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Abstract: A novel biomass-based magnetic nanoparticle (Fe3O4-P-CMC/PAMAM) was synthesized
by crosslinking carboxymethyl chitosan (CMC) and poly(amidoamine) (PAMAM), followed by
phosphorylation with the incorporation of magnetic ferric oxide nanoparticles. The characterization
results verified the successful functionalization and structural integrity of the adsorbents with a
surface area of ca. 43 m2/g. Batch adsorption experiments revealed that the adsorbent exhibited
a maximum adsorption capacity of 1513.47 mg·g−1 for U(VI) at pH 5.5 and 298.15 K, with Fe3O4-
P-CMC/G1.5-2 showing the highest affinity among the series. The adsorption kinetics adhered to
a pseudo-second-order model (R2 = 0.99, qe,exp = 463.81 mg·g−1, k2 = 2.15×10−2 g·mg−1·min−1),
indicating a chemically driven process. Thermodynamic analysis suggested that the adsorption was
endothermic and spontaneous (∆H◦ = 14.71 kJ·mol−1, ∆G◦ = −50.63 kJ·mol−1, 298. 15 K), with
increasing adsorption capacity at higher temperatures. The adsorbent demonstrated significant
selectivity for U(VI) in the presence of competing cations, with Fe3O4-P-CMC/G1.5-2 showing a high
selectivity coefficient. The performed desorption and reusability tests indicated that the adsorbent
could be effectively regenerated using 1M HCl, maintaining its adsorption capacity after five cycles.
XPS analysis highlighted the role of phosphonate and amino groups in the complexation with uranyl
ions, and validated the existence of bimodal U4f peaks at 380.1 eV and 390.1 eV belonging to U 4f7/2

and U 4f5/2. The results of this study underscore the promise of the developed adsorbent as an
effective and selective material for the treatment of uranium-contaminated wastewater.

Keywords: uranium adsorption; magnetic nanoparticles; chitosan; poly(amidoamine); adsorbent
regeneration; adsorption mechanism

1. Introduction

Although nuclear power presents itself as a sustainable alternative to fossil fuels,
offering reduced emission of greenhouse gases [1], the challenge of managing environmen-
tal legacy looms large due to the production of chemically and radioactively toxic waste
throughout the nuclear fuel cycle [2]. Uranium, a critical component of nuclear reactors [3],
is the primary source of radioactive waste, posing significant risks, as it can contribute
to background radiation and potentially induce genetic mutations in living organisms
if it is released into the environment [4]. Consequently, there is a growing dedication
to research aimed at mitigating the environmental impact associated with the treatment
of wastewater from the fuel cycle [5]. To date, a variety of physical [6] and chemical [7]
techniques have been suggested for the extraction of uranium from contaminated water
sources, with adsorption emerging as a preferred method due to its simplicity, effectiveness,
and broad application [7]. The search for superior materials that can effectively remove
uranium from wastewater is ongoing.

Various techniques have been employed for the adsorption of uranium, including ion
exchange [8], precipitation [9], and adsorption using natural and synthetic materials [10].
Among these, adsorption is favored for its simplicity, cost-effectiveness, and adaptability
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to different conditions. It is significant to highlight the exceptional benefits of magnetic
nanoparticles when it comes to enhancing efficiency and retrieving suspended solids in real-
world scenarios. Numerous studies have proposed that the use of magnetic nanoparticles
can eliminate the need for particle filtration processes [11]. A wide range of magnetic
nanoparticle adsorbents, from activated carbons to metal–organic frameworks (MOFs),
have been explored for their uranium removal capabilities [12,13]. However, the challenge
lies in enhancing both the adsorption capacity and selectivity of these materials, especially
in the presence of competing ions, often found in nuclear wastewater. Consequently, they
have garnered considerable interest among the scientific community due to their potential
for adsorbing radioactive isotopes and heavy-metal ions.

Natural biopolymers, such as cellulose [14], alginate [15], and chitosan [16], have
led to applications in the removal of radionuclides from wastewater due to the higher
affinity of amino, hydroxyl, and carboxyl groups towards uranyl ions. Chitosan, which
is derived from chitin, is emerging in the adsorption of uranyl ions, ascribed to the co-
ordination and electrostatic interaction sites [17]. However, the adsorption efficacy is
limited because the solubility of this biopolymer depends mainly on the pH value of the
solution. Carboxymethyl chitosan (CMC), an anionic derivative of chitosan, guarantees
better solubility regardless of pH values as a means to render an adsorbent with tunable
properties. Dendrimers that radiate in a nearly perfect hyperbranched topology structure
from a central core are highly monodisperse polymers and architecturally grown generation
by generation, resulting in outermost functional groups linked by interior branches [18].
Poly(amidoamine) (PAMAM) dendrimers, the first dendrimer commercialized and ex-
plored most extensively, have found applications in drug delivery [19], gene therapy [20],
and environmental pollution treatment [21]. PAMAM dendrimers stand out as a potential
candidate for the treatment of radioactive wastewater due to the diverse possibilities of
modification based on the NH3 or COOCH3 terminal characteristics and their excellent
hydrophilic molecular building blocks [22,23]. However, few studies have been conducted
regarding the utilization of PAMAM for the adsorption of uranyl ions.

In this study, magnetic nanoparticle composites with dual hydrophilic compounds,
CMC and phosphorylated PAMAM (Fe3O4-P-CMC/PAMAM), were prepared for the first
time. Diverse methods were employed to analyze the surface characteristics, structure,
and porosity of Fe3O4-P-CMC/PAMAM, including SEM, FT-IR, BET, Zeta potential, and
XRD. The effects of the pH value of the solution, the solution temperature, and the coex-
isting competing ions were thoroughly examined. Systematical studies investigated the
adsorption efficacy of the as-prepared adsorbent, evaluating its capacity, selectivity, and
reusability. Additionally, the bonding dynamics between the phosphonate groups and
uranyl ions were inferred by examinations conducted by XPS.

2. Experimental
2.1. Reagents

Carboxymethyl chitosan (CMC) was purchased from Shanghai Macklin Biochem-
ical Co., Ltd. (Shanghai, China), while ethylenediamine, methyl acrylate, FeCl3·6H2O,
FeCl2·4H2O, and other reagents were of analytical grade and were obtained from Adamas-
beta. For the preparation of the uranium (VI) stock solution, 1.1792 g of U3O8 was placed
in a 100 mL beaker, followed by the addition of 10 mL of hydrochloric acid (12 mol·L−1,
ρ = 1.18 g·mL−1) and 2 mL of 30% hydrogen peroxide. The mixture was then heated until
nearly dry, and another 10 mL of hydrochloric acid was added. Subsequently, the solution
was diluted with distilled water to a total volume of 1 L, resulting in a uranium (VI) stock
solution with a concentration of 1 mg·L−1.

2.2. Preparation of PAMAM Dendrimer (G1.5)

Target PAMAM dendrimers were obtained by a sequential reaction of Michael addition
and amidation. In an ice water bath, 12.5 mL of methanol solution containing 21 mL of
methyl acrylate was added dropwise to another 12.5 mL of methanol mixture containing
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3.75 mL of ethylenediamine for 0.5 h. The mixture was stirred for 72 h at room temperature.
After the reaction, all solvents were removed using a rotary evaporator to give G0.5. In an
ice water bath, 10 g of G0.5 was dissolved in 12.5 mL of methanol, and another 12.5 mL
of methanol containing 6.678 mL of ethylenediamine was added and stirred for 72 h at
room temperature to yield G1.0. The next two synthesis steps were performed in the same
order and under the same conditions as the previous steps, until highly productive target
dendrimers were obtained labeled G0.5 and G1.5, respectively (Scheme 1).
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G0.5: 1H NMR (CDCl3): δ = 3.67 ppm (s, 12H, -COOCH3), 2.79–2.75 ppm (t, 8H,
-NCH2CH2CO), 2.50 ppm (s, 4H, -NCH2CH2N), 2.46–2.42 ppm (t, 8H, -CH2COO).

G1.5: 1H NMR (CDCl3): δ = 3.67 ppm (s, 24H, -COOCH3), 3.32–3.27 ppm (m, 8H,
-CONHCH2), 2.82–2.73 ppm (t, 16H, -NCH2CH2CO), 2.56–2.53 ppm (t, 16H, -CH2N),
2.50 ppm (s, 4H, -NCH2CH2N), 2.47–2.42 ppm (t, 16H, -CH2COO), 2.36–2.32 ppm (m,
8H, CH2CONH).

2.3. Preparation of CMC/G1.5 Nanoparticles

The G1.5 dendrimer at a dosage of 50, 100, and 150 mg was separately dissolved in
40 mL of methanol solution, and 100 mg of CMC was dissolved in 10 mL of water. After
the G1.5 dendrimer solutions were mixed with the CMC solutions, the resultant solutions
were individually diluted with 30 mL of methanol and stirred at room temperature for 72 h.
After adding an appropriate volume of saturated sodium carbonate solution and acetone,
white CMC/G1.5-1, CMC/G1.5-2, and CMC/G1.5-3 nanoparticles were precipitated, then
aspirated and washed with deionized water and ethanol, respectively.

2.4. Preparation of P-CMC/G1.5 Nanoparticles

The CMC/G1.5 series nanoparticles with a mass of 0.4 g and 30 mL of DMF with
4.0 g of urea were mixed and heated at 100 ◦C for 1 h, then 1.8 mL of H3PO4 was added
to the above solution successively, which was heated to 135 ◦C and refluxed for another
6 hrs. Finally, the resulting products (P-CMC/G1.5) were washed with water and ethanol,
respectively.

2.5. Preparation of Magnetic Fe3O4 Nanoparticles

A solution of 0.3 mol/L FeCl3 and FeCl2 was prepared in a 2:1 molar ratio, and the pH
of the mixture was adjusted to 10 with ammonia, at which point the solution was stained
from orange red to black. The mixture was placed at 80 ◦C and the reaction was executed
for 0.5 h. The mixture was subsequentially washed several times with deionized water and
ethanol and dried in an oven at 70 ◦C for 24 h.

2.6. Preparation of Fe3O4-P-CMC/G1.5 Nanoparticles

The P-CMC/G1.5 and CMC/G1.5 nanoparticles with a mass of 0.4 g were individ-
ually dispersed in 20 mL of deionized water and sonicated for 20 min, then 5 mL of
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1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (25 mg/mL) was added
to the dispersion of magnetic Fe3O4 nanoparticles, and the mixture was resonicated for
20 min. P-CMC/G1.5 and CMC/G1.5 nanoparticles were added to the magnetic particle
dispersion and further sonicated for 1 h. The product was washed with deionized water
and ethanol, respectively. The washed materials were then freeze-dried to obtain the mag-
netic nanomaterials, Fe3O4-P-CMC/G1.5 and Fe3O4-CMC/G1.5, the latter of which was
selected as the control specimen (Scheme 2).
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2.7. Effect of Different Factors on U(VI) Adsorption

The adsorption behaviors of Fe3O4-CMC/G1.5 and Fe3O4-P-CMC/G1.5 towards U(VI)
were studied through batch experiments. Typically, 5.0 mg of the adsorbent was added to
Erlenmeyer flasks containing U(VI) solutions with designed concentrations and pH values
(adjusted using 0.1 M or 0.01 M HNO3 and NaOH solutions). After shaking at a specific
temperature (T, K) for a certain duration (t, min), the solutions were centrifuged, and then
the concentration of U(VI) in the supernatant was analyzed using the Arsenazo III method
at 650 nm with a visible spectrophotometer [24]. The adsorption capacity (qe, mg·g−1) and
distribution coefficient (Kd, mL·g−1) were calculated using Equations (1) and (2).

qe =
(C0 − Ce)× V

m
(1)

Kd =
(C0 − Ce)× V

Ce × m
(2)

where C0 and Ce represent the initial and equilibrium concentrations of the metal ion
(mg·L−1), respectively. V stands for the volume of the solution (L), and m denotes the
amount of the sorbent (g).

All batch adsorption tests were performed in triplicate, and the variability in the
adsorption capacity (qe) was determined by computing the average and standard deviation



Nanomaterials 2024, 14, 810 5 of 21

of the collected data points. Error bars representing this uncertainty were included in the
graphical representations.

The uranium selectivity (SU) characterizes the adsorption capacity and degree of
selectivity of the sorbent towards uranium [25], which can be calculated using Equation (3).

SU =
qe(U)

qe(total)
× 100% (3)

where qe(U) represents the adsorption capacity of uranium (mg·g−1), and qe(total) stands
for the total amount of adsorption for all multi-ions by Fe3O4-CMC/G1.5 and Fe3O4-P-
CMC/G1.5 (mg·g−1).

Furthermore, the selectivity coefficient of uranyl ions relative to competing ions
(SU(VI)/M(x)) can be studied using Equation (4):

SU(VI)/M(x) =
KU(VI)

d

KM(x)
d

(4)

where KU(VI)
d and KM(x)

d represent the distribution coefficients of uranyl ion and other
ions, respectively.

The relative selectivity coefficient (Sr) is calculated based on Equation (5):

Sr =
SFe3O4−P−CMC−G1.5−2

SFe3O4−CMC−G1.5
(5)

2.8. Adsorption Kinetic

The linear forms of the pseudo-first-order kinetic model, pseudo-second-order kinetic
model, and intraparticle diffusion model [26] are given by Equations (6)–(8), respectively.

ln(qe − qt) = ln qe − k1t (6)

t
qt

=
1

k2q2
e
+

t
qe

(7)

qt = kintt0.5 + C (8)

where t (min), qt, and qe (mg·g−1) refer to the adsorption time, U(VI) adsorption capacity
at t, and adsorption capacity at equilibrium, respectively; k1 (min−1), k2 (g·mg−1·min−1),
and kint (mg·g−1·min−0.5) are the rate constants of pseudo-first-order, pseudo-second-order,
and intraparticle diffusion kinetics models, respectively; and C (mg·g−1) is the constant
proportional to the extent of the boundary layer thickness.

2.9. Adsorption Isotherms

At 298.15 K, the relationship between the equilibrium concentration of U(VI) and its
adsorption capacity is often explored using three adsorption isotherm models: Langmuir,
Freundlich, and Dubinin–Radushkevich (D-R). These models provide insights into the
interaction mechanisms of composite materials in U(VI) solutions [27–29].

The Langmuir isotherm assumes monolayer adsorption on a uniform surface with-
out interactions. The Freundlich isotherm proposes multilayer adsorption with unevenly
distributed active sites. The D-R isotherm introduces the theory of pore adsorption. Fur-
thermore, these three models are represented by Equations (9)–(11).

qe =
qmKLCe

1 + KLCe
(9)

qe = KF × C1/n
e (10)



Nanomaterials 2024, 14, 810 6 of 21

lnqe = lnqDR − βε2 (11)

where qe and qDR represent the amount of adsorption at equilibrium (mg·g−1) and the
theoretical adsorption capacity (mol·g−1), respectively. qm stands for the maximum or
saturated amount of adsorption (mg·g−1), while Ce denotes the equilibrium concentra-
tion (mg·L−1). KL is an equilibrium constant related to the binding strength (L·mg−1).
n and KF are Freundlich constants, indicating adsorption capacity and adsorption inten-
sity, respectively. β is a constant associated with the adsorption energy (mol2·kJ−2), and
ε represents the Polanyi potential, calculated as ε = RTln(1 + 1/Ce). R is the gas constant
(kJ·mol−1 K−1), and T represents the absolute temperature (K).

The mean free energy of adsorption refers to the change in free energy when one mole
of ions is transferred from infinity in the solution to the surface of the adsorbent [30], and
its formula is represented in Equation (12).

EDR =
1

(−2β)0.5 (12)

The magnitude of EDR is related to the reaction mechanism. If EDR falls within the
range of 8–16 kJ·mol−1, the adsorption process is controlled by chemical adsorption [31].
In the case of EDR being less than 8.0 kJ·mol−1, physical forces may influence the adsorp-
tion mechanism.

The dimensionless constant separation factor RL is used to predict whether an adsorp-
tion system is favorable or unfavorable [32], and it can express the essential characteristics of
the Langmuir isotherm. The formula for the separation factor RL is given by Equation (13).

RL =
1

1 + KLC0
(13)

where C0 represents the initial concentration of U(VI) (mg·L−1), and KL stands for the
Langmuir adsorption equilibrium constant (L·mg−1).

2.10. Thermodynamic Studies

The adsorption thermodynamics parameters are analyzed by Equations (14) and (15) [9].

lnKd =
∆S

◦

R
− ∆H

◦

RT
(14)

∆G
◦
= ∆H

◦ − T∆S
◦

(15)

where Kd is the distribution coefficient (mL·g−1) of U(VI), T is the absolute temperature
(K), and R is the ideal gas constant (8.314 J·mol−1·K−1).

2.11. Desorption and Regeneration Experiments

To assess the reusability of Fe3O4-CMC/G1.5 and Fe3O4-P-CMC/G1.5(1–3), consecu-
tive adsorption–desorption cycles were conducted in Erlenmeyer flasks using 0.005 g of
Fe3O4-P-CMC/G1.5-2 and 10 mg·L−1 of U(VI) solution. The suspension was continuously
stirred for 120 mins at a pH of 5.5 and a temperature of 298.15 K. After adsorption, the
U(VI)-loaded Fe3O4-P-CMC/G1.5-2 was desorbed in 50 mL of HCl solutions, with con-
centrations ranging from 0.1 to 1.5 mol·L−1, while being stirred at 180 rpm for 90 mins
at 298.15 K. Subsequently, the suspension was centrifuged, and the U(VI)-loaded Fe3O4-
P-CMC/G1.5-2 solid was washed with deionized water until neutrality was achieved. It
was then freeze-dried in a freeze dryer at 207 K and reused for subsequent tests. The
adsorption–desorption cycles were repeated five times, and the concentration of U(VI) in
the aqueous phase was determined as previously described.
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3. Results and Discussion
3.1. Characterization of Fe3O4-P-CMC/PAMAM

Figure S1 shows the 1H NMR spectra of G0.5 and G1.5 (see Supporting Information).
The proton resonances of -COOCH3 at 3.67 ppm for both molecules belong to the ter-
minal groups of the dendrimers. The presence of methylene peaks of -NCH2CH2CO at
2.73–2.79 ppm displayed a successful connection between ethylenediamine and methyl
acrylate through the Michael addition reaction. The as-prepared G0.5 subsequently formed
a NH3-terminal intermediate G1.0 by amidation, and the Michael addition reaction was
repeated to give G1.5, as evidenced by the presence of -CONHCH2 at 3.30–3.27 ppm and
-CH2CONH at 2.36–2.32 ppm.

Figure 1 shows the FT-IR spectra of G1.5, CMC/G1.5 and Fe3O4-P-CMC/G1.5-2
nanoparticles. In pure PAMAM, a peak at 3305 cm−1 is ascribed to the N-H stretching
vibration of amide. The presence of two peaks at 1733 and 1648 cm−1 is ascribed to the C=O
stretching vibration of the terminal ester and amide (-COOCH3, -CONH-), respectively.
A peak at 1539 cm−1 is assigned to the –NH bending vibration of the amide (-CONH-).
Moreover, a peak at 1439 cm−1 is attributed to the C-N stretching vibration of the tertiary
amine (N-(CH2)3). A peak at 1195 cm−1 is assigned to the C-O stretching vibration of the
ester (-COO-). FT-IR spectra analysis for PAMAM indicated that the amino and ester groups
were successfully converted into tertiary amines by the Michael addition and amide groups,
respectively. The peak at 1735 cm−1 of ester disappeared in CMC/G1.5 and Fe3O4-P-
CMC/G1.5-2, implying that G1.5 with terminal ester groups was successfully grafted onto
CMC chains to form a three-dimensional network by the divergent strategy. The presence
of two peaks at 1053 and 586 cm−1 is attributed to P-O and Fe-O, respectively, suggesting
that phosphorylation and magnetic function were achieved in the as-prepared adsorbents.
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The adsorption–desorption isotherms of the as-prepared adsorbents under the N2
atmosphere are shown in Figure 2a. These adsorbents belong to typical IV isotherm curves,
indicating that the adsorbents have a similar porosity and morphology [33,34]. The surface
areas of the Fe3O4-P-CMC/G1.5 series are 44.27, 43.31, 42.98 m2/g, respectively, which
are higher than the 41.74 m2/g of Fe3O4-CMC/G1.5 attributed to the high surface area
of PAMAM [35]. The spherical framework of PAMAM forms a self-supporting structure
within CMC molecules. The surface areas of Fe3O4-P-CMC/PAMAM series adsorbents
did not decrease significantly with increasing concentration of PAMAM, suggesting that
the introduction of PAMAM species only leads to a trivial steric hindrance. As shown in
Figure 2b, the pore size of the Fe3O4-P-CMC/PAMAM series ranges from 5.60 to 9.60 nm,
in which Fe3O4-P-CMC/G1.5-2 has the minimum pore size of 5.60 nm. As a result, the
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as-prepared Fe3O4-P-CMC/PAMAM adsorbents are nanoparticles with mesopores that
probably exist on the external and internal surfaces of the materials.
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As shown in Figure 3, in terms of the XRD patterns of Fe3O4 and Fe3O4-P-CMC/G1.5-2,
six characteristic diffraction peaks (311), (400), (422), (511), (440), and (533) can be observed
for both, indicating that Fe3O4 was successfully inserted into CMC/G1.5 networks with
consolidation by the intermolecular force [36]. The XRD pattern of the CMC exhibits
a strong diffraction peak at 2θ = 20◦, which completely disappears in the as-prepared
Fe3O4-P-CMC/G1.5-2. As expected, PAMAM was well dispersed into the CMC molecules,
leading to a homogeneous phase in which the crystalline orientation in the CMC was
disordered by the penetration of PAMAM.
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The morphologies of Fe3O4-P-CMC/G1.5-2 nanoparticles before and after U(VI) ad-
sorption were determined by SEM. As shown in Figure 4a,b, there are a myriad of nanoscale
regular round flakes agglomerating and packing together with an average particle size
ranging from 20 to 50 nm. The morphologies result in abundant exposed functional groups
coupling with appreciable surface areas for Fe3O4-P-CMC/PAMAM series adsorbents,
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which ensure a high adsorption capacity for U(VI). Figure 4c depicts the EDS spectrum
of Fe3O4-P-CMC/G1.5-2 before U(VI) adsorption. Strong peak signals of Fe, O, C, and
P can be observed, indicating that Fe3O4 and -PO3 were successfully incorporated into
Fe3O4-P-CMC/G1.5-2. Based on the EDS spectrum, the weight percentages of C, O, P,
N, and Fe are 15.91%, 31.89%, 14.32%, 2.77%, and 35.11%, respectively. As shown in
Figure 4d,e, the morphological structures of Fe3O4-P-CMC/G1.5-2-U are similar to those
of the pristine before the adsorption of U(VI), whereas a relatively smaller particle size is
observed. As shown in Figure 4f, from the EDS spectrum of Fe3O4-P-CMC/G1.5-2-U, the
weight percentages of C, O, P, N, Fe, and U are 10.77%, 16.11%, 6.33%, 2.84%, 1.13%, and
62.82%, respectively. Fe3O4-P-CMC/G1.5-2-U exhibits the highest amount of U, but that of
Fe decreased dramatically, suggesting that the functional groups of Fe3O4-P-CMC/G1.5-2
prefer conjugation with U(VI) to Fe3O4.
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3.2. Effect of pH Values

The pH value of the solution significantly affected the U(VI) adsorption efficacy of the
adsorbent. The species of uranyl ions in the solution and surface features of the adsorbent
simultaneously determined the adsorption behavior of uranyl ions [37]. Figure 5 shows
the surface charges of four adsorbents at pH 2–8. As the pH increases, the Zeta poten-
tial of Fe3O4-P-CMC/G1.5-1, Fe3O4-P-CMC/G1.5-2, Fe3O4-P-CMC/G1.5-3, and Fe3O4-
CMC/G1.5 gradually decreases, and the pH zero-point charge (pHZPC) value is 5.5. Under
the condition of pH < pHZPC, the adsorbent surface carries a positive charge, and U(VI)
exists mainly in solution in the form of UO2+

2 . The presence of electrostatic repulsion and
competitive H+ in the aqueous solutions is not conducive to the enrichment of UO2+

2 on
the adsorbent surface with a positive charge, resulting in a decrease in adsorption capacity.
When pH > pHZPC, as a result of the deprotonation effect on the surface of the adsorbent, it
carries a certain amount of negative charge.

The distribution of U(VI) species in aqueous solution can be obtained from Visual
MINEQL 3.0 based on the Nuclear Energy Agency (NEA) database [38]. As shown in
Figure 6, the components containing uranium in the solution exist mainly in the forms
of UO2+

2 , (UO2)2(OH)2+
2 , (UO2)4(OH)7)+ and (UO2)3(OH)5)+ [39]. Electrostatic attraction

will promote the fixation of positively charged uranium (VI) on the negatively charged
adsorbent surface [40].
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To study the influence of pH values on the adsorption performance of these materials,
adsorption experiments were carried out in the range of pH 3.0–6.5 considering the fact that
uranium ions usually precipitate at a higher pH [41,42]. Figure 7 shows the influence of pH
values on the adsorption performance of Fe3O4-P-CMC/PAMAM. The amount of adsorbed
uranyl ions in Fe3O4-P-CMC/G1.5-1, Fe3O4-P-CMC/G1.5-2, Fe3O4-P-CMC/G1.5-3, and
Fe3O4-CMC/G1.5 increased consistently with increasing pH to 5.5 and was followed by
a dramatic decrease. It was noted that the degree of protonation of functional groups on
the adsorbent decreased, leading to a gradual enhancement of complexation and electro-
static ability and a significant increase in adsorption capacity. At pH 5.5, the as-prepared
adsorbents exhibited a respective maximum adsorption capacity, in which that of Fe3O4-P-
CMC/G1.5-1, Fe3O4-P-CMC/G1.5-2, Fe3O4-P-CMC/G1.5-3, and Fe3O4-CMC/G1.5 was
401.7 mg·g−1, 480.2 mg·g−1, 443.7 mg·g−1 and 277.2 mg·g−1, respectively. As the degree
of grafting increases, the adsorption capacity of the adsorbent gradually increases and
then decreases. Additionally, Fe3O4-P-CMC/G1.5-2 presents a maximum adsorption per-



Nanomaterials 2024, 14, 810 11 of 21

formance, suggesting that the optimal degree of PAMAM grafting in this study is G1.5-2.
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3.3. Adsorption Kinetics

Figure 8 shows the influence of contact time on the adsorption of U(VI) by Fe3O4-P-
CMC/PAMAM. The adsorption capacity of Fe3O4-P-CMC/PAMAM increased sharply
in 30 min, in which over 90% of the maximum adsorption capacity took place in this
region, then slowly increased until a saturated adsorption state was reached in 2 h. It
is possible that Fe3O4-P-CMC/PAMAM adsorbents are highly water permeable and the
construction of mesopore three-dimensional scaffolds based on PAMAM dendrimers is well
defined. In addition, three kinetic models, i.e., the pseudo-first-order model, pseudo-second-
order model, and intraparticle diffusion model, were used to estimate the adsorption
kinetic data to explain its adsorption mechanism. The three models are expressed using
Equations (6)–(8) [43–45]. The fitting results are shown in Tables S1 and S2.

The results showed that the correlation coefficient R2 (0.96, 0.95, 0.95, and 0.93) of
the pseudo-first-order model of Fe3O4-P-CMC/PAMAM was significantly lower than that
of the pseudo-second-order model (0.99, 0.99, 0.99, and 0.99). In addition, the theoretical
equilibrium adsorption capacity (qe,cal = 284.89 mg·g−1, 405.40 mg·g−1, 464.00 mg·g−1,
421.27 mg·g−1) and the experimental equilibrium adsorption capacity (qe,exp = 281.82 mg·g−1,
404.30 mg·g−1, 463.81 mg·g−1, 420.32 mg·g−1) of Fe3O4-P-CMC/G1.5 are closer, suggesting
that the adsorption of U(VI) by Fe3O4-P-CMC/PAMAM was described more accurately by
the pseudo-second-order kinetic model. More specifically, the U(VI) adsorption process on
Fe3O4-P-CMC/PAMAM was controlled by a chemical process, suggesting that multiple
mechanisms were probably involved in the adsorption of U(VI) on Fe3O4-P-CMC/PAMAM
ascribed to oxygen-rich functional groups, such as -PO3H2 [46].

The intraparticle diffusion model of the Fe3O4-P-CMC/PAMAM adsorption of U(VI)
was used to analyze the controlling steps of the adsorption rate. As shown in Figure 9,
the relation of the fitting curve between qt and kint reveals that the adsorption process of
U(VI) by Fe3O4-P-CMC/PAMAM can be depicted in three distinct regions. The diffusion
rate of each follows the order of kint,1 > kint,2 > kint,3 which represents the rapid adsorption
stage, slow adsorption stage, and equilibrium stage, respectively. In the initial rapid-
uptake region, the reactive sites exposed on the exterior surface of Fe3O4-P-CMC/PAMAM
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captured U(VI) at a fast rate. After uranyl ions subsequently penetrated deeply into the
pores, U(VI) was then adsorbed at a relatively slow rate by the reactive sites exposed on
the interior surface. The limiting factor of rate depression is attributed to intraparticle
diffusion in this stage [47]. Finally, the active sites of Fe3O4-P-CMC/PAMAM became fully
occupied, leading to a near-zero diffusion rate constant, and signifying that the adsorption
had attained equilibrium. As a result, the U(VI) adsorption by Fe3O4-P-CMC/PAMAM is
predominantly attributed to robust surface interactions or chemisorptive bonding.
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3.4. Adsorption Isotherms

Figure 10a,b display the U(VI) adsorption isotherms of Fe3O4-P-CMC/PAMAM. At
pH 5.5 and 298.15 K, the ability to adsorb uranyl ions heightened as the initial concentration
of U(VI) in the solution was raised from 10 mg·L−1 to 200 mg·L−1. The adsorption behavior
was investigated by the Langmuir model, Friedrich model, and Dubinin–Radushkevich (D-
R) model. The three models are expressed using Equations (9)–(11), respectively. Dynamic
simulations were performed on the basis of experimental data for corresponding isotherm
models to obtain the slopes and intercepts from curve fittings. The values of the calculated
parameters are tabulated in Tables S3 and S4 [48].
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Compared to the Friedrich model, the absorption of U(VI) in Fe3O4-P-CMC/G1.5
series is better delineated by the Langmuir isotherm model, which has higher correlation
coefficients (R2 > 0.99), indicating a monolayer adsorption process [49]. Moreover, the
maximum Langmuir adsorption capacity of Fe3O4-P-CMC/G1.5 series for U(VI) was
1238.49 mg·g−1 (G1.5-1), 1513.47 mg·g−1 (G1.5-2), and 1344.14 mg·g−1 (G1.5-3), whereas
that of Fe3O4-CMC/G1.5 was 681.31 mg·g−1. The results indicate that Fe3O4-P-CMC/G1.5-
2 has the highest affinity for U(VI). On the other hand, the adsorption isotherms of U(VI)
onto Fe3O4-P-CMC/G1.5 series were simulated by the D-R model where the correlation
coefficients (R2) were found to be greater than 0.99. EDR values ranging from 12.34 to
15.62 kJ·mol−1 were between 8 and 16 kJ·mol−1, suggesting chemisorption [50].

3.5. Adsorption Thermodynamic

The influence of temperature on U(VI) adsorption by Fe3O4-P-CMC/PAMAM was
studied in the temperature range from 288.15 to 328.15 K (Figure 11a). As temperature
increases, the adsorption capacity of Fe3O4-P-CMC/PAMAM for U(VI) steadily increases,
indicating that the adsorption process is a critically temperature-dependent behavior and
ostensibly endothermic. It is indicative of the fact that elevated temperatures of the aqueous
solution induce collisions between the surface of the adsorbents and uranyl ions, increase
kinetic energy, and therefore improve the diffuse coefficient.

Gaining deeper insights into the thermodynamic properties of the Fe3O4-P-CMC/
PAMAM adsorption process is crucial. The thermodynamic parameters of the adsorption
process, such as standard entropy (∆S◦), enthalpy (∆H◦), and Gibbs free energy (∆G◦) were
calculated from the intercept and slope by fitting linear lnKd vs. 1/T (Figure 11b). By using
Equations (14) and (15), the values of ∆G◦ are obtained as listed in Table S6. As shown
in Table S6, the positive values of ∆H◦ indicate that the adsorption process of Fe3O4-P-
CMC/PAMAM towards U(VI) is endothermic [51,52]. The positive values of ∆S◦ show
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that the occurrence of U(VI) uptake within the solid solution interface increases the degree
of freedom of the ions and the disorder of the system, leading to an increase in entropy.
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In addition, the negative values of ∆G◦ indicate that the adsorption process of Fe3O4-P-
CMC/PAMAM for U(VI) is spontaneous. As can be noted, while the increase in temperature
from 288.15 K to 328.15 K is accompanied by a concomitant decrease in ∆G◦ ranging from
ca. −21~−23 kJ·mol−1 to ca. −26~−29 kJ·mol−1, the adsorption process takes place more
easily at higher temperatures.

3.6. Effect of Competitive Ions

The efficient and selective adsorption of uranium from nuclear wastewater has always
been a major challenge in practical applications. The U(VI)-selective adsorption of Fe3O4-P-
CMC/G1.5-2 was investigated with eight coexisting cations, including Zn2+, Ni2+, Co2+,
Sr2+, Ce3+, Gd3+, La3+, and Sm3+. As shown in Figure 12, qe, total and qe,U progressively
rise as the pH value elevates from 3.0 to 5.5, and the adsorption capacities for uranium
reach maximum values of 650 and 340 mg·g−1 at pH 5.5, respectively. The approximately
55.6% adsorption capability of Fe3O4-P-CMC/G1.5-2 for U(VI) indicates that it exhibits a
relatively higher selectivity for U(VI) among multi-ion solutions.
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In addition, Figure 13 shows a comparison between Fe3O4-CMC/G1.5 and Fe3O4-P-
CMC/G1.5-2 in terms of the selective performance of a multi-ion solution at pH 5.5. Com-
pared to Fe3O4-CMC/G1.5, the selectivity coefficients (SU(VI)/M(x)) of Fe3O4-P-CMC/G1.5-2
are dramatically higher among competing cations, especially in terms of Ce (III), Gd (III),
La (III), and Sm (III) (Table S7). As a result, Fe3O4-P-CMC/G1.5-2 is considered to be a
more viable contender for the selective adsorption of U(VI) within a multi-ion solution.
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3.7. Desorption and Reusability

Taking into account economic and ecological factors for an eco-friendly adsorbent,
the investigation of regeneration performance is of great significance. After adsorption,
desorption eluent tests of Fe3O4-P-CMC/G1.5-2 were first carried out with 1 M HCl, 1M
H2SO4, 1 M HNO3, 1 M Na2CO3, and 0.1 M EDTA-Na2, respectively. The desorption
efficacy of HCl was found in a range from 92% to 96%, which was the highest among the
five solutions, suggesting that HCl is the best choice for the desorption of U(VI) from Fe3O4-
P-CMC/G1.5-2 (Figure S2 in Supporting Information). Figure 14a shows the desorption
efficiency under a concentration of HCl ranging from 0.1 M to 1.5 M. The desorption rate of
Fe3O4-P-CMC/G1.5-2 is positively related to the HCl concentration, indicating that acid
treatment is applicable to the desorption of U(VI) for Fe3O4-P-CMC/G1.5-2. The results
indicate that a 1 M HCl solution with the highest desorption efficiency should be selected
for U(VI) desorption [53,54].
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As shown in Figure 14b, more than 90% of U(VI) could be easily desorbed from
Fe3O4-P-CMC/G1.5-2, which retained a high adsorption capability after undergoing five
adsorption–desorption cycles. The chemical tenability of Fe3O4-P-CMC/PAMAM in des-
orption circumstances virtually guarantees that the high-reusability performance is reliable
and available.

3.8. Possible Adsorption Mechanism

The mechanism of adsorption of U(VI) on Fe3O4-P-CMC/G1.5-2 was elucidated by
XPS. As shown in Figure 15a, the prominent appearance of U 4f accounts for the presence
of U(VI) on Fe3O4-P-CMC/G1.5-2. Figure 15b depicts the high-resolution spectrum of U 4f,
where bimodal peaks at 380.1 eV and 390.1 eV belong to U 4f7/2 and U 4f5/2, respectively,
suggesting two reaction sites within Fe3O4-P-CMC/G1.5-2 [55]. As depicted in Figure 15c,
the high-resolution N 1s spectrum of Fe3O4-P-CMC/G1.5-2 was divided into two peaks
with binding energies of 399.7 eV and 397.9 eV, which correspond to NH2 and NH-C=O,
respectively. On the other hand, the high-resolution N 1s spectrum of Fe3O4-P-CMC/G1.5-
2-U was separated into two peaks at 400.3 eV and 398.4 eV, both of which shifted to a
region of higher bonding energy, suggesting that nitrogen species were involved in com-
plexation with uranyl ions. The high-resolution O 1s spectra of Fe3O4-P-CMC/G1.5-2
resolved into three peaks ascribed to C-O-P at 533.9 eV, P-OH at 532.3 eV, and P=O at
531.2 eV (Figure 15d). Both the binding energy values and areas of these O donor functional
groups for Fe3O4-P-CMC/G1.5-2-U reveal perceived variations after U(VI) uptake. The
high-resolution P 2p spectra of these adsorbents were divided into two peaks (Figure 15e).
The P 2p peaks of Fe3O4-P-CMC/G1.5 consisted of P 2p1/2 at 131.9 eV and P 2p3/2 at
130.9 eV that individually shifted to 132.8 eV and 132.0 eV with changes in relative pro-
portions. Thus, this difference implies that phosphate groups are strongly involved in
the adsorption of U(VI) [56,57]. Figure 15f displays the high-resolution spectrum of Fe 2p
for Fe3O4-P-CMC/G1.5-2, in which bimodal peaks with binding energies at 710.8 eV and
724.2 eV belong to Fe 2p3/2 and Fe 2p1/2, respectively. Furthermore, the Fe 2p3/2 peak could
be split into 710.6 eV and 713.4 eV, which corresponded to the bonding energies of Fe (III)
and Fe (II), respectively. After adsorption, the bonding energies of Fe 2p1/2 and Fe 2p3/2
did not change dramatically, indicating that Fe3O4 did not participate in the conjugation
with uranium species during the adsorption process. Furthermore, the high-resolution C
1s spectra display three peaks, 286.3 eV for the O-C-O and N-C=O bonds, 284.5 eV for the
C-O-P and C-OH bonds, and 282.8 eV for the -CH2 and -C-NH2 bonds (Figure S3). Different
degrees of the positions and intensities of these peaks vary dramatically after the adsorption
of U(VI). In light of the preceding analysis, the phosphonate and amino sites mounted on
the surface of Fe3O4-P-CMC/G1.5 contributed significantly to the complexation with U(VI).
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XPS spectrum of Fe3O4-P-CMC/G1.5-2-U; (c) N 1s XPS spectra of Fe3O4-P-CMC/G1.5-2 and Fe3O4-
P-CMC/G1.5-2-U; (d) O 1s XPS spectra of Fe3O4-P-CMC/G1.5-2 and Fe3O4-P-CMC/G1.5-2-U;
(e) P 2p XPS spectra of Fe3O4-P-CMC/G1.5-2 and Fe3O4-P-CMC/G1.5-2-U; (f) Fe 2p XPS spectra of
Fe3O4-P-CMC/G1.5-2 and Fe3O4-P-CMC/G1.5-2-U. (Different colors of these splitted peaks represent
distinct bonding types.).

4. Conclusions

In this work, a series of magnetic nanoparticle adsorbents were successfully pre-
pared by crosslinking the PAMAM dendrimer and carboxymethyl chitosan, followed by
phosphorylating the hydroxyl and amido groups by loading them with magnetic ferric
oxide nanoparticles. The adsorbent demonstrated excellent performance in adsorbing
U(VI), with a maximum adsorption capacity of 1513.47 mg·g−1 for Fe3O4-P-CMC/G1.5-2
at pH 5.5 and 298.15 K, indicating the excellent hydrophilic characteristics and spherical
framework of the phosphorylated PAMAM dendrimer, which exhibited a high affinity
and selectivity towards U(VI). The adsorption isotherm data closely aligned with the
Langmuir model, suggesting that U(VI) uptake by Fe3O4-P-CMC/PAMAM occurred
as a monolayer adsorption process. Similarly, the kinetic results were accurately rep-
resented by the pseudo-second-order kinetic model (R2 = 0.99, qe,exp = 463.81 mg·g−1,
k2 = 2.15 × 10−2 g·mg−1·min−1), further supporting the notion of a chemical adsorption
mechanism for U(VI) adsorption on Fe3O4-P-CMC/PAMAM. The thermodynamic evalua-
tion revealed that the adsorption process occurred spontaneously and was endothermic
(∆H◦ = 14.71 kJ·mol−1, ∆G◦ = −50.63 kJ·mol−1, 298. 15 K). The Fe3O4-P-CMC/PAMAM
adsorbent demonstrated superior reusability, maintaining consistent adsorption efficiency
and structural integrity even after five cycles. XPS analysis underscored the significance
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of phosphonate and amino groups in their interaction with uranyl ions, and confirmed
the presence of dual peaks in the U 4f spectral region, with bonding energies at 380.1 eV
and 390.1 eV corresponding to U 4f7/2 and U 4f5/2, respectively. This high level of perfor-
mance, coupled with its stability and effective regeneration capabilities, suggests potential
cost savings for Fe3O4-P-CMC/PAMAM in the context of wastewater remediation. It is
plausible to regard Fe3O4-P-CMC/PAMAM as a potential option pertaining to the removal
and recovery of U(VI) from radioactive waste streams. The effects of higher-generation
PAMAM dendrimers on the adsorption performance of Fe3O4-P-CMC/PAMAM will be
of great interest. Due to the nearly perfect hyperbranched topology structure of PAMAM
dendrimers, the porous structure of a series of higher-generation PAMAM dendrimers
would be strongly expected to impart more surface areas and reactive sites. Consequently,
future work will be devoted to the systematical study of the effect of dendrimer generations
on the adsorption performance of actinide elements.
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Abbreviations

CMC carboxymethyl chitosan
PAMAM poly(amidoamine)
Nomenclature
C the constant proportional to the extent of the boundary layer thickness (mg·g−1)
C0 the initial concentrations of the metal ion (mg·L−1)
Ce the equilibrium concentrations of the metal ion (mg·L−1),
EDR the mean free energy of adsorption
k1 the rate constants of pseudo-first-order model (min−1),
k2 the rate constants of pseudo-second-order model (g·mg−1·min−1)
kint the rate constants of intraparticle diffusion kinetics model (mg·g−1·min−0.5)
Kd the distribution coefficient (mL·g−1)

KU(VI)
d

the distribution coefficients of uranyl ion

KM(x)
d

the distribution coefficients of other ions
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KF Freundlich constants, indicating adsorption intensity
KL the Langmuir adsorption equilibrium constant (L·mg−1)
m the amount of the sorbent (g)
n Freundlich constants, indicating adsorption capacity
qe the amount of adsorption at equilibrium (mg·g−1)
qe(U) the adsorption capacity of uranium (mg·g−1)
qe(Total) the total amount of adsorption for all multi-ions (mg·g−1).
qDR the theoretical adsorption capacity (mol·g−1)
qm the maximum or saturated amount of adsorption (mg·g−1)
qt U(VI) adsorption capacity at t (mg·g−1)
R the ideal gas constant (8.314 kJ·mol−1 K−1)
RL the dimensionless constant separation factor
SU degree of selectivity of the adsorbent towards uranium
SU(VI)/M(x) the selectivity coefficient of uranyl ions relative to competing ions
Sr the relative selectivity coefficient
t the adsorption time (min)
T the absolute temperature (K).
V the volume of the solution (L)
Greek letters
β the constant associated with the adsorption energy (mol2·kJ−2)
ε the Polanyi potential
∆S◦ standard entropy (J·mol−1·K−1)
∆H◦ standard enthalpy (kJ·mol−1)
∆G◦ standard Gibbs free energy (kJ·mol−1)
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