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Abstract: The development of visible-light-responsive (VLR) semiconductor materials for effective
water oxidation is significant for a sustainable and better future. Among various candidates, bismuth
tungstate (Bi2WO6; BWO) has attracted extensive attention because of many advantages, including
efficient light-absorption ability, appropriate redox properties (for O2 generation), adjustable morphol-
ogy, low cost, and profitable chemical and optical characteristics. Accordingly, a facile solvothermal
method has been proposed in this study to synthesize two-dimensional (2D) BWO nanoplates after
considering the optimal preparation conditions (solvothermal reaction time: 10–40 h). To find the key
factors of photocatalytic performance, various methods and techniques were used for samples’ char-
acterization, including XRD, FE-SEM, STEM, TEM, HRTEM, BET-specific surface area measurements,
UV/vis DRS, and PL spectroscopy, and photocatalytic activity was examined for water oxidation
under UV and/or visible-light (vis) irradiation. Famous commercial photocatalyst–P25 was used as a
reference sample. It was found that BWO crystals grew anisotropically along the {001} basal plane
to form nanoplates, and all properties were controlled simultaneously by tuning the synthesis time.
Interestingly, the most active sample (under both UV and vis), prepared during the 30 h solvothermal
reaction at 433 K (BWO–30), was characterized by the smallest specific surface area and the largest
crystals. Accordingly, it is proposed that improved crystallinity (which hindered charge carriers’
recombination, as confirmed by PL), efficient photoabsorption (using the smallest bandgap), and 2D
mesoporous structure are responsible for the best photocatalytic performance of the BWO–30 sample.
This report shows for the first time that 2D mesoporous BWO nanoplates might be successfully
prepared through a facile template-free solvothermal approach. All the above-mentioned advantages
suggest that nanostructured BWO is a prospective candidate for photocatalytic applications under
natural solar irradiation.

Keywords: aurivillius phase perovskite; bismuth tungstate; nanoplates; mesoporous materials;
O2 generation

1. Introduction

Environmental technology has received socioeconomic and scientific attention because
of the global crises in energy, environment, water, and climate. Accordingly, photocatalytic
water splitting (especially under natural solar radiation) has been suggested as a promis-
ing, sustainable, and eco-friendly “green” technology for hydrogen fuel production [1–4].
Regrettably, photocatalytic water oxidation (i.e., primary and key half-reaction of water
splitting) is a major challenge because of the high energy barrier and the difficulty in both
thermodynamics and kinetics [1–3]. Therefore, the development of novel photocatalysts
for effective water oxidation is of high importance, and numerous studies focused on
the development of effective photocatalysts, such as WO3 [5,6], BiVO4 [7,8], BiFeO3 [2],
and Fe2O3 [9,10], have already been performed. For example, Djatoubai et al. prepared
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Ti–doped Bi2FeO3 nanoplates (with oxygen vacancies) by using a simple hydrothermal
method that was followed by annealing in a hydrogen atmosphere, and created efficient
photocatalytic water oxidation under vis irradiation [2]. It was proposed that improved
activity could be attributed to the modulation of the electronic structure of Bi2FeO3 by in-
corporating titanium (doping) and forming oxygen vacancies, which resulted in enhanced
light harvesting ability and charge carriers’ separation.

Bismuth tungstate (Bi2WO6; BWO), as one of the outstanding Aurivillius oxides, has
received significant attention because of its tuned structures and compositions, as well as its
outstanding performance, which makes it a promising VLR photocatalyst for different ap-
plications, specifically water oxidation [11,12]. Generally, russellite BWO (Aurivillius oxide
with an orthorhombic structure) is built up by alternating (Bi2O2)2+ slabs and perovskite-
like (WO4

2−) layers [12]. The layered structure is advantageous for boosting the electron
conductivity and improving the vis-harvesting ability (bandgap of ca. 2.6–2.9 eV) [11,12].
Kudo et al. were the first to prepared BWO for oxygen evolution reaction [13], and since
their work, significant interest has been dedicated to the synthesis, estimation of property-
controlled activities, mechanism investigation, improvement of photocatalytic performance,
and various potential applications of BWO photocatalysts. It should be pointed out that
BWO is considered to be a significant candidate for water oxidation (i.e., oxygen generation)
because of its redox properties (valence band position), cost-effectiveness, nontoxicity, and
adjustable morphology [11,12]. However, its further applications are extremely restricted
because of its inherent limitations, such as poor capability to absorb visible light and speedy
recombination of charge carriers. To remove these drawbacks, various BWO modifica-
tion strategies have already been proposed, such as the elemental doping [14–21], sur-
face modification (e.g., with noble metals [19,22–25] and carbon-based materials [26–32]),
the structural optimization [23,27,33–40], and the construction of heterojunctions with
other materials, such as Bi2WO6/TiO2 [41], Bi2WO6/g-C3N4 [42], Bi2WO6/MoS2 [43],
Bi2WO6/FeS2 [44], Bi2WO6/CoIn2S4 [45], Bi2WO6/AgIO3 [46], Bi2WO6/CNT/TiO2 [47],
Bi2WO6/g–C3N4/TiO2 [48], and Bi2WO6/BiOI/g–C3N4 [49].

It is well recognized that one- and two-dimensional nanomaterials might efficiently im-
prove photocatalytic performance because of their distinct structure and appealing charac-
teristics, promoting the charge carriers’ transfer [11,50,51]. Accordingly, 2D nanostructures
(nanosheets/nanoplates) of BWO have also been synthesized, e.g., by the cetyltrimethy-
lammonium bromide (CTAB)-assisted solvo/hydrothermal method [35,52–60]. However,
CTAB (organic surfactant) is expensive, and the removal of its residues requires organic
solvents like chloroform. According to our knowledge, a template-free synthesis of 2D
BWO photocatalysts has not been reported yet. Therefore, this is the first paper in which
the facile template-free solvothermal route (at different durations) is proposed for the
preparation of 2D mesoporous BWO nanoplates.

2. Materials and Methods
2.1. Materials

Bismuth(III) nitrate pentahydrate (Bi(NO3)3·5H2O, 99.9%), sodium tungstate(VI) dihy-
drate (Na2WO4·2H2O, 99.9%), acetic acid (CH3COOH, 99%), ethanol (EtOH, 99.5%), and silver
fluoride (AgF, 99%) were purchased from Wako Pure Chemical Co., Ltd. (Osaka, Japan). No
further purification was performed on any of the chemicals. All experiments were conducted
with ultrapure water (UP–H2O) obtained from a Direct–Q Millipore system.

2.2. Synthesis

Two-dimensional mesoporous BWO nanoplates were prepared using a facile template-
free solvothermal method, as follows: Bi(NO3)3·5H2O (0.002 mol) and Na2WO4·2H2O
(0.001 mol) were separately dispersed in 40 mL of acetic acid and UP–H2O, respectively.
Subsequently, Na2WO4·2H2O solution was slowly dropped to Bi(NO3)3·5H2O solution
under continuous agitation, stirred for 2 h, and then sonicated for 30 min. The final mixture
was placed into a 100–mL Teflon-lined stainless-steel autoclave and then heated at 433 K
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for different durations (10, 15, 20, 25, 30, and 40 h). After cooling down, the obtained
suspensions were centrifuged. The resultant solid samples were washed four times with
UP–H2O and EtOH and finally dried overnight at 333 K. The obtained samples were
abbreviated according to the duration of the solvothermal reaction, e.g., BWO–10 indicates
the BWO sample prepared during 10 h synthesis.

2.3. Characterization of Photocatalyst

The physicochemical characteristics of synthesized BWO photocatalysts were investi-
gated via different methods, as described further below. The crystalline compositions were
examined by X-ray powder diffraction (XRD with accelerating voltage: 40 kV, emission
current: 30 mA; Rigaku intelligent XRD SmartLab with a Cu target, Rigaku, LTD., Tokyo,
Japan). Samples were analyzed between 10◦ and 90◦ at 1◦/min scan speed and scan step of
0.0081◦. The crystal structure parameters were determined with Rigaku PDXL software
(Version 2.6.1.2, Rigaku, LTD., Tokyo, Japan, 2007–2015). To determine the crystallinity
of BWO samples, an internal standard method was applied using commercial NiO as a
standard. The standard with the crystallinity of 96.6% was thoroughly mixed in an agate
mortar with BWO powder (20/80 weight ratio of NiO to BWO), and the resultant mix-
ture was analyzed with an XRD diffractometer; then, the crystallinity of BWO samples
was calculated.

The morphology was characterized by field emission-scanning electron microscopy
(FE–SEM) under a high vacuum (JSM–7400F, JEOL, Tokyo, Japan). The images were
captured in a wide range of magnifications in secondary electron imaging mode (SEI).
Furthermore, scanning transmission electron microscopy (STEM; HD–2000, Hitachi, Tokyo,
Japan) was also conducted in three different modes: secondary electron image (SE), Z
contrast image (ZC), and phase contrast image (TE). Additionally, transmission electron
microscopy (TEM) with an accelerating voltage of up to 200 kV, magnification power of
up to 600 kX and resolution power down to 0.2 nm (JEOL–JEM 1230, Tokyo, Japan), high-
resolution TEM (HR-TEM), and selected area (electron) diffraction were also applied for
the characterization of the most active sample. The specific surface area (SSA) and the
pore size (PS) distribution were estimated by N2 adsorption-desorption isotherms at 77 K
employing Brunauer–Emmett–Teller (BET), and Brunauer–Joyner–Hallenda (BJH) analysis,
respectively (Quanta Chrome Instruments, NOVA 2000 series, Peterborough, UK).

The photoabsorption characteristics were investigated on a diffuse reflectance spec-
troscope (DRS; JASCO V-670) equipped with a PIN-757 integrating sphere (JASCO, LTD.,
Pfungstadt, Germany) and using BaSO4 as a reference. The diffuse reflectance mode (R)
was transformed into the Kubelka–Munk function F(R) to distinguish light absorption
from scattering. The energy gap (Eg) values were estimated by plotting the (F(R) hv)0.5)
versus the light energy (hv), where F(R) × E0.5 = ((1 − R)2/2R × hv)0.5 [60]. The photolumi-
nescence (PL) emission spectra were recorded with a Shimadzu spectrofluorophotometer
(RF-5301PC; λex = 420 nm).

2.4. Photocatalytic Activity Tests

The photocatalytic water oxidation was carried out under UV and/or vis irradiation
in the presence of in situ deposited silver as an electron scavenger. Typically, 0.05 g of
BWO sample was dispersed in 5 mL of an aqueous suspension of AgF (0.05 mol L−1) in
a 35 mL Pyrex test tube. The suspension (photocatalyst and AgF) was sonicated for ca.
10 min, deaerated with argon, and then the testing tube was sealed with a rubber septum
and exposed to UV/vis (Hg lamp, λ > 290 nm) or vis (450 W–Xe lamp, λ > 400 nm; water
IR filter, a cold mirror, and a cut–off filter: Y–42) irradiation. During the reaction, the
suspension was constantly agitated in a thermostated water bath to keep the reaction
temperature constant (about 298 K). The generated oxygen was quantified by employing a
Shimadzu GC–8A chromatograph (Shimadzu Corporation, Kyoto, Japan), equipped with a
thermal conductivity detector (TCD) and Poratak Q column (Agilent Technologies, Santa
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Clara, CA, USA). The recyclability tests were also performed (five repetitions) for the most
active photocatalyst.

3. Results
3.1. Characterization

The successful fabrication of BWO was confirmed by XRD analysis, and the obtained
XRD patterns are shown in Figure 1a. The characteristic peaks at 2–theta of ca. 28.4◦, 32.8◦,
47.4◦, 55.8◦, 58.8◦, 68.7◦, 75.9◦, and 78.5◦ could be assigned to (113), ((200) (020)), ((221) (206)
(026)), ((313) (133)), (226), ((400) (040)), (333), and ((406) (046)) planes of BWO, respectively.
These crystal planes are characteristic for the orthorhombic morphology of BWO (which
resembles a perovskite-like structure with lattice parameters of a = 5.456 Å, b = 5.436 Å,
and c = 16.428 Å, card no. 66579), and are consistent with previous findings [14,38,61–63].
Moreover, the lack of other diffraction peaks indicates the high crystal purity of the prepared
samples. Although the duration of the solvothermal reaction shows no effect on the
position of diffraction peaks, the increase in peaks’ intensity and peaks’ sharpening with
the prolongation of reaction duration indicates the crystal growth and the improvement of
crystallinity. Indeed, the crystallinity of BWO, estimated by an internal standard method,
is improved by prolonging the reaction duration up to 30 h (Table 1). However, a further
increase in the reaction time (40 h) causes a slight decrease in the crystallinity, which could
be caused by the higher density of crystalline defects. Therefore, it might be concluded that
the best crystalline properties are achieved during 30 h treatment (BWO–30), i.e., longer
and shorter solvothermal time results in the formation of an imperfect crystalline structure.
Similarly, Zhang et al. have also confirmed the influence of reaction duration (hydrothermal
process) on the crystallinity of BWO [33].

Nanomaterials 2023, 13, x FOR PEER REVIEW 5 of 21 
 

 

from 13.6 nm to 16.2 nm as the temperature of the hydrothermal reaction increased from 
413 K to 433 K [25]. 

Summarizing, it might be concluded that the duration of the solvothermal reaction 
has a significant impact on the crystalline properties of BWO photocatalysts. Moreover, 
the estimation of optimal conditions for photocatalysts’ preparation is crucial for the prep-
aration of perfect crystals. Similar findings have already been found for both BWO 
[33,62,65,66] and other photocatalysts, such as TiO2 [67–71], ZnO [72], MoS2 [73,74], and 
g–C3N4 [75]. 

 

 

(a) (b) 

Figure 1. (a) XRD patterns; and (b) the correlation between crystallinity and average crystallite size 
(ACS) of BWO samples. 

The microscopic observations (Figure 2) have confirmed the self-assembly of nano-
plate subunits during solvothermal growth, resulting in the formation of a layered micro-
structure. The obvious difference between BWO–10 and BWO–30 (a and b images, respec-
tively) indicates that the small nanoparticles tend to aggregate and coalesce (forming 
larger particles with a clear–cut appearance), which is consistent with the XRD results 
(Table 1). The 2D structure of the BWO–30 sample is also clearly seen in STEM (Figure 2c) 
and TEM (Figure 2d) images. It should be noted that the BWO–30 sample consists of uni-
formly dispersed square nanoplates with smooth and transparent surfaces. To elucidate 
the growth orientation of the nanoplates, an HRTEM observation with SAED analysis was 
also carried out, and the obtained observations are displayed in Figure 2e,f. Accordingly, 
two sets of lattice fringes could be clearly observed, as seen by a marked interplanar spac-
ing of ca. 0.273 nm and 0.272 nm, indexed to the (200) and (020) planes, respectively, of 
orthorhombic BWO (Figure 2e). Moreover, the SAED pattern exhibits a regular diffraction 
spot array with a spacing of 0.273 and 0.272 nm, corresponding to the (200) and (020) 
planes, respectively (Figure 2f). Therefore, it might be concluded that 2D BWO nanoplates 
preferably grow along the {001} facets, which is consistent with XRD results. This might 
be caused by a higher atom density on the {001} facets, leading to a slower growth along 
the {001} of BWO nanoplates [33,53–55,76,77]. 

10 20 30 40 50 60 70 80

(2
00

) (
02

0)
(1

13
)

(0
40

)

(1
33

)

(0
26

)
(2

06
)

(4
06

)
(3

33
)

(4
00

)

(2
26

)
(3

13
)

(2
21

)

BWO−40

BWO−30

BWO−25

BWO−20

BWO−15

BWO−10

In
te

ns
ity

 (a
.u

.)

2θ (degree)

 

 

45 50 55 60 65 70 75 80
6

7

8

9

10

11

12

A
C

S 
(n

m
)

Crystallinity (%)

y = 0.1419x + 0.7153

R2 = 0.992

Figure 1. (a) XRD patterns; and (b) the correlation between crystallinity and average crystallite size
(ACS) of BWO samples.



Nanomaterials 2023, 13, 2438 5 of 20

Table 1. The crystalline properties of BWO samples.

Sample ID Hydrothermal Time
(h)

1 d (113)
(Ǻ)

2 FWHM
(Ǻ)

3 ACS
(nm)

Crystallinity
(%)

BWO–10 10 3.162 1.0371 7.8 48.2

BWO–15 15 3.160 1.0104 8 52.9

BWO–20 20 3.159 0.9450 8.6 56.1

BWO–25 25 3.157 0.7149 11.5 75.2

BWO–30 30 3.156 0.6847 11.8 77.8

BWO–40 40 3.158 0.7191 11.2 74.6
1 d: d–spacing; 2 FWHM: full–width half–maximum; 3 ACS: average crystallite size.

Additionally, it has been found that the ratio of I(113)/I(200) (intensity of respective
peaks) is lower than the standard value of 5, implying an anisotropic growth along the {001}
basal plane, which suggests the formation of square-plate morphology (2D), as discussed
later. It has already been suggested that large crystallites could be formed by an increase
in solvo/hydrothermal time (as observed by intense and sharp XRD peaks) [33,62,64].
Accordingly, the average crystallite size (ACS) has been estimated, using the full-width
half-maximum (FWHM) of (113) diffraction peak with the Debye–Scherrer equation [38],
and obtained data are listed in Table 1. The ACS increases from 7.8 to 11.8 nm with an
increase in the reaction duration till 30 h, and then slightly decreases to 11.2 nm for 40 h
time. Therefore, it might be proposed that crystal growth is associated with crystallinity,
as confirmed in Figure 1b. Accordingly, it has been found that both crystallinity and
crystallite size are mainly controlled by the duration of the solvothermal reaction. Similarly,
Li and coworkers found a correlation between the conditions of hydrothermal reaction and
crystalline properties of BWO samples, i.e., an increase in crystallite sizes from 13.6 nm to
16.2 nm as the temperature of the hydrothermal reaction increased from 413 K to 433 K [25].

Summarizing, it might be concluded that the duration of the solvothermal reaction has
a significant impact on the crystalline properties of BWO photocatalysts. Moreover, the es-
timation of optimal conditions for photocatalysts’ preparation is crucial for the preparation
of perfect crystals. Similar findings have already been found for both BWO [33,62,65,66]
and other photocatalysts, such as TiO2 [67–71], ZnO [72], MoS2 [73,74], and g–C3N4 [75].

The microscopic observations (Figure 2) have confirmed the self-assembly of nanoplate
subunits during solvothermal growth, resulting in the formation of a layered microstructure.
The obvious difference between BWO–10 and BWO–30 (a and b images, respectively)
indicates that the small nanoparticles tend to aggregate and coalesce (forming larger
particles with a clear–cut appearance), which is consistent with the XRD results (Table 1).
The 2D structure of the BWO–30 sample is also clearly seen in STEM (Figure 2c) and
TEM (Figure 2d) images. It should be noted that the BWO–30 sample consists of uniformly
dispersed square nanoplates with smooth and transparent surfaces. To elucidate the growth
orientation of the nanoplates, an HRTEM observation with SAED analysis was also carried
out, and the obtained observations are displayed in Figure 2e,f. Accordingly, two sets of
lattice fringes could be clearly observed, as seen by a marked interplanar spacing of ca.
0.273 nm and 0.272 nm, indexed to the (200) and (020) planes, respectively, of orthorhombic
BWO (Figure 2e). Moreover, the SAED pattern exhibits a regular diffraction spot array with
a spacing of 0.273 and 0.272 nm, corresponding to the (200) and (020) planes, respectively
(Figure 2f). Therefore, it might be concluded that 2D BWO nanoplates preferably grow
along the {001} facets, which is consistent with XRD results. This might be caused by a
higher atom density on the {001} facets, leading to a slower growth along the {001} of BWO
nanoplates [33,53–55,76,77].



Nanomaterials 2023, 13, 2438 6 of 20Nanomaterials 2023, 13, x FOR PEER REVIEW 6 of 21 
 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2. (a) FE-SEM of BWO–10 sample; (b) FE-SEM, (c) STEM, (d) TEM, (e) HRTEM, and (f) SAED 
images of BWO–30 sample. 

To investigate the textural properties, BET/BJH measurements were performed at 77 
K, and the obtained results are shown in Figure 3 and Table 2. All samples exhibit similar 
isotherms, categorized as type IV (according to IUPAC), with small hysteresis loops with 
a relative pressure of ca. 0.7–0.9, as shown in Figure 3a. This might be caused by irregular 
voids, resulting from large particles’ (plates) packing. Meanwhile, the surface characteris-
tics were further estimated, and the obtained results, including the specific surface area 
(SSA), pore volume (PV), and pore size (PS), are presented in Figure 3b and Table 2. It has 
been found that the largest values of SSA (55.3 m2 g−1) and PV (5.8–6.2 × 10−4 cm3 g−1) are 
obtained for the BWO–10 sample, prepared during the shortest reaction (10 h). Clearly, 
the SSA and PV values decrease with increasing the reaction duration up to 30 h (43.9 m2 
g−1 and 4.1–4.4 × 10−4 cm3 g−1, respectively). All obtained data correlate well with ACS, i.e., 
an increase in ACS (prolonged reaction) corresponds to a decrease in SSA. The longer re-
action time might significantly affect the crystal growth since it allows smaller grains to 
grow, forming bigger crystallites. These large nanocrystallites might also be pushed into 
the channels of mesopores, decreasing the pore volume. It is clearly observed that all sam-
ples exhibit a mesoporous structure (PS = 3.9–13.7 nm). Figure 3c shows a clear correlation 
between SSA and pore size. 

Table 2. Textural and optical properties of BWO samples. 

Catalyst ID 1 SSA/m2 g−1 2 PV/cm3 g−1 × 10−4 3 PS/nm 4 AE/nm 5 Eg/eV 
BWO–10 55.3 5.8–6.2 3.9–9.9 433.0 2.87 
BWO–15 51.5 5.7–6.0 4.3–10.8 442.2 2.77 
BWO–20 48.7 5.3–5.7 4.7–11.7 450.0 2.75 
BWO–25 44.8 4.5–4.8 5.4–13.4 460.3 2.67 
BWO–30 43.9 4.1–4.4 5.5–13.7 474.1 2.65 
BWO–40 46.6 4.9–5.4 5.1–12.8 452.8 2.70 

1 SSA: specific surface area; 2 PV: pore volume; 3 PS: pore size; 4 AE: absorption edge; 5 Eg: energy 
bandgap. 

100 nm 100 nm 80 nm

200 nm

0.273 nm

(200)

5 nm

(200)

(020)1/ nm
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images of BWO–30 sample.

To investigate the textural properties, BET/BJH measurements were performed at
77 K, and the obtained results are shown in Figure 3 and Table 2. All samples exhibit
similar isotherms, categorized as type IV (according to IUPAC), with small hysteresis loops
with a relative pressure of ca. 0.7–0.9, as shown in Figure 3a. This might be caused by
irregular voids, resulting from large particles’ (plates) packing. Meanwhile, the surface
characteristics were further estimated, and the obtained results, including the specific
surface area (SSA), pore volume (PV), and pore size (PS), are presented in Figure 3b and
Table 2. It has been found that the largest values of SSA (55.3 m2 g−1) and PV (5.8–6.2 ×
10−4 cm3 g−1) are obtained for the BWO–10 sample, prepared during the shortest reaction
(10 h). Clearly, the SSA and PV values decrease with increasing the reaction duration up to
30 h (43.9 m2 g−1 and 4.1–4.4 × 10−4 cm3 g−1, respectively). All obtained data correlate
well with ACS, i.e., an increase in ACS (prolonged reaction) corresponds to a decrease in
SSA. The longer reaction time might significantly affect the crystal growth since it allows
smaller grains to grow, forming bigger crystallites. These large nanocrystallites might
also be pushed into the channels of mesopores, decreasing the pore volume. It is clearly
observed that all samples exhibit a mesoporous structure (PS = 3.9–13.7 nm). Figure 3c
shows a clear correlation between SSA and pore size.

Table 2. Textural and optical properties of BWO samples.

Catalyst ID 1 SSA/m2 g−1 2 PV/cm3 g−1 × 10−4 3 PS/nm 4 AE/nm 5 Eg/eV

BWO–10 55.3 5.8–6.2 3.9–9.9 433.0 2.87

BWO–15 51.5 5.7–6.0 4.3–10.8 442.2 2.77

BWO–20 48.7 5.3–5.7 4.7–11.7 450.0 2.75

BWO–25 44.8 4.5–4.8 5.4–13.4 460.3 2.67

BWO–30 43.9 4.1–4.4 5.5–13.7 474.1 2.65

BWO–40 46.6 4.9–5.4 5.1–12.8 452.8 2.70
1 SSA: specific surface area; 2 PV: pore volume; 3 PS: pore size; 4 AE: absorption edge; 5 Eg: energy bandgap.
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Figure 3. (a) N2 adsorption-desorption isotherms; (b) pore size (PS) distribution; and (c) correlation
between the specific surface area (SSA) and PS of the BWO samples.

The photoabsorption features of BWO photocatalysts are displayed in Figure 4 and
Table 2. Indeed, all photocatalysts could absorb a significant portion of visible light,
i.e., the absorption edge (AE) ranges from 433.0 nm to 474.1 nm (Figure 4a). Therefore,
prepared BWO samples are expected to act as VLR photocatalysts. Moreover, an obvious
bathochromic shift in the AE (and the consequent bandgap narrowing, as displayed in
Figure 4b) with an increase in the solvothermal time correlates well with an increase in
particle/crystallite size (size-dependent light absorption), as the phonon frequency constant
increases with an increase in crystal size [78–81]. The comparison of photoabsorption
properties demonstrates that the absorption edge at the shortest wavelength (433 nm),
and thus the sample with the largest energy bandgap (2.87 eV), was prepared during
the shortest duration of solvothermal reaction (BWO–10), whereas BWO–30 exhibits the
narrowest energy bandgap and the absorption edge at the longest wavelength (i.e., 2.65 eV
and 474.1 nm, respectively), as presented in Figure 4 and Table 2.
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Figure 4. (a) UV-vis diffuse reflectance spectra; (b) the corresponding Kubelka–Munk reflectance
spectra for BWO samples.

3.2. Photocatalytic O2 Evolution

The photocatalytic activity of BWO samples in comparison to that by famous P25
(common and standard photocatalyst [82,83]) was evaluated through photocatalytic O2
generation in an aqueous solution under UV and/or vis illumination in the presence of in
situ deposited silver as an electron scavenger. It was found that O2 gas was not generated
in the absence of either a photocatalyst (direct photolysis) or light (under dark conditions).
Hence, it might be concluded that water oxidation must proceed via a photocatalytic
mechanism, i.e., the formation of charge carriers under irradiation. Indeed, O2 evolution
was observed in the presence of photocatalysts (BWO and P25) upon UV/vis and vis
irradiation, as presented in Figure 5 (and Table 3). A linear evolution of oxygen for all
samples during the whole duration of the reaction confirms the photocatalytic mechanism
(not a “light-initiated” dark reaction), also revealing the high photostability of all materials.
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Figure 5. The photocatalytic O2 generation: (a) under UU/vis; and (b) vis irradiation over BW-10,
BWO-15, BWO-20, BWO-25, BWO-30, BWO-40, and P-25 photocatalysts.
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Table 3. Photocatalytic activity over P25–TiO2 and BWO photocatalysts.

Catalyst ID

Under UV-Vis Irradiation Under Vis Irradiation

Evolved O2
Amount/
µ mol

Evolved O2 Rate/
µ mol h−1 R2

Evolved O2
Amount/
µ mol

Evolved O2 Rate/
µ mol h−1 R2

BWO–10 18.99 9.54 0.9998 4.55 2.27 0.9999

BWO–15 20.45 10.24 0.9999 6.78 3.40 0.9999

BWO–20 22.89 11.44 0.9997 9.31 4.66 0.9999

BWO–25 25.87 13.00 0.9999 11.22 5.62 0.9999

BWO–30 26.78 13.40 0.9999 15.45 7.74 1.0000

BWO–40 24.98 12.53 0.9998 12.89 6.43 0.9999

P25 14.13 7.10 0.9998 0.011 0.006 0.9999

R2: regression coefficient.

Under UV/vis irradiation, all BWO samples exhibit much higher activity than that of
one of the most active titania photocatalysts (P25) with similar surface properties (BET of
ca. 50 m2 g−1 [84]) (Figure 5a). However, the crystallinity of BWO samples is much worse
than that in P25 (>90% estimated by the same method [84]), but ACS of BWO is smaller
than that in titania (25.3 and 39.6 nm for anatase and rutile, respectively) [84]). Accordingly,
it might be concluded that a well-organized nanostructure (2D) might be responsible for
the better performance of BWO. Moreover, as expected, P25–TiO2 is hardly active under vis
irradiation due to a much wider bandgap (>3.0 eV) and, thus, a shorter wavelength edge (λ
< 400 nm) (Figure 5b). The photocatalytic activity of BWO photocatalysts enhances with an
increase in the synthesis time up to 30 h, reaching 13.40 µmol h−1 and 7.74 µmol h−1 of
oxygen evolution rate under UV/vis and vis, respectively (BWO–30 sample), as shown in
Figure 5 and Table 3.

Notably, the specific surface area is commonly considered one of the main factors
controlling photocatalyst performance (similar to “dark” catalytic reactions). In this con-
text, a large specific surface area could: (i) enhance the incident light-harvesting ability,
(ii) create surface-active sites, (iii) promote the reactant molecules’ adsorption on the surface
of the photocatalyst, (iv) increase the rate of reactants’ formation (e.g., reactive oxygen
species), and thus significantly boost the photocatalytic performance for various applica-
tions (specifically, photocatalytic degradation of hazardous organic compounds) [85–88].
Surprisingly, the most active sample (BWO–30) is characterized by the smallest specific
surface area (Table 2), implying that the specific surface area of the fabricated photocatalysts
is not the reason behind increasing the photocatalytic activity in the current study. Similar
findings have also been observed elsewhere [89–92]. It might be proposed that, in the
case of direct redox reactions via photogenerated charges (here, silver reduction and water
oxidation by photo-formed electrons and holes, respectively), instead of the involvement
of intermediates (such as reactive oxygen species formed on the surface of photocatalyst;
crucial for oxidative decomposing of organic compounds), the specific surface area does not
govern photocatalytic performance. Therefore, other properties should be decisive for pho-
tocatalytic performance. Among them, crystallinity, nanoplate morphology, mesoporous
structure (PS = 5.5–13.7 nm), and improved light absorption ability (especially under vis)
must be considered. Indeed, the photocatalytic activity of the fabricated BWO materials
correlates well with other properties (Figures 6–8), i.e., crystallite size, crystallinity, pore
size, absorption edge, and energy bandgap.
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Figure 6. The correlation between photocatalytic activity and average crystallite size (ACS) (a,b); and
crystallinity% (c,d) of BWO samples.
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Figure 7. The correlation between photocatalytic activity and pore size (PS) of BWO samples: under
(a) UV/vis; and (b)vis irradiation.
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Figure 8. The correlation between photocatalytic O2 evolution (under UV/vis and vis irradiation)
and (a,b) absorption edge (AE); and (c,d) bandgap energy (Eg) of BWO samples.

Intriguingly, crystallite size and crystallinity are two of the most crucial factors that
significantly impact the photocatalytic activity of semiconductor photocatalysts [93,94].
However, contrary results can be found in the literature regarding the influence of crys-
tallite/particle size on photocatalytic performance, i.e., the positive [93,95,96] and nega-
tive [94,97–99] impacts. In this study, the reaction rate under both UV/vis and vis irradi-
ation increases upon an increase in the crystallite size, and the BWO–30 sample with the
largest crystallites also exhibits the best photocatalytic activity, as depicted in Figure 6a,b.
These findings could be attributed to enhancing the optical characteristics and promot-
ing the charge carriers’ separation and mobility [93]. Moreover, it has been pointed out
that the optimal value of crystallite size lies in the range of 7–15 nm for diverse photocat-
alytic applications [93,100,101]. In contrast, there is no disagreement about the impact of
crystallinity on photocatalytic activity, as it is well-documented that higher crystallinity
means better photocatalytic performance. The improved crystallinity correlates with lower
content of crystalline defects, and thus a lower rate of charge carriers’ recombination (as con-
firmed also here, by PL data; discussed further). Similarly, the dependence of crystallinity
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on charge carriers’ separation efficiency (and thus photocatalytic activity) has already
been proven for other photocatalysts, e.g., BiFeO3 [81] and TiO2 [102]. Therefore, the
BWO–30 sample possessing the largest crystallinity shows the best activity towards O2
evolution under UV/vis and vis irradiation (Figure 6c,d). Here, during the formation a of
2D structure, it might be proposed that the large size of BWO–30 indicates the perfectly
formed crystal, and thus the largest size corresponds to the best crystallinity.

Remarkably, the mesoporous structure introduces efficient paths for reactants’ transfer
to reactive sites (mass transfer) and also improves multiple scattering of light, resulting
in effective photon absorption and, hence, boosting photocatalytic activity [103–105]. As
displayed in Figure 7a,b, the photocatalytic O2 evolution rate (under UV/vis and vis
irradiation) improves upon an increase in the pore size of the synthesized BWO speci-
men, and the BWO–30 sample with the largest pore size exhibits the best photocatalytic
activity. This might be caused by improved water adsorption and enhanced light penetra-
tion into the photocatalyst in the presence of larger pores, as already suggested in other
reports [103–105].

Moreover, photocatalytic activity firmly relies on the optical properties of photocata-
lysts. In this sense, the photocatalytic O2 generation rate (under UV/vis and vis irradiation)
increases upon an increase in the absorption edges (the efficient use of more photons)
and, thus, a decrease in energy bandgaps (Eg) of fabricated BWO (the BWO–30 sample
shows the superior photocatalytic performance) (Figure 8a–d). In addition, the nanoplate
morphology is beneficial for charge carriers’ separation/transfer and efficient light har-
vesting ability, allowing multiple irradiation reflection (similar to photonic crystals [106]).
Therefore, it should be concluded that the photocatalytic activity of BWO might be signifi-
cantly enhanced by changing the physical properties via reaching the optimal conditions
of solvothermal reaction, e.g., reaction time (here: 30 h). However, the prolonged reaction
might also cause a decrease in photocatalytic activity because of a reduction in the quality
of materials. For example, a 40 h solvothermal reaction causes a decrease in crystallinity
(a higher density of crystalline defect).

To confirm that properties (mainly crystallinity) influence the h+/e− recombination
and, thus, the photocatalytic efficiency, PL spectroscopy was carried out, and the find-
ings are presented in Figure 9. All BWO photocatalysts display photoluminescence at ca.
468.7 nm (after excitation at 420 nm), which correlates well with charge carries’ recombina-
tion [107]. However, the PL intensities between samples differ significantly. Indeed, the
BW–30 sample with the highest crystallinity (and photocatalytic activities) possesses the
weakest PL intensity (i.e., the best efficiency of photoinduced charge carriers’ separation),
whereas the strongest PL signal (i.e., the fastest charge carries’ recombination rate) is ob-
tained by the BWO–10 sample with the worst crystal properties. It has been confirmed
that reaching optimal conditions of solvothermal reaction is important for getting the best
photocatalytic performance, and thus, prolonged reaction (here > 30 h) might cause the
preparation of samples with unfavorable crystalline defects.

To confirm the long-term photostability, the recyclability experiments were carried
out for the most active sample (BW–30) during five cycles under vis irradiation, and the
obtained data are displayed in Figure 10a. The high photocatalysis stability has been
confirmed with only a slight change in oxygen generation between the first and fifth
cycles (from 15.45 µmol to 14.89 µmol). Furthermore, XRD analysis of a recycled sample
indicates that crystalline properties have not been changed (Figure 10b). Therefore, it
could be proposed that 2D mesoporous BWO nanoplates are promising photocatalysts for
vis applications, especially oxidation reactions). Indeed, 2D BWO photocatalysts exhibit
superior photocatalytic activity toward O2 evolution, as compared to recently reported
photocatalytic materials (Table 4) [2,108–110].
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Table 4. Comparison of photocatalytic O2 evolution efficiency over the prepared BWO photocatalyst
and other photocatalysts in recent works.

Catalyst/
Dose (g) Light Source Reactant Suspension Irradiation

Time (min)
O2 Rate

(µmol h−1) Ref.

g-C3N4/
Ag3PO4/

0.3
white LED light 100 mL aq. solution

(1 g AgNO3) 60 3.30 [108]

g-C3N4/
MoS2

Ag3PO4/
0.3

white LED light 100 mL aq. solution
(1 g AgNO3) 40 6.99 [109]

Ti/
BiFeO3/

0.01

300-W Xe lamp, λ > 420 nm;
UV cut–off filter: Y–42)

80 mL aq. solution
(0.14 g AgNO3 + 0.16 g La2O3) 360 2.74 [2]

MoS2/
MnWO4/

0.05

300-W Xe lamp, λ > 420 nm;
UV cut–off filter: Y–42)

200 mL aq. solution
(0.03 M AgNO3 + 0.2 g La2O3) 180 5.19 [111]

2D Bi2WO6/
0.05

Hg lamp, λ > 290 nm
5 mL aq. solution

(0.05 M AgF) 120

13.40
This
work300-W Xe lamp, λ > 420 nm;

UV cut–off filter: Y–42) 7.74

Finally, the mechanism of photocatalytic water oxidation on BWO photocatalyst
(BWO–30) might be proposed (Figure 11). The edge potentials of the valence band (EVB)
and conduction band (ECB) have been estimated using the Mulliken electronegativity theory
(Equations (1) and (2)) [111]:

ECB = χ − Ee − 0.5Eg (1)

EVB = ECB + Eg (2)
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Here, Eg is the energy bandgap of BWO–30 (2.65 eV); χ is the absolute electronega-
tivity of Bi2WO6 (6.36 eV); and Ee is free electrons energy in the hydrogen scale (4.5 eV).
Accordingly, estimated ECB and EVB are equal to 0.54 and 3.19 V, respectively. Therefore,
it is possible to reduce silver cation (Ag+) into silver atom (Ag), as the ECB (0.54 V) of
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the photocatalyst is less positive than the standard redox potential of Ag+/Ag (0.7996 V).
Moreover, water can be oxidized into O2, as the EVB (3.19 V) of the photocatalyst is more
positive than the standard redox potential of H2O/O2 (1.23 V). Based on the above results,
the mechanism of photocatalytic water oxidation over BW–30 (in the presence of AgF as an
electron scavenger) has been proposed as the following: The h+/e− pairs are generated
under irradiation (both UV and vis could be used) since electrons (e–) are transferred from
the VB to the CB, leaving holes (h+) at VB of the photocatalyst (Equation (3)).

The photogenerated charge carriers (e−CB and h+
VB) migrate to the photocatalyst

surface. Finally, the Ag+ cation (from AgF in the reaction suspension, Equation (4)) reacts
with e−CB to produce zero-valent silver (Equation (5)) and h+

VB oxidizes water to form O2
(Equation (5)). Furthermore, the obtained Ag nanoparticles, loaded on the surface of BWO,
might improve the photocatalytic activity and performance (working as a co-catalyst). It
should be pointed out that the released proton (from water oxidation, Equation (6)) could
not be reduced into H2, because the ECB of BWO–30 photocatalyst (0.54 V) is more positive
than the standard redox potential of H+/H2 (0.0 V). Therefore, acidification of reaction
suspension is proposed, e.g., as summarized in exemplary Equation (7).

Bi2WO6 + hν→ e−CB + h+
VB (3)

AgF→ Ag+ + F− (4)

e−CB + Ag+ → Ag (5)

2h+
VB + H2O→ 2H+ +

1
2

O2 (6)

H+ + F− → HF (7)

4. Conclusions

The facile template-free solvothermal reaction has proven to be an efficient method
for the preparation of a 2D porous BWO photocatalyst. BWO material shows significant
activity in photocatalytic water oxidation under both UV and vis irradiation. The con-
ditions of the solvothermal reaction are critical for the properties of BWO and, thus, the
resultant photocatalytic performance. It has been found that a 30 h solvothermal reaction
at 433 K results in the preparation of the most active photocatalyst with the best properties,
i.e., nanoplate morphology (2D), mesoporous structure, high crystallinity (low content of
defects) and efficient light harvesting ability. To the best of our knowledge, this is the first
work displaying that 2D mesoporous BWO nanoplates could be successfully synthesized by
a template-free solvothermal method and subsequently used for enhanced photocatalytic
water oxidation under UV/vis and vis irradiation. Therefore, this study opens the door for
other applications of BWO photocatalysts under natural solar radiation.
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