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Abstract: We experimentally demonstrate Si-based electrolyte-gated transistors (EGTs) for detecting
urea. The top-down-fabricated device exhibited excellent intrinsic characteristics, including a low
subthreshold swing (SS) (~80 mV/dec) and a high on/off current ratio (~107). The sensitivity, which
varied depending on the operation regime, was analyzed with the urea concentrations ranging
from 0.1 to 316 mM. The current-related response could be enhanced by reducing the SS of the
devices, whereas the voltage-related response remained relatively constant. The urea sensitivity in
the subthreshold regime was as high as 1.9 dec/pUrea, four times higher than the reported value.
The extracted power consumption of 0.3 nW was extremely low compared to other FET-type sensors.

Keywords: biologically active field-effect transistor; electrolyte-gated transistor; high sensitivity; low
power consumption; urea detection

1. Introduction

Urea is a crucial biomarker for diagnosing various malfunctions in the human body.
High urea levels in the blood can indicate conditions such as indigestion, kidney malfunc-
tion, renal failure, urinary tract obstruction, and gastrointestinal bleeding. In contrast, its
low levels can indicate hepatic failure, nephritic syndrome, and cachexia [1]. The urea
concentration (pUrea = − log10[Urea]) in human blood ranges from 2.1 to 2.6 (3.5 mM to
7.5 mM).

Common methods used to analyze pUrea in patients include colorimetric and spectro-
metric techniques [2–7]. Colorimetric methods involve measuring the color changes using
diacetyl monoxime, gold nanoparticles, polydopamine nanoparticles, and pH-sensitive
hydrogels [2–4]. Spectrometric methods involve characterizing the fluorescence intensities
of pH-sensitive dyes, gold nanoclusters, and quantum dots [5–7]. However, these optical-
based techniques are time-consuming and require expensive equipment and skilled experts.
To overcome the drawbacks above, electrochemical biosensors have been introduced.

Electrochemical biosensors have advantages such as fast response time, cost effective-
ness, portability, and so on [8,9]. In order to further enhance their efficacy, improving key
sensing parameters such as sensitivity, selectivity, and response time is of utmost impor-
tance. Recently, various types of transistors including ion-sensitive field-effect transistors
(ISFETs) and biologically active FETs (BioFETs) have been developed to detect urea [10–13].
Nanostructure FET sensors have high sensitivity and can provide real-time and label-free
detection [14,15]. However, the small sensing area of these sensors can limit the receptor
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density, resulting in insufficient output signals and significant device-to-device variations.
Extended-gate FETs (EGFETs) are another type of ISFET consisting of a conventional FET
and a separated sensing membrane connected to the gate [16,17]. However, the inherent
interface between the gate and membrane generates additional parasitic capacitance and
resistance, which worsens the sensitivity and reproducibility. More recently, electrolyte-
gated FETs (EGTs) that use a functionalized gate electrode as the sensing surface have
been developed [18–22]. The larger gate area, typically one order of magnitude larger than
the channel area, is beneficial to achieve higher receptor density, thus enhancing output
signals and reducing performance variations, which is crucial for the commercialization
of BioFETs.

Herein, we investigated the electrical responses of Si-based EGTs for detecting urea.
The device was fabricated using microfabrication technology. The Ag gate was functional-
ized with urease, and the current-voltage characteristics were experimentally measured
at different pUrea values. The sensitivity and the limit of detection were analyzed in the
subthreshold regime. Additionally, interference tests using typical biomolecules found in
human blood were performed to evaluate the selectivity of the EGTs for detecting urea.

2. Materials and Methods
2.1. Material Preparation and Electrical Characterization

Urease from Jack Beans (Type III, powder, 20,000 units/g), urea (molecular biology
grade, powder), phosphate-buffered saline (PBS, pH 7.4), (3-amino-propyl) triethoxysilane
(APTES, 99%), glutaraldehyde (50%), glucose, ascorbic acid (AA), KCl, and anhydrous
ethanol (200 proof, 99.5%) were purchased from Sigma-Aldrich (Burlington, VT, USA).

Prior to the experiments, a urea solution was prepared by dissolving urea powder in
a 1 × PBS solution of pH 6. To test the selectivity of the device, other biomolecules such
as glucose, AA, and KCl were also dissolved in the 1 × PBS solution with a pH of 6. The
electrical characteristics of the device were measured using a semiconductor parameter
analyzer (Keithley 4200, Keithley, Solon, OH, USA). The gate voltage (VG) was applied in
increments of 50 mV through a buffer solution, while the drain current (ID) was measured
with a fixed drain voltage (VD) of 0.1 V. The source and body voltages (VS and VB) were
set to 0 V. ID was limited to 10−7 A to prevent the degradation of the device. The ID−VG
characterizations were performed after exposing the target solution of 20 µL for 10 min.

2.2. Fabrication of EGTs

The EGTs were fabricated using a top-down method (Figure 1a) on a silicon-on-
insulator wafer (p-type, 10 Ω·cm, (100)) with a 140 nm-thick top-Si layer and 400 nm-thick
buried oxide layer as the substrate material. The top Si layer was thinned to 100 nm using
thermal oxidation to ensure the uniform doping of deep Si during ion implantation. The
active region, consisting of the source, drain, and channel, was formed using an I-line
stepper and an inductively coupled plasma reactive-ion etching (ICP-RIE) process. Using
electron-beam lithography and ICP-RIE etching, the channel region was then patterned
into nanowires with a width of 50 nm, 80 nm, and 110 nm, respectively. Arsenic ions
(5 × 1015/cm2, 60 keV) were implanted into the source and drain regions, followed by
rapid thermal annealing (RTA) at 1000 ◦C for 20 s. A 5 nm-thick SiO2 gate insulator was
then thermally grown in a furnace at 800 ◦C for 5 min. Contact electrodes and transmission
lines were formed using Ag/Ti (500 nm/50 nm) layers deposited via an e-beam evaporator
and lift-off process. Finally, a 2 µm-thick SU-8 layer was passivated on the surface for
electrical isolation, excluding the channel, gate electrode, and contact pads (Figure 1b).
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min, rinsed with anhydrous ethanol to remove unbound APTES molecules, and dried us-
ing N2 blowing. The devices were then immersed in a glutaraldehyde solution (2.5 %, 1 × 
PBS, pH 7.4) for 90 min, washed with 1 × PBS and DIW, and dried with N2 blowing. Finally, 
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humid environment at 4 °C, followed by rinsing with 1 × PBS and DIW and drying with 
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The urea functionalization on the Ag gate was verified using atomic force microscopy 
(AFM, VEECO, New York, NY, USA), as shown in Figure 2. The average roughness values 
were determined to be 0.7 nm for the bare Ag surface, 0.13 nm after APTES/GA treatment, 
and 4.2 nm following the immobilization of urease, respectively. The reduction in rough-
ness observed after APTES/GA treatment can be attributed to the effective filling of APTES 
molecules within the Ag grain boundaries [23]. 
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Figure 3 shows the intrinsic transfer curve (ID vs. VG) and gate leakage current (IG) of 
the EGT device. It exhibits excellent n-type characteristics including a low subthreshold 
swing (SS) of ~80 mV/dec, high on/off current ratio (ION/IOFF) of ~107, and low threshold 

Figure 1. (a) Fabrication process flow of the Si-based EGT. (b) An optical image of the fabricated
EGT. The area of the gate electrode is 1600 µm × 300 µm. The channel between the source and drain
consists of 20 parallel nanowires with the length of 10 µm.

2.3. Functionalization of EGTs

As a urea receptor, the urease was immobilized on the gate area. The gate electrode
was first treated with UV/ozone for 90 s under a light intensity of 200 µW/cm2 to generate
hydroxyl groups (OH−). The surface was then exposed to vaporized APTES at 55 ◦C for
1 min, rinsed with anhydrous ethanol to remove unbound APTES molecules, and dried
using N2 blowing. The devices were then immersed in a glutaraldehyde solution (2.5 %,
1 × PBS, pH 7.4) for 90 min, washed with 1 × PBS and DIW, and dried with N2 blowing.
Finally, the devices were exposed to a urease solution (10 mg/mL, 1 × PBS, pH 7.4) for 18 h
in a humid environment at 4 ◦C, followed by rinsing with 1 × PBS and DIW and drying
with N2 blowing.

The urea functionalization on the Ag gate was verified using atomic force microscopy
(AFM, VEECO, New York, NY, USA), as shown in Figure 2. The average roughness values
were determined to be 0.7 nm for the bare Ag surface, 0.13 nm after APTES/GA treatment,
and 4.2 nm following the immobilization of urease, respectively. The reduction in roughness
observed after APTES/GA treatment can be attributed to the effective filling of APTES
molecules within the Ag grain boundaries [23].
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Figure 2. 3D surface plot of the AFM analysis for the (a) bare Ag, (b) Ag after APTES/GA treatment,
and (c) urease functionalized Ag surface.

3. Results and Discussion
3.1. Intrinsic Electrical Characteristics

Figure 3 shows the intrinsic transfer curve (ID vs. VG) and gate leakage current (IG) of
the EGT device. It exhibits excellent n-type characteristics including a low subthreshold
swing (SS) of ~80 mV/dec, high on/off current ratio (ION/IOFF) of ~107, and low threshold
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voltage (VTH) of ~0.65 V. The low leakage current (<10 pA) and negligible hysteresis (inset
of Figure 3) guarantee a reliable and reproducible operation during sensing responses.
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3.2. Sensing Characteristics

Figure 4a shows the current monitoring result for 1 × PBS with and without urea
(pUrea 0.5) at a fixed VG of 0.3 V. Five devices were used to obtain each data point, and
the average value and 1σ of those measurements are plotted. Over time, ID continuously
decreased for the urea solution, whereas it remained constant for 1 × PBS. Since the
response for the urea saturated within the first 10 min of exposure, 10 min exposure time
was used for all experiments. The urea in a solution reacts with the urease on the Ag surface
to produce the OH− ions and to increase the pH value.

1 
 

 
Figure 4. (a) Real-time monitoring of the normalized ID (ID, norm) of the EGT exposed to 1 × PBS with
and without urea (pUrea 0.5) at a fixed VG of 0.3 V. ID, norm refers to the ratio of ID to ID0, where ID0

represents the initial ID measured at time = 0 s. (b) Representative ID−VG curve of the EGT with
varying concentrations, with a current compliance of 0.1 µA applied.

Figure 4b shows the change in the transfer curve as the device is exposed to different
pUrea values. The initial state denotes the ID−VG curve without urea. An increase in the
urea concentration or a decrease in the pUrea value caused the curve to shift toward a
positive VG direction.
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The current-related response (RI) is defined as follows [24,25]:

RI =
ID0 − ID1

ID1
, (1)

where ID0 and ID1 represent drain currents at a fixed VG0 before and after the reaction,
respectively. VG0 of 0.3 V was selected to calculate RI from the data presented in Figure 4b.

The voltage-related response (RV) is defined as follows [26]:

RV = VG1 − VG0, (2)

where VG0 and VG1 represent gate voltages at a fixed ID0 before and after the reaction,
respectively. The ID0 of 3 nA and VG of 0.3 V were chosen because the current was
significantly higher than the noise level (~1 pA), and it ensured the device was operated in
the subthreshold regime below the VTH of 0.65 V.

To achieve a high sensitivity, FET-based biosensors should be operated in the sub-
threshold regime [27,28], where ID and SS are defined as follows [29]:

ID = µn(Cox + Cit)
W
L

(
kT
q

)2(
1 − e−

qVD
kT

)
e

q(VG−VT )
nkT ; (3)

SS ≡ ∂VG
∂ log ID

=
kT
q

ln(10)
[

1 +
Cd + Cit

Cox

]
, (4)

where µn is the electron mobility; Cox is the oxide capacitance; Cit is the interface state
capacitance; W is the channel width; L is the channel length; k is the Boltzmann constant;
T is the temperature; q is the electron charge; and Cd is the depletion capacitance in the
channel.

RI at a fixed VD can also be expressed as follows:

RI =
ID0

ID1
− 1 =

e
ln(10)(VG−VTH0)

SS

e
ln(10)(VG−VTH1)

SS

− 1 = e
ln(10)∆VTH

SS − 1 = e
ln(10)RV

SS − 1, (5)

where VTH0 and VTH1 represent threshold voltages before and after the reactions, respec-
tively. Therefore, RI can exponentially increase as RV increases.

Figure 5 illustrates the dependence of RI and RV with respect to the SS value at a
pUrea of 0.5. The extracted RV was approximately 120 mV, displaying a consistent behavior
across different SS values. In contrast, RI was inversely proportional to SS values and
decreased as SS increased. The exponential calibration curve of RI and RV was obtained as
RI = 100 × (e ln(10) × 122/SS − 1) and RV = 61.2 × e −SS/36.0 + 112.

Figure 6 shows the relationship between the RI and pUrea for different SS values. The
EGTs with low SS values (75 < SS < 85) exhibit a saturated RI of 3.3 × 103 (%) at a pUrea of
1.0. Conversely, EGTs with higher SS values (95 < SS < 105) exhibit a lower saturated RI of
1.3 × 103 (%) at the same pUrea value. As determined by the slope of the logistic fitted line
of RI, the consistent urea sensitivity of 1.9 dec/pUrea is achieved across all SS values, which
is more than four times higher than the previous results (Table 1). The dynamic range,
defined as the difference between 10% and 90% of the maximum sensitivity, is observed
to be between pUrea 2.0 and pUrea 3.4 regardless of SS values, which fully encompasses
the clinical range of human urea. The limit of detection (LOD) of RI, determined using the
3–σ method from the logarithmic trend line [30,31], is as low as pUrea 3.22 for 75 < SS < 85,
pUrea 3.04 for 85 < SS < 95, and pUrea 2.99 for 95 < SS < 105.

Figure 7 shows the relationship between RV and pUrea over the whole range of SS
(75 < SS < 105). Each point represents the average of five different devices. A dynamic
pUrea range of 1.8–2.9 was obtained. The urea sensitivity extracted from the RV curve was
120 mV/pUrea, with a LOD of pUrea 3.14.
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Table 1. Performance comparison of FET-type urea biosensors.

FET Type Dynamic Range
(pUrea)

Urea Sensitivity (RI)
(dec/pUrea)

Urea Sensitivity (RV)
(mV/pUrea)

Power
Consumption Ref

AlGaN/GaN
ion-sensitive FET 1.6–3.4 (RI)

0.24
(Linear regime) – 6 W [10]

ZnO nanorod FET – 0.27
(Linear regime) – – [11]

EGFET
Membrane: ITO layer – – 62.4

(Linear regime) 500 nW [32]

EGFET
Membrane: SnO2:F layer 1–3.1 (RV) 0.42

(Linear regime)
109

(Linear regime) 25 mW [12]

Si-based EGT 2.0–3.4 (RI)
1.8–2.9 (RV)

1.9
(SubVTH regime)

120
(SubVTH regime) 0.3 nW This work

Power consumption is a crucial factor for portable biosensing applications. The
calculated power consumption with VD = 0.1 V and ID = 3 nA is significantly lower
than that of other FET-type biosensors due to the operation in the subthreshold regime.
Table 1 compares the sensing performance of the EGT with that of previously reported
FET-type sensors.
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3.3. Selectivity Test

Figure 8 shows the RI of various common interferents found in human blood includ-
ing glucose (100 mM, 1 × PBS), AA (100 µM, 1 × PBS) and KCl (10 mM, 1 × PBS), and
RI of urea (100 mM) with unmodified EGT (without urease) to demonstrate the lack of
nonspecific binding of the device. All devices except the unmodified EGT were functional-
ized using the same method described in Section 2.3. Each data point corresponds to the
average measurement obtained from five devices. The interference response for individual
ingredients was found to be minimal, with less than a 10% change compared to the signal
observed with urea at a concentration of 3.16 mM. A negligible RI of the unmodified sample
indicates that there is no nonspecific binding between the urea and a Ag surface. Although
the RI of the urea/mixture sample was reduced due to the opposite signal direction of the
interferents compared to urea, it was still detectable at a sufficient level. This suggests the
stability of the EGT sensing performance and the minimal impact of interfering ions on its
urea response.
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KCl (10 mM), urea (100 mM) without urease treatment, and the urea/mixture. The urea/mixture
sample includes urea (3.16 mM), glucose (100 mM), AA (100 µM), and KCl (10 mM).
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4. Conclusions

We investigated the label-free sensing response of urea using Si-based EGTs. The
device was fabricated using a top-down microfabrication technique and operated in the
subthreshold regime to enhance the sensitivity. The EGTs with a low SS could further
increase the current-related responses. The urea sensitivities determined from RI and RV
were as high as 1.9 dec/pUrea and 120 mV/pUrea, respectively. The calculated power
consumption was as low as 0.3 nW and three orders of magnitude lower compared to
previously reported results. In addition, the extracted dynamic range fully covered the
human clinical range of urea. These results suggest that Si-based EGTs have significant
potential for clinically diagnosing urea-related diseases.
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