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Abstract: We numerically and experimentally demonstrate a terahertz metadevice consisting of
split-ring resonators (SRRs) present within square metallic rings. This device can function as a dual-
band polarization converter by breaking the symmetry of SRRs. Under x-polarized incidence, the
metastructure is able to convert linearly polarized (LP) light into a left-hand circular-polarized (LCP)
wave. Intriguingly, under y-polarized incidence, frequency-dependent conversion from LP to LCP
and right-hand circular-polarized (RCP) states can be achieved at different frequencies. Furthermore,
reconfigurable LCP-to-LP and RCP-to-LP switching can be simulated by integrating the device with
patterned graphene and changing its Fermi energy. This dual-band and multi-state polarization
control provides an alternative solution to developing compact and multifunctional components in
the terahertz regime.

Keywords: terahertz; symmetry-breaking metadevice; dual band; multi state; polarization conversion

1. Introduction

Terahertz (THz) technology has garnered much attention in recent years due
to its emerging and promising applications in telecommunications, imaging, and
spectroscopy [1–3]. The use of this technology requires a plethora of effort devoted to
the manipulation of the THz wave. However, effective THz functional devices, such as
polarization control components, are still lacking. As one of the inherent characteristics of
electromagnetic waves, polarization is of great practical significance, especially in sensing,
holography, and stealth [4–6]. Metasurfaces [7], governed by artificially designed subwave-
length structures, are often exploited to serve as THz polarizers. The high demand for these
outstanding metastructures is ascribed to their extraordinary properties, including the
flexible and effective modulation of frequency, amplitude, phase, and polarization. Some
THz metadevices like single- or multi-layer wire grids [8,9], all-dielectric metamaterials [10],
and chiral metasurfaces [11] for orthogonal and linear–circular polarization conversion
have been investigated. Comprehensive studies on these metadevices have mainly concen-
trated on converting the linearly polarized (LP) wave into single circularly polarized light
or its cross-output state. Few studies have been carried out on multi-band polarization
conversion using the multi-state switching of the THz wave in a single device, especially
in the transmission mode. In addition, to achieve the dynamic regulation of polarization,
active materials containing Si [12], VO2 [13], liquid crystals [14], and graphene [15] have
been introduced into metastructures owing to the demand for multi-functional and minia-
turized optical systems. Graphene, with its remarkable features [16,17] is a widely used
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tunable medium for reconfigurable polarization tailoring since it exhibits gate-controllable
light–matter interactions through a Fermi-level shift. In particular, in the THz range, a large
continuous modulation dominated by intraband transitions can be implemented by tuning
the joint density of states electrically [18]. In addition, patterned graphene at the feature
positions of THz hybrid metadevices has been merely used to dynamically manipulate the
amplitude, phase, and resonance frequency, respectively [19,20].

Here, we design and fabricate a metamaterial-based dual-band and multi-state polar-
ization converter in the THz regime, which is composed of split-ring resonators (SRRs) and
square metallic rings. The simulated and measured ellipticity unveils that this metastruc-
ture is capable of converting LP light into left-hand circular-polarized (LCP) and right-hand
circular-polarized (RCP) waves. These responses originate from the enhancement of the
cross-polarized electric field and a decrease in the co-polarized electric field induced by
the breaking of SRR’s symmetry. With the introduction of graphene micro-ribbons, this
proof-of-concept hybrid configuration could work as tunable LCP-to-LP or RCP-to-LP
polarization converters by adjusting the Fermi energy of patterned graphene micro-ribbons.
Our proposed polarization control metadevice possesses the promising potential for the
integration and miniaturization required when developing THz systems.

2. Structure Design and Method

The unit cells and microscope photos of our designed symmetric and asymmetric
metadevices, composed of SRRs integrated with square metallic rings, are depicted in
Figure 1. The corresponding geometric parameters of the structures were p = 88 µm,
h = 70 µm, w = 72 µm, w1 = w3 = 4 µm, and w2 = 6 µm, respectively. The degree of
asymmetry for the metasurface can be modified by changing the split gap g in SRRs. In
our study, the four values of parameter g were set to be 0, 14, 24, and 48 µm, respectively.
All the other parameters were constant. These periodic arrays were fabricated on quartz
substrates with a thickness of 500 µm using standard photolithographic methods. During
this fabrication, a layer of photoresist material was spin-coated on the polished surface of
the aforementioned quartz substrate, and ultraviolet exposure technology was applied to
form the predesigned patterns of our metastructure. A 200 nm thick layer of gold (Au) with
chrome at 5 nm (Cr) was evaporated on top of the film layer using magnetron sputtering.
It is worth highlighting that the thin Cr film was used as the adhesive layer to enhance
the adhesion between the gold layer and the quartz substrate. Then, the Cr/Au layer
developed a pattern due to the lift-off operation. The corresponding optical photos of our
metasurfaces with the four geometric sizes are shown in the bottom section of Figure 1.
The fabricated samples were characterized under normal incidence using a standard THz
time-domain spectroscopy setup to assess the time-domain and were further transformed
to obtain frequency-domain spectral responses [21]. Specifically, the 800 nm source beam
delivered with a Spectra Physics regenerative amplifier is divided into two paths. The first
path aims to generate a THz signal, and the second path is used to probe THz light. In our
measured scheme, the duration of the 800 nm source wave was 100 fs. Furthermore, the
corresponding repetition rate of this source beam was 1 kHz. The generation wave was
incident on a 2 mm thick <110> ZnTe crystal. Then, a 1 mm thick <110> ZnTe crystal was
used to detect the transmitted THz pulse based on the free-space electro-optic technique.
Moreover, the measured ambient for the THz path was purged with dry and flowing
nitrogen to avoid the influence of the absorption of water vapor from the air. In our
simulations, the finite element technique was employed to obtain transmission responses.
This advanced simulation method, used in our study, was operated using commercial
software Comsol Multiphysics (COMSOL Multiphysics 5.5, COMSOL Inc., Stockholm,
Sweden). After detailed consideration of the method settings, a unit cell was selected
as the simulation and calculation domain, and periodic conditions were applied to the
surrounding boundaries of the chosen unit cell. The top layer in the air was regarded as the
input port for THz wave incidence. Accordingly, the bottom layer in the quartz substrate
operated as the output port of incident light. Here, 200 nm thick Au was treated as a perfect
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electric conductor. An x- or y-polarized plane wave propagating along the z-direction is
normally incident to the proposed metasurface.
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Figure 1. Schematic unit cells and microscope photos of fabricated metamaterials with g of 0, 14, 24,
and 48 µm, respectively. The scale bar is 60 µm.

3. Passive Polarization Control

To explore the polarization characteristics of our metastructures, we plotted and mea-
sured simulated, co-polarized (txx), and cross-polarized (tyx) transmission spectra, as shown
in Figure 2. Here, the subscripts x and y of tyx refer to the incident x-polarized THz wave and
the corresponding y-polarized output light. As shown in Figure 2a, the txx curve of the sym-
metric structure with g = 0 µm shows an apparent sharp dip in the frequency at 0.91 THz.
This apparent and sharp resonant dip resulted from the induced Fano resonance [22,23].
The tyx component was in the quenched state, as illustrated in the cross–output curve. It can
be observed that the missing structure in the SRR resonator played a key role in breaking
the symmetry of our metasurface. In this case, the cross-polarized component exists in
the transmission spectra of the asymmetric structure. Apparently, considerable changes
in transmission responses occur based on the introduction of the symmetry-breaking fea-
ture in this metallic resonator, as shown in Figure 2b. The transmission curve shows
the coexistence of two Fano resonances in the txx component for the case of parameter
g = 14 µm. Significantly, dual-band cross-polarization conversion frequency windows (f 1
and f 2) with maximum transmission values of 0.31 and 0.46 appeared at the frequencies of
0.96 and 1.33 THz, respectively. For the structure of parameter g = 24 µm, the tyx transmis-
sion with corresponding maximum values of 0.29 and 0.41, depicted in Figure 2c, slightly
decreased. By further increasing g to 48 µm, Figure 2d presents how the polarization
capability of our metadevice was largely restrained. The results unveil that the maximum
of tyx at low-frequency f 1 decreased to 0.27. At high-frequency f 2, this maximum value
was passively and apparently regulated to 0.13. The aforementioned transmission features
reveal the highly dependent polarization responses on the given parameter g. As shown in
Figure 2e–h, by varying the degree of symmetry breaking with different parameters g, the
experimental spectra demonstrate good agreement with our simulated transmission results.
Specifically, the transmission of the resonance dip at 0.90 THz with g = 0 µm was 0.21.
For g = 14 µm, the highest dual-band tyx values were 0.27 at 0.9 THz and 0.22 at 1.28 THz,
respectively. There was an apparent reduction in the high-frequency (f 2) cross-polarized
window. The transmission responses for these devices at g = 24 µm and g = 48 µm impli-
cate similar polarization behaviors. The resonance frequencies slightly deviate from those
obtained in simulations, which could be attributed to fabrication tolerance. The measured
smoothness and weakening of the high-frequency tyx window resulted from the limited
resolution of our setup. In addition, to link and reveal the correlation between parameter
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g and the polarization properties of our proposed structure, we plotted curves for the
maximum of tyx and corresponding frequencies at dual-band cross-polarization conversion
windows with the frequencies f 1 and f 2 and increased parameter g (not shown). To be
more specific, the spectra indicate that the maximum of tyx at f 1 decreased slightly from
0.31 to 0.27 while its frequency remained stable at 0.96 THz with increased g. At f 2, this
value changed from 0.46 to 0.13, and the frequency showed a red-shift property from 1.33
to 1.30 THz. Herein, we conclude that the polarization conversion susceptibility at f 2 was
more vulnerable to the parameter g than that at f 1.
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Figure 2. (a–d) The simulated co-polarized (txx) and cross-polarized (tyx) transmission curves for
symmetric and asymmetric metastructures with the x-polarized incident THz wave. (e–h) The
experimental transmission spectra.

To elucidate the underlying mechanism of transmission behaviors of symmetric and
asymmetric metamaterials, we illustrate the surface electric field distributions in both x
and y directions at the frequencies of 0.96 THz (f 1) and 1.33 THz (f 2) for devices with
g = 0 µm and g = 14 µm, as shown in Figure 3a,b. In the symmetric case, the intensity
of Ey is symmetric on the y-axis at both f 1 and f 2. The left and right parts have a phase
difference of π, causing fully reciprocal suppression. Therefore, no tyx component exists
for the symmetric metastructure, as depicted in Figure 2a. Under symmetry breaking,
the Ey distributions of zones (1) and (2) at f 1 have equivalent intensity. Furthermore, an
apparent phase difference of π occurs between zones (1) and (2) at the same frequency of
0.96 THz. The aforementioned surface electric distributions, together with the unique phase
difference, result in the suppression of surface electric distributions between the two zones.
However, the stronger electric field Ey in zone (3) leads to a considerable polarization
conversion component at f 1. The distribution of Ey in zone (4) is also responsible for the
polarization conversion at f 2, while the other parts are mutually inhibited. By comparison,
a phase difference of π exists in zones (5) and (6). This phenomenon is also responsible for
the suppression of surface electric distributions between zones (5) and (6) of component
Ex at f 1. A phase difference of π, as well as the mutual inhibition of surface electric
distributions are applied in zones (7) and (8). These distributions weaken the intensity of
Ex and further contribute to the reduction in txx. The situations in zones from (9) to (14) of
the Ex at f 2 have similar behaviors. It can be inferred that these responses originate from
the enhancement of the cross-polarized electric field and a decrease in the co-polarized
electric field induced by the symmetry breaking of SRR. In summary, the generation of the
electric field perpendicular to the incident one is attributed to the symmetry breaking of
SRR to achieve the conversion of polarization [24].

Considering the anisotropy of our proposed metastructure, we plotted the simulated
tyy and txy spectra with g = 14 µm under the y-polarized incidence, as shown in Figure 4a.
Compared with the co-polarized results in Figure 2b under the x-polarized incidence, the
low-frequency transmission dip presents a large red-shift feature in simulated tyy curves.
Intriguingly, the apparent dual-band cross-polarization conversion windows that exist in
txy components are identical to that of tyx components. This performance can be verified
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by the distributions of the electric field under the y-polarized incidence (not shown). The
above numerical results sufficiently agree with the measured transmission responses in
Figure 4b. These observations indicate that our metadevice can be applied as an effective
and dual-band polarizer for the random incident wave in the x- or y-polarized state. It is
worth noting that our metadevice exhibits the anisotropy of the co-polarized transmission
component and the isotropy of the cross-polarized transmission component under x- and y-
direction incidences. This feature possesses a wide and prosperous application in the field
of information encryption in the THz region.
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It is known that the output polarization state can be regulated by the amplitude ratio
and phase lag between co- and the cross-polarized components. Consequently, four Stokes
parameters [25] are introduced below to express the output states.

S0 =
∣∣t̃xx

∣∣2 + ∣∣t̃yx
∣∣2, (1)

S1 =
∣∣t̃xx

∣∣2 − ∣∣t̃yx
∣∣2, (2)
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S2 = 2
∣∣t̃xx

∣∣∣∣t̃yx
∣∣ cos ϕdi f f , (3)

S3 = 2
∣∣t̃xx

∣∣∣∣t̃yx
∣∣ sin ϕdi f f , (4)

where ϕdiff is the phase difference (ϕdi f f = ϕxx − ϕyx). After this, tan 2α = S2/S1 and
tan 2χ = S3/S0 can be calculated. α defined above is the polarization azimuth angle. χ
is ellipticity in relation to the output ellipse. Here, −45◦ ≤ χ ≤ 45◦ stands for the ellipti-
cally polarized state. Specifically, −45◦ means a perfect LCP THz wave. 0◦ represents the
linear polarization output, and 45◦ suggests a perfect RCP state. Under the x-polarized
incidence, ellipticity is −33◦ at 0.99 THz and −38◦ at 1.32 THz, as shown in Figure 4c.
This behavior confirms that our metadevice could function as a dual-band LP-to-LCP
converter. In the case of the y-polarized incidence, Figure 4d demonstrates that these
values are −39◦ at 0.82 THz, 41◦ at 0.93 THz, and 42◦ at 1.32 THz, respectively. These
intriguing results exhibit that the tri-band polarizer can be realized at different frequen-
cies. The single-band LP-to-LCP conversion is located at 0.82 THz. The corresponding
frequencies of dual-band LP-to-RCP conversions are 0.93 and 1.32 THz, respectively. The
measured ellipticity spectra are illustrated in Figure 4e,f. Under the x-polarized incidence,
the ellipticity is −28◦ at 0.96 THz and −17◦ at 1.24 THz. In the case of the y-polarized
incidence, the results exhibit that these values are −31◦ at 0.81 THz, 37◦ at 0.91 THz, and
19◦ at 1.29 THz, respectively. These experimental curves are similar to simulated behaviors.
The red-shift trends and decreased values at LP-to-LCP or LP-to-RCP conversion frequen-
cies are ascribed to fabrication tolerance. The measured smoothness and weakening of
frequency-dependent ellipticity windows are the reasons for the limited resolution of our
measured setup. Based on the polarization responses in Figures 3 and 4, we can deduce that
our asymmetric metadevice is capable of integrating dual-band polarization conversion
with multi-state polarization switching in the transmission mode. Such a multifunctional
metastructure provides a solution that can promote the exploration of the ultracompact and
integrated systems in the THz regime. Moreover, the complicated fabrication process of
multidimensional and multilayered polarization facilities can be avoided in this ultrathin
symmetry-breaking single-layer metamaterial. Our device also offers more intriguing pos-
sibilities to expand high-performance-plasmonic metadevices for the polarization control
of THz wave generation.

4. Active Polarization Control

To realize active metasurfaces, it is necessary to incorporate tunable materials, of
which graphene is considered a versatile platform because it possesses gate-controllable
light–matter interactions by tuning Fermi energy. Moreover, graphene can be simply trans-
ferred onto metasurfaces as well as patterned into certain shapes at the feature positions of
unit cells [19,20]. The use of reshaped graphene on specific spots of hybrid THz configura-
tions has been studied for the tunable regulation of the amplitude, phase, and resonance
frequency of THz waves, respectively. In this work, we propose and simulate an active
hybrid graphene metadevice, as provided in Figure 5a. Specifically, three gold electrodes,
including the source (S), drain (D), and gate (G), are fabricated on the quartz substrate. The
4 µm wide graphene bridges are patterned and placed on the asymmetric metastructure
along the 14 µm wide gap of SRR (g = 14 µm). To bridge the gap in the asymmetric meta-
surface with graphene micro-ribbons, the patterned graphene in our hybrid configuration
can be fabricated as described in the following steps [19,20]. First, CVD-grown graphene is
transferred onto the prefabricated asymmetric metastructure. For the graphene transfer,
PMMA (poly(methyl methacrylate), C2, Microchem) is used as a support layer. After trans-
ferring a large area of graphene, it is patterned using ultraviolet (UV) photolithography.
After UV exposure and the development of a double-layer photoresist, the unprotected
graphene portions are etched using the plasma technique. During this process, two types
of photoresists should be used for different purposes. In the final step, the remaining
graphene is peeled off from the top of this metadevice. The fabricated S and D electrodes
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can be positioned directly in contact with the graphene bridges to acquire sheet resistance
and estimate the corresponding Fermi energy and surface conductivity. The third electrode,
which is isolated from the graphene micro-ribbons, is treated as G to apply the bias gate
voltage. Ionic liquid gel (Ion Gel) is one of the most efficient dielectric materials with a
high-gate capacitance [26–28], and it can be coated on the top of the device to support the
tunability of the Fermi energy (Ef) of graphene. This Ef can be significantly tailored using
ion gel from about −1.5 to 2.5 eV via employing a small top gate voltage (∼10 V) [29]. Our
scheme provides high surface areal contact between the ion gel and these electrodes to
ensure the more uniform doping profiles of patterned graphene under electrostatic gating.
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Figure 5. (a) Schematic of the hybrid metastructure with graphene (w4 = 4 µm). Simulated co- and
cross-polarized transmission spectra for the hybrid asymmetric metadevice (g = 14 µm) against
the different Fermi energy of graphene with x-polarized (b) and y-polarized (c) incidence, respec-
tively. (d,e) The corresponding ellipticity of the output polarization wave (insets: the switching of
polarization states at given frequencies).

Here, the dynamical manipulation is accomplished by controlling the optical property
of the graphene bridges, whose surface conductivity σg can be expressed by the Kubo
formula [30],

σg =
ie2kBT

π}2(ω + iτ−1)

{ E f

kBT
+ 2ln

[
1 + exp

(
−

E f

kBT

)]}
+

ie2

4π} ln

2
∣∣∣E f

∣∣∣− }
(
ω + iτ−1)

2
∣∣∣E f

∣∣∣+ }(ω + iτ−1)

, (5)

where e is the electronic charge, kB is the Boltzmann constant, h̄ is the reduced Planck’s con-
stant, T is the temperature fixed at 293 K, and ω and τ are the angular frequency of incident
light and the relaxation time of graphene, respectively. The first term in Equation (1) refers
to the contribution of the intraband transition. The second term is the contribution of the
interband transition. In the THz range, the interband contribution is neglected due to the
photon energy h̄ω being much smaller than two of Ef. Under the condition kBT�Ef, σg is
dominated by intraband transitions and can be described using the Drude model [31],

σg =
ie2E f

πh̄2(ω + iτ−1)
, (6)

Clearly, Equation (6) exhibits that σg can be tuned by Ef. The graphene effective
refractive index ng [32] is written as follows:

ng =
√

1 + iσg/ωε0tg, (7)
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where tg is the effective thickness of graphene and ε0 is the permittivity of the vacuum.
Based on the aforementioned simulation method in the section structure design and

method, τ = 31 fs is performed to calculate σg and ng. To ensure that graphene can fully
interact with the metastructure, we assume the patterned graphene layer is 1 nm higher
than the embedded gold surface.

Figure 5b shows the calculated txx and tyx curves by changing the Fermi energy of
graphene bridges with x-polarized incidence. At 0 eV, according to Equation (6), the
conductivity of graphene is in the minimum state. In this case, the bridge is unable to
connect the 14 µm wide gap of the symmetry-breaking metasurface (g = 14 µm). Hence,
under the incident x-polarized THz wave, the transmission plotted with solid and dashed
black lines is nearly consistent with the results without graphene, as shown in Figure 2b.
At 1.0 eV, purple spectra indicate that the two resonances in the txx component are largely
hindered, while the dual-band polarization conversion windows of the tyx component are
almost completely suppressed. This confirms that the electrical connection between the
14 µm wide gap is strong enough when graphene bridges are at their high conductance
states. In our design, to achieve the high Fermi level of 1 eV, the true required voltage
of approximately 4 to 5 V was necessary [28,29]. Under the y-polarized incidence, the
tunability of dual-band conversion windows for the tyx curves in Figure 5c is similar. These
significant and dynamic transmission changes are due to the gradual connection of a 14 µm
wide gap of SRR via tuning the Fermi energy.

In Figure 5d,e, the corresponding ellipticity curves are calculated based on the afore-
mentioned four Stoke parameters. For the x-polarized incidence, the ellipticity ranges from
−37◦ to −5◦ at 1.01 THz with increased Fermi energy from 0 to 1.0 eV. At 1.33 THz, this
value changes from −36◦ to −6◦. Combined with α and χ, the corresponding polarization
states for 0 and 1.0 eV are given in the insets of Figure 5d, clearly confirming the conversion
from the LCP to LP wave at two frequencies. Under the y-polarized incidence, Figure 5e
shows that the LCP-to-LP conversion is achieved at 0.84 THz only by changing the Fermi
energy from 0 to 0.2 eV. Apparently, this susceptibility to the LCP-to-LP conversion under
the y-polarized incidence is more vulnerable than under the x-polarized incidence. Further
increasing the Fermi energy to 1.0 eV, the dual-band RCP-to-LP tunability is realized at
0.94 and 1.34 THz, respectively. The aforementioned reconfigurable polarization states are
also illustrated in these insets. According to these modulation results, we can conclude that
our metadevice possesses the ability to convert LP light into LCP or RCP waves, as well as
LCP or RCP into LP states. In conclusion, we illustrate an effective and electrically driven
metadevice platform to construct active multifunctional THz polarization converters. This
configuration is based on regulating an electrical connection at the feature positions of unit
cells for our symmetry-breaking metasurfaces.

5. Conclusions

In summary, we have fabricated a THz metadevice composed of SRRs and square
metallic rings. This device can enable dual-band and multi-state polarization conversion
with the introduction of symmetry-breaking in SRRs. Specifically, the LP-to-LCP conver-
sion is achieved under x-polarized incidence. In the case of y-polarized incidence, the
metastructure can work as LP-to-LCP and LP-to-RCP converters at different frequencies.
The dynamic LCP-to-LP and RCP-to-LP conversions are further realized by integrating
the device with patterned graphene and changing its Fermi energy. Such multifunctional
metadevices offer an effective method to promote the development of miniaturized and
integrated components in the THz region.
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