of
ALP is usually associated with liver and bone disease (osteoblastic bone cancer, Paget’s
disease, and osteochondrosis), whereas under-expression of ALP leads to hypophosphata-
sia [127]. Therefore, it is of utmost importance to develop a simple and accurate method
for the quantitative determination of ALP expression. Wang et al. have prepared red-
illuminated Tb-GMP-Eu CPs (GMP = Guanine monophosphate) for the detection of ALP
activity via a one-pot method [128]. The red luminescence of Tb-GMP-Eu CPs arises from
the synergistic interaction of the phosphate groups in the GMP ligand with Tb3+ and Eu3+.
In the presence of ALP, the phosphoryl group in the GMP ligand is catalytically broken
down, leading to an interruption in the energy transfer from Tb3+ to Eu3+ thereby causing
a fluorescence burst in the Tb-GMP-Eu CPs. These CPs have the advantages of simple syn-
thesis, good biocompatibility, and photostability, as well as high sensitivity and selectivity
response to ALP in the concentration range of 0.05~20 U·L−1, with an LOD of 0.004 U·L−1.
Furthermore, real-world sample testing presented that the biosensors could be successfully
employed in the evaluation of ALP inhibitors and the determination of ALP in serum.

3.3.3. Detection of Carcinoembryonic Antigen (CEA)

Carcinoembryonic antigen (CEA) is an important cancer biomarker for the monitor-
ing and diagnosis of colon, breast, ovarian, colorectal, and cystic adenocarcinomas [129].
CEA levels in healthy individuals are usually at the ng·mL−1 level, and consequently,
the construction of an ultrasensitive and accurate CEA assay is of great significance for
early screening of cancer. According to past reports, current detection techniques (fluo-
roimmunoassay, electrochemiluminescence immunoassay, radioimmunoassay, plasmonic
nanoimmunosensor assay, and enzyme-linked immunoassay) usually made use of anti-
bodies as recognition elements [130–134]. Antibodies can specifically recognize the target
analyte, but many of them have the disadvantages of immunogenicity, toxicity, and high
cost, which limit their wide clinical application. The Du group synthesized a Zr-MOF
containing an n-carboxylic acid-based ligand (2,2′-bipyridine 5,5′-dicarboxylic acid, bpydc),
in which Co ions were introduced to form a bimetallic ZrCo-MOF [135]. Aptamer chains
targeting CEA were anchored to ZrCo-MOF to prepare biosensors capable of sensitive and
selective detection of CEA. ZrCo-MOF has a large specific surface area, tunable porous
structure, and good biocompatibility, offering more active sites for the immobilization of
aptamers. The aptamer chains can be anchored to the surface of the ZrCo-MOF-modified
electrodes through various effects such as Zr-O-P bonding, Co-N coordination, π-π* su-
perposition, and van der Waals forces, which are more tightly bonded than single metal
Zr-MOFs. The doping of Co2+ in the MOF skeleton enhanced the electrochemical activity
of the whole sensor, which could effectively improve the sensitivity of detecting CEA. The
ZrCo-MOF-based aptasensors exhibited excellent sensitivity, selectivity, stability, repro-
ducibility, and utility for real human serum samples, demonstrating the potential to be
applied to biosensing and clinical diagnosis of cancer.

3.3.4. Detection of Extracellular Vesicles (EVs)

Extracellular vesicles (EVs), which are widely present in biological fluids, are closely
associated with immune responses, cancer metastasis, and cardiovascular or central ner-
vous system-related diseases [136]. However, the extremely low concentration of EVs in
biological samples makes the detection of EVs by conventional methods challenging and
limiting [137]. Therefore, simple and sensitive rapid EV detection techniques need to be
developed for early diagnosis of diseases and health monitoring. Jiang and co-workers
reported a bimetallic Fe/Co-MIL88(NH2) with excellent peroxidase catalytic activity and
superior stability due to the abundant active site and synergistic effect between Fe3+ and
Co2+ [138]. Subsequently, Fe/Co-MIL88(NH2) was modified by GOx, triggering a cascade
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enzymatic reaction for the highly sensitive detection of EVs. The cascade enzymatic reac-
tion of Fe/Co-MIL88(NH2) with GOx can achieve the detection of EVs as low as 7.8 × 10−4

particles/mL, and this detection limit showed two orders of magnitude lower than that of
horseradish peroxidase (HRP). The accuracy and high recoverability of the biosensor as
evidenced by actual sample testing results illustrated its potential for clinical analysis and
early disease diagnosis.

3.3.5. Detection of Immunoglobulin G (IgG)

Human immunoglobulin G (IgG) is the primary antibody present in human blood and
plays a crucial role in the immune system by recognizing and defending against foreign
antigens [139]. The potential for developing sensitive, rapid, and selective IgG sensing
assays is crucial for vaccine development, early diagnosis of immune disorders, and the
advancement of therapeutic approaches. Conventional methods such as enzyme-linked
immunosorbent assay (ELISA) and western blotting require sophisticated specialized
equipment as well as high costs, thereby leading to an urgent need to develop simple, rapid,
and low-cost assays [140]. Bimetallic CPs have distinct advantages of flexible tunability,
large specific surface area as well as high sensitivity, their conductivity is greatly improved
compared to monometallic CPs due to the synergistic effect of bimetallic ions. The ultra-
sensitive electrochemical detection method developed based on bimetallic CPs has attracted
much attention in the field of IgG detection. Ravipati et al. reported bimetallic Ni/Co-MOF
modified nickel foam electrodes for IgG detection utilizing solvothermal methods [141].
When IgG molecules were introduced to the electrode surface, they interacted with the
redox active sites on the Ni/Co-MOF, altering the electron transfer kinetics and charge
distribution resulting in measurable changes in current or potential. The prepared Ni/Co-
MOF/NF sensor exhibited high sensitivity (28 µA cm−2 mol−1) and high selectivity at
trace levels (30 fM to 10 nM), confirming the potential for the detection of Ig molecules in
clinical diagnostics and biomedical research.

3.4. Detection of Drug Molecules

Drug molecules including antibiotics, anticancer and non-steroidal anti-inflammatory
drugs play a pivotal role in life activities and medical therapy. Determination of the
presence or concentration of specific drugs in biological fluids (for example, serum) is
essential for determining the physiological and clinical manifestations of drugs [142].
Meanwhile, residues from the extensive use of antibiotics have significant impacts on
agricultural products, ecosystems, and human health [143]. Moreover, drug abuse is a
drug-related disorder in which drugs are taken regularly and users take them in quantities
or by methods that are harmful to themselves or others [144]. Therefore, the exploitation of
fast, sensitive, and specific sensors for the detection of drug molecules in the environment
and in the human body is very urgent.

3.4.1. Detection of Doxorubicin (DOX)

The anticancer drug doxorubicin (DOX) is a first-line treatment for breast, ovarian,
thyroid, and leukemia cancers, but it is strictly considered in clinical use due to its side
effects such as cardiotoxicity, myelosuppression, nausea, and alopecia [145,146]. Therefore,
the development of efficient and sensitive assays to detect DOX in the human body to
regulate the dose is essential in chemotherapy. Electrochemical sensors constructed on
the basis of bimetallic CPs provide a selective, sensitive, and fast low-cost alternative for
the detection of DOX. The Ahmadi group reported the preparation of an electrochemical
sensor for the detection of DOX relying on the in situ growth of NiCo-BTC bimetallic MOFs
on a glassy carbon electrode modified with conductive nitrogen-doped graphene oxide
nanoribbons (NiCo-BTC MOFs/N-GONRs/GCE) [147]. The square-wave voltammetric
response of NiCo-BTC MOFs/N-GONRs/GCE to DOX was significantly larger than that of
NiCoBTC MOFs/GCE due to the synergistic interaction between N-GONRs and NiCo-BTC
MOFs to enhance the conductivity and sensitivity. NiCo-BTC MOFs/N-GONRs/GCE
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achieved a sensitive and selective detection of DOX with a low LOD (6 nmol L−1) in the
linear dynamic range of 0.01~1.0 and 1.0~80 µmol L−1. The high recovery rate for detecting
DOX in real samples demonstrates how this novel biosensor will open new avenues for the
development of bimetallic MOFs-based electrode materials with excellent conductivity.

3.4.2. Detection of Enrofloxacin (ENR)

The synthetic third-generation fluoroquinolone antibiotic enrofloxacin (ENR) is widely
used for the treatment of respiratory infections in animals with Mycoplasma organisms and
Gram-negative bacterial infections [148]. However, overuse of antibiotics would bring many
unavoidable side effects, such as nausea, vomiting, diarrhea, headache, insomnia, and other
symptoms in humans as well as animals [149]. Therefore, while antibiotics remain a key
tool in the prevention and treatment of infectious diseases, levels of antibiotics in the body
and the environment must be monitored and regulated. Electrochemical aptamer sensors
have many advantages in the detection of antibiotics including low cost, non-toxicity, high
sensitivity, and superior selectivity. Bimetallic CPs are excellent electrode materials for
the construction of electrochemical aptamer sensors due to the synergistic effect of each
component with better conductivity and simple modification by aptamers. Wei and co-
workers fabricated a novel electrochemical aptamer sensor based on bimetallic CoNi-MOF
material and gold nanoparticles (AuNPs) for the detection of ENR (Figure 6A) [150]. In
this work, AuNPs were modified on CoNi-MOF/GCE by electrodeposition to improve
the conductivity of the electrode material and accelerate the aptamer to be loaded onto
AuNPs/CoNi-MOF/GCE by Au-S bond. The obtained AuNPs/CoNi-MOF/GCE showed
a satisfactory detection ability for ENR in the linear range of 0.001–1 × 105 pg·mL−1 with
LOD as low as 0.33 fg·mL−1 (Figure 6B). Moreover, the electrochemical aptamer sensor
showed excellent selectivity, favorable reproducibility, and high stability in the detection
(Figure 6C) of ENR in real samples. It demonstrates the potential of bimetallic MOF-based
electrochemical aptamer sensors to be widely applied in the field of biosensing.

3.4.3. Detection of Levofloxacin (LEV)

Levofloxacin (LEV) is a fluoroquinolone antibiotic utilized for the treatment of a variety
of diseases associated with infections caused by sensitive strains of bacteria [151]. Due
to the poor metabolism of LEV in the human body, approximately 87% of the ingested
drug can be recovered in the urine and the accumulated LEV in the environment would
pose a greater risk to humans and other animals [152]. Therefore, in order to detect LEV
levels in humans and the environment more rapidly, sensitively, and selectively, Deng
and co-workers proposed a dual recognition and dual amplification detection strategy for
levofloxacin based on a Cu/Fe-BTC MOF-modified electrode sensor [153]. After the elution
of levofloxacin, a new electrochemical assay for the detection of levofloxacin was established
based on the obtained recognition site with levofloxacin, which effectively excluded the
interference of the enantiomer of D-ofloxacin. In addition, the synergistic effect of Cu/Fe-
BTC effectively amplified the current response signal and improved the sensitivity of the
sensor. The linear range of the sensor for LEV detection was 5~4000 × 10−11 mol L−1 and
the LOD was as low as 2.07 × 10−11 mol L−1. The designed electrochemical sensor for the
detection of levofloxacin in real samples had high recoveries (92.7~109.8%), showing great
potential in antibiotic detection.
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3.4.4. Detection of Paracetamol

Paracetamol, also known as acetaminophen, is one of the most commonly used anal-
gesic and antipyretic drugs. It has been widely applied as an effective treatment for relief
from pain and fever [154]. In contrast to other analgesic and antipyretic agents, paracetamol
does not cause direct damage to the body. However, overdosage of paracetamol would lead
to the formation of a number of hepatotoxic and nephrotoxic metabolites which would in
turn cause diseases such as acute hepatic necrosis [155]. Shalauddin et al. prepared FeMg
MOF-BPN nanocomposites by combining FeMg MOF and black phosphorous nanosheets
(BPN) for the first time, using the drop-casting method [156]. The FeMg MOF coating can
effectively improve the inherent stability of BPN. The carboxylic acid groups from the MOF
ligand terephthalic acid can not only effectively chelate with Fe and Mg atoms, but also
bond with the BP layer through hydrogen bonding and electrostatic interactions to form a
highly stable heterostructure with a higher surface area, which provides sufficient redox
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active sites and ensured effective binding sites for the target molecules. In the presence
of paracetamol, the linear detection range of the sensor was 0.002–30 µM and 40–700 µM
with sensitivity values of 23.61 µA µM−1 cm−2 and 0.94 µA µM−1 cm−2, respectively. The
recoveries of paracetamol in pharmaceutical preparations and simulated blood samples
were 99.56–100.60% and 99.50–101.75%, respectively, indicating the reliability of the sensor
in the detection of real samples.

4. Biomedical Applications of Bimetallic CPs

Cancer poses a serious threat to the health of all human beings and causes millions
of deaths each year [157]. For cancer treatment, traditional cancer drugs and cancer vac-
cines as well as emerging functional nanomaterials (light-sensitive, heat-sensitive, and
microwave-sensitive materials) are effective therapies [158]. Directly administered treat-
ments produce numerous undesirable side effects including poorer pharmacokinetics as
well as biodistribution [159]. Hence, it is crucial to emphasize that drugs, vaccines, and
functional nanomaterials must possess the ability to selectively target the specified cancer
cells while avoiding any damage to healthy tissues [160]. An efficient, stable, and selective
drug delivery system (DDS) helps in controlling drug release and correcting drug efficiency.
Porous MOF materials with large drug loading capacity, good biocompatibility, and easy
degradation by the human body are popular choices in DDS lately [161–163]. Bimetallic
MOFs show more adjustable structure, better stability, superior luminescence, and even
better enzyme mimicry performance than monometallic MOFs due to the synergistic effect
of multiple components, which are gradually becoming more active in the front line of
drug delivery and cancer therapy.

4.1. Bimetallic CPs Based on Anticancer Drugs

Among the traditional chemotherapeutic agents, platinum (Pt)-based drugs, mainly
including cisplatin (cis-diamine dichloroplatinum (CDDP)), oxaliplatin, and carboplatin,
are one of the major clinically used anticancer drugs due to their potent cytotoxicity that
disrupts DNA replication [164]. However, due to the drawbacks of rapid in vivo clearance,
weak tolerance, and poor targeting of free CDDP molecules, clinical use often brings about
side effects such as poor chemotherapeutic efficacy or even severe systemic toxicity [165].
Therefore, recent research is focused on finding efficient delivery vectors for CDDP with
high loading rates, stability as well as targeting capability. Ma and co-workers have
prepared sub-50 nm CDDP-loaded hollow mesoporous organosilica (HMOS) nanoparticles
(termed as Pt@HMOS), which were subsequently decorated with the bimetallic Zn2+/Cu2+

co-doped MOF (termed as Pt@HMOS@ZC) to plug the pores of nanoparticles for efficiently
preventing the premature leakage of CDDPs and improving the loading and delivery
capacity of HMOS (Figure 7A) [166]. When Pt@HMOS@ZC entered the tumor cells, the
acidic environment would cause the decomposition of outer MOF to release CDDP for
the chemotherapy of cancer (Figure 7B). Simultaneously, free Cu2+ can be released in this
process, which can deplete large amounts of reduced glutathione (GSH) in cancer cells and
catalyze the decomposition of hydrogen peroxide (H2O2) into highly toxic ·OH in tumors
via a Fenton-like reaction, which acted synergistically with CDDP for chemodynamic
therapy of tumors (Figure 7C–E). The combination of bimetallic MOF and HMOS helps to
create systems that intelligently unlock nanomedicines, a concept that offers new designs
and ideas for the precise release of tumor drugs.
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Figure 7. (A) Scheme for the synthesis of HMOS@ZC. (B) Schematic for Pt@HMOS without bimetallic
MOF gating and Pt-based drugs release profiles of Pt@HMOS at different pH values. (C) Fluorescence
images of Calcein AM (green, live cells) and PI (red, dead cells) co-stained A549 cells treated by
different formulations for 24 h. (D) In vivo fluorescence images of A549-tumor-bearing mice and
(E) quantitative mean fluorescence intensity analysis of tumors at different time points post i.v.
injection of free ICG and ICG@HMOS@ZC. (“****” represents that the two groups of data are
very different statistically) Reproduced with permission from Ref. [166]. Copyright 2022, Wiley
Online Library.

4.2. Bimetallic CPs Based on Cancer Vaccine

Cancer vaccines with easy mass production and a favorable safety profile are increas-
ingly being explored for the immunological treatment of cancer [167]. In terms of immune
mechanisms, tumor vaccines spatiotemporally coordinate antigen transport to lymph nodes
(LNs), cytoplasmic delivery, and cross-presentation of antigen in dendritic cells (DCs) with
innate immune stimuli to activate specific T cell responses [168]. However, limitations in
the body’s own immune stimulation and DC spatiotemporal coordination (for example, DC
recruitment, activation, and migration to LNs) severely affect their antitumor utility [169].
Therefore, there is an urgent need to develop an effective delivery system to solve the
dilemma of cancer immunotherapy. Liu and co-workers developed a bimetallic organic
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framework, Mn/Zr-MOF, equipped with a biomimetic nanovaccine targeting Ythdf1 to
create an in situ pro-inflammatory immune ecosystem for enhanced DC spatiotemporal
coordination (Figure 8A) [170]. Plasmids expressing short hairpin RNA (shRNA) against
Ythdf1 (shY1, downregulating Ythdf1 expression) and liposome-modified tumor cells
membrane (CM) would be packaged and squeezed through a polymeric membrane in an
extruder to form shY1-CM nanoparticles as a Ythdf1-targeted biomimetic nanovaccine.
Mn/Zr-MOF-shY1-CM was fabricated by adsorbing shY1-CM nanoparticles onto Mn/Zr-
MOF, which greatly enhanced the stability and targeting action of the vaccine (Figure 8B).
The results from cellular and animal experiments revealed that the cancer vaccine exhibited
a strong preventive effect in delaying B16-OVA and MC38 tumorigenesis (Figure 8C,D).
Additionally, it demonstrated a robust therapeutic effect of inhibiting postoperative MC38
tumor recurrence and heterochronic liver metastasis. This well-designed bimetallic MOF-
loaded cancer vaccine provides an efficient strategy for the fabrication of personalized
scaffold cancer vaccines.
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representation of Mn/Zr-MOF-shY1-CM-induced immune response cascades. (C) QRT-PCR analysis
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Biosensors 2024, 14, 117 22 of 33

4.3. Bimetallic CPs for Chemodynamic Therapy (CDT)

Chemodynamic therapy (CDT) has gained widespread attention for its use in cancer
therapy by inducing reactive oxygen species (ROS) in tumor cells and disrupting the bal-
ance of the redox state in cancer cells [171]. CDT is driven by Fenton reactions which are
based on the generation of highly toxic ROS from intracellular H2O2 catalyzed by Fe2+/Fe3+

redox pairs [172]. The resulting ROS has a strong oxidation capability and can cause severe
oxidative damage to organelles and biomolecules. However, the Fenton reactions progress
is overly dependent on the tumor microenvironment conditions such as pH and concentra-
tion of H2O2, hence the anticancer effect of CDT is greatly limited [173]. A novel cascade
nanozyme (Co-Fc@GOx) combining nanoscale Co-ferrocene MOF and GOx was fabricated
and showed remarkable cascade enzymatic/Fenton activity (Figure 9A) [174]. Owing to
the synergistic effect of Fe2+ and Co2+, the prepared Co-Fc MOF can not only possess high
Fenton activity but also bind more firmly to GOx. The results showed that the loaded
GOx catalyzed a large amount of glucose in the tumor environment to produce abundant
gluconic acid and H2O2, which significantly facilitated the Fenton reaction and accelerated
the in situ induction of ROS, particularly ·OH, thereby enhancing the therapeutic effects
on cancer cells. This Co-Fc@GOx can effectively regulate the tumor microenvironment
through a cascade reaction and may serve as an alternative CDT platform to promote tumor
therapy. Qu and co-workers have designed bimetallic CuZn-MOF (Cu/ZIF-8) wrapped
with DNAzyme for intracellular in situ synthesis of tumor drugs and DNAzyme-based
gene therapy (Figure 9B) [175]. The synthesized DNAzyme@Cu/ZIF-8 can release Cu2+,
Zn2+, and DNAzyme upon decomposition in the acidic environment of tumor cells. The
released Cu2+ underwent reduction to Cu+ through ascorbic acid, subsequently, these ions
catalyzed the synthesis of chemotherapeutic drugs via the copper-catalyzed azide-alkyne
cycloaddition (CuAAC) reaction. Moreover, the released Zn2+ can act as a cofactor to
activate the cleavage activity of DNAzyme. Both the synthesis of anticancer drugs and
the activation of gene therapy took place within the tumor cells, which could destroy the
cancer cells in situ to minimize the side effects on normal organisms.

4.4. Bimetallic CPs for Radiotherapy

Radiotherapy is the most commonly used clinical treatment strategy for early and
intermediate-stage tumors [176]. However, radiotherapy is often ineffective due to factors
such as variations in the radiosensitivity of different types of tumor cells and infections
in solid tumors [177]. Moreover, the potential resistance and side effects of radiotherapy
(for example, esophagitis, enteritis, radiation cystitis, pulmonary fibrosis, bone marrow
injury, and other side effects) seriously damage patients’ health [178]. Therefore, increasing
the sensitivity of cancer cells to radiotherapy as well as reducing the impact of side effects
of radiotherapy have become important directions in the development of radiotherapy.
Gold nanoparticles as emerging radiosensitizers can both damage cells by generating
free radicals through the photoelectric and Compton effects, as well as improve the ef-
ficiency of radiation therapy by inhibiting DNA repair processes [179]. The composite
system of AuNPs and bimetallic MOFs achieved significant radiosensitization of tumors
due to the synergistic effect of multiple components [180]. The Lu group designed and
synthesized a bio-functional bimetallic MOF MnRu-MOF by doping Mn2+ into a ruthe-
nium (Ru) complex, followed by the incorporation of gold nanorods (AuNR) into this
system to prepare the heterojunction radiosensitizer Au@MnRu-MOF with enhanced can-
cer radionuclide/immunotherapy (Figure 10) [181]. Single-crystal XRD confirms that
MnRu-MOF is a novel crystal structure with P63/mmc space group and a channel diameter
of 27 Å. In this system, Au@MnRu-MOF can release Mn2+ under acidic conditions and
modulate NK-mediated (NK = natural killer) cell therapy to overcome the proliferation
of the triple-negative breast cancer cell line MDA-MB-231. Moreover, photoelectrons gen-
erated by high-energy X-ray excitation of AuNR can be transferred to the excited singlet
state of Ru polypyridine complexes, promoting the accumulation of cytotoxic free rad-
icals. As a result, the MnRu-MOF combined with AuNR was formed with a core-shell
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heterojunction structure and used to inhibit the proliferation of MDA-MB-231 cells, which
provides ideas for the rational design of biologically functional MOFs and the combined
treatment of cancer.
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4.5. Bimetallic CPs for Immunotherapy

Immunotherapy is a novel anti-cancer tool that can recognize and kill cancer cells
by activating the host’s own immune system [182]. However, acute myeloid leukemia
(AML) and other malignant cells can activate a variety of immune evasion mechanisms to
escape forced elimination by the autoimmune system. Among them, epigenetic alterations-
mediated reduction in the antigenicity of leukemoblasts (LBs) is one of the key mechanisms
of immune escape and resistance to T-cell immunotherapy [183]. Thus, the epigenome
can be reprogrammed to reverse immune evasion, regarded as an emerging strategy
for the treatment of multiple malignancies. Song and co-workers prepared a bimetallic
MOF-based nanocomposite (called AFMMB) consisting of DNA hypomethylating agents
azacitidine (AZA), leukemic stem cell (LSC) membranes, and pro-autophagic peptides for
the immunological treatment of leukemia [184]. Due to the homing ability and immuno-
compatibility of LSC membranes, the constructed AFMMB particles exclusively targeted
LBs and triggered autophagy by binding to the Golgi-associated plant pathogenesis-related
protein 1 (GAPR-1), leading to its disassembly and the release of Fe3+, Mn2+, and AZA
(Figure 11). The release of DNA hypomethylating agents effectively suppressed DNA
methylation, upregulated major histocompatibility complex class I molecules, and induced
RNA methylation-mediated decay of programmed cell death protein ligand transcripts,
thereby restoring stimulators of the interferon gene pathway. The dual epigenetic ef-
fects of AFMMB enhanced the antigenicity of AML cells and consequently facilitated the
recognition and killing of cytotoxic T cells by tumor cells. This work highlighted the promis-
ing applications of bimetallic CPs for the treatment of hematological malignancies and
solid tumors.
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5. Conclusions and Outlook

Various bimetallic coordination polymers with superior properties have been devel-
oped. These bimetallic CPs are mainly constructed by the strategies of one-pot methods
and post-synthesis modifications. One-pot synthesis is considered the most commonly em-
ployed method and is categorized into self-assembly and metal-ligand methods depending
on the order of the second ions addition. For the post-synthesis approach, the bimetallic
CPs are achieved by synthesizing monometallic CPs followed by the addition of a second
ion including ion exchange and seed methods. Based on the systematic investigation and
judicious design of the two metals and coordination with the organic ligands, bimetallic CPs
with desirable properties and performance can be achieved. Multiple spectroscopic and
morphological instruments and techniques are developed to investigate the composition,
location, and arrangement of metals in synthesized bimetallic CPs.

Bimetallic CPs have the advantages of adjustable porosity, flexible luminescence,
strong electrical conductivity, and high electrocatalytic activity. These materials can be
widely used for biosensing and biomedical applications, such as the detection of metal
ions and small molecules, immune response, as well as nucleic acids. In addition, it
has been demonstrated that multifunctional bimetallic CPs combined with cancer drugs,
cancer vaccines, or nanomaterials can be applied for efficient drug delivery and cancer
therapy. In the drug delivery system, the bimetallic CPs not only act as a stable delivery
platform due to the synergistic effect of the bimetals but also precisely release the drug,
functional nanomaterials, or free ions in the tumor microenvironment. Moreover, the
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released metal ions can also form a composite superimposed therapeutic system with drugs
and nanoparticles in the tumor cells to enhance the anticancer effect via chemodynamic
therapy, radiotherapy, and immunotherapy.

The synergistic effect of multiple metal ions in bimetallic CPs is the main reason for
their enhanced properties, but it is highly dependent on the uniform distribution of both
metals in the structure. The inhomogeneous distribution of the two metal ions would
cause a significant decrease in sensing performance and transport stability as well as poor
cancer therapy. Thus, more advanced instruments and techniques need to be developed
to determine whether the two metal elements are uniformly distributed in the structure
to guide the controlled synthesis of bimetallic CPs. Moreover, it is significant to develop
strategies to precisely control the incorporation of metals and construct the bimetallic CPs
at the atomic level. It is anticipated that many novel functional bimetallic CPs can be
designed for wide potential applications.
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