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Abstract: An eco-friendly two-step synthetic method for synthesizing Pd@PdPt/CNTs nanoparticles
was introduced and studied for the methanol oxidation reaction. The Pd@PdPt alloy core-shell
structure was synthesized by preparing a surfactant-free monodispersed Pd/CNTs precursor through
the hydrolysis of tetrachloropalladate (II) ion ([PdCl4]2−) in the presence of carbon nanotubes (CNTs)
and the subsequent hydrogen reduction and followed by a galvanic replacement reaction. This
method opens up an eco-friendly, practical, and straightforward route for synthesizing monometallic
or bimetallic nanoparticles with a clean surfactant-free electrocatalytic surface. It is quite promising
for large-scale preparation. The Pd@PdPt/CNTs electrocatalyst demonstrated a high specific mass
activity for methanol oxidation (400.2 mAmgPt

−1) and excellent stability towards direct methanol
oxidation compared to its monometallic counterparts.

Keywords: core-shell; PdPt alloy; nanoparticles; electrocatalysis; fuel cells; methanol oxidation

1. Introduction

Critical issues such as global warming, the energy crisis, and air pollution have
stimulated intensive research on energy storage and conversion from alternative energy
sources [1–5]. Direct methanol fuel cells (DMFCs) are attractive energy conversion devices
that have received extensive studies in the last couple of decades [6–12]. Compared to
proton exchange membrane fuel cells (PEMFCs), DMFCs exhibit a unique advantage
because methanol is an abundant and inexpensive liquid fuel with a high volumetric
energy density and easy handling, storing, and transporting [13,14].

Due to the excellent performance activity and durability, platinum (Pt)-based nano-
materials are the most promising electrocatalysts used as the cathode and anode in
DMFCs [15–18]. However, a large amount of Pt is required for a practical activity with
high costs that hinders the commercialization of PEMFCs. In the literature, researchers
have been devoted to developing electrocatalysts with improved Pt use and enhanced
catalytic activity [19–22]. Among them, palladium-platinum (PdPt) electrocatalysts have
received considerable interest recently as Pd costs much less than Pt (one-quarter of Pt).
Additionally, the electrochemical stability of Pd is higher than other transition metals such
as iron (Fe), copper (Cu), nickel (Ni), or cobalt (Co). Co-reduction is one of the most
commonly used and convenient approaches to prepare PdPt electrocatalysts [23–26]. The
enhanced electrocatalytic activity is mainly due to the electronic effect caused by the in-
teraction between Pd and Pt. This synergetic effect correlated with the composition of
PdPt electrocatalyst was also reported though there was no consensus concerning the
optimal molar ratio due to variations in the experimental conditions [26–29]. A template-
assisted method is versatile for synthesizing PdPt materials with various morphologies
since the final products usually inherit the same morphology as the templates [30–32].
The morphology of the PdPt was proved to greatly influence the electrocatalytic activity
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of the catalysts originating from the increase in surface area and the changes in surface
crystallinity. PdPt-based core-shell electrocatalysts have recently received considerable
attention owing to their excellent electrochemical performance. Pd@Pt core-shell structure
can be achieved by electrodeposition [33], galvanic displacement [12,34,35], or physical
process [36,37]. The coating of Pt on the Pd surface will greatly increase the surface area of
Pt, thus enhancing Pt use. Moreover, the core and shell interaction gives electrocatalytic
activity and improved stability. All the methods mentioned above involve surfactants to
achieve a small size of better size distribution.

Herein, green surfactant-free synthesis of Pd@PdPt/CNTs nanocomposite via a two-
step method for highly efficient methanol electro-oxidation has been investigated. The
surfactant-free synthetic process can even control the size and distribution of Pd nanopar-
ticles on the carbon nanotubes (CNTs). Pd/CNTs template precursor was first prepared
through a green surfactant-free synthetic method involving the hydrolysis of [PdCl4]2−

to yield monodispersed palladium oxide (PdO), which were then reduced by hydrogen
to produce Pd nanoparticles. This green synthetic method provides a surfactant-free (i.e.,
clean) Pd surface to construct Pd@PdPt structure via galvanic replacement and no fur-
ther washing step is required to remove surfactants and capping agents. This method is
beneficial for the large-scale production of this kind of electrocatalyst. Due to the non-
involvement of surfactants and capping agents in the synthetic process, the expression
of an absolutely clean and active electrocatalytic surface benefits galvanic replacement
reaction and electro-oxidation of methanol. Electrochemical studies demonstrated that the
as-prepared Pd@PdPt/CNTs displayed superior performance for methanol oxidation.

2. Materials and Methods
2.1. Synthesis of Electrocatalyst
2.1.1. Preparation of Pd/CNTs Template Composite Precursor

The multi-wall carbon nanotubes (MWCNTs) were purchased from Fortune. MWCNTs
(100 mg) was refluxed in concentrated nitric acid (HNO3, 65 wt.%, 100 mL) under 80 ◦C for
16 h. The black acid-treated MWCNTs was centrifuged and washed until a pH value of
around 6 was achieved. The acid-treated MWCNTs was dried under 80 ◦C for 16 h and
kept for further use.

Acid-treated multi-wall carbon nanotubes (MWCNTs, 0.2 mg) were dispersed in Milli-
Q water (50 mL) under ultrasonic for 30 min. The black dispersion was heated to 60 ◦C
at an oil bath. A desired amount of K2PdCl4 was added into the above dispersion while
stirring. The mixture was then stirred for 2 h to complete hydrolysis [PdCl4]2−. The black
solid was separated by centrifugation and washed twice with Milli-Q water.

For the reduction process, the as-obtained black solid was re-dispersed in Milli-Q
water (50 mL) in a round-bottom flask and was bubbled with pure hydrogen for 10 min.
The flask was sealed under hydrogen protection and the mixture was heated to 60 ◦C for
2 h. The product was collected by centrifugation, washed, and dried. The preparation
process for the Pt/CNTs was the same as that of the Pd/CNTs composite precursor.

2.1.2. Preparation of Pd@PdPt/CNTs

Pd/CNTs template composite precursor (1 mg) was dispersed into Milli-Q water
(5 mL) in a vial by sonication for 5 min. A desired amount of K2PtCl4 was added to the
dispersion. The vial was heated to 90 ◦C and stirred for 1 h. The product was collected by
centrifugation, washed with Milli-Q water, and dried.

2.2. Materials Characterization

The morphologies of the as-synthesized materials were characterized by a transmission
electron microscope (TEM) equipped with energy-dispersive X-ray spectroscopy (EDX).
High-resolution transmission electron microscope (HR-TEM) and selected area electron
diffraction (SAED) were performed on the field emission-transmission electron microscope
(FE-TEM, JEOL JEM-2011F).
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The crystal planes of the as-synthesized materials were identified by powder X-ray
diffraction (XRD) using Rigaku SmartLab with a CuKα (λ = 1.541862 Å) radiation, operating
at 45 kV and 200 mA, with a scanning rate of 0.05◦/s and 2-theta ranging from 20◦ to 90◦.

X-ray photoelectron spectroscopy (XPS) studies were also carried out using Axis Ultra
DLD XPS system equipped with monochromatic Al−Kα radiation of 1486.6 eV and an
electron take-off angle of 90◦. The pressure of the sample chamber was kept at 10−8 Torr
during analysis. The spectrum was recorded in the binmr1ding energy (B.E.) range of
0.00 to 1400.00 eV with a step size of 1.00 eV. The binding energy was referenced with the
C 1s peak of the carbon at 285.0 eV.

The mass loading on the carbon nanotubes supporting samples was measured by
induced coupled plasma mass spectrometry (ICP-MS).

2.3. Electrochemical Measurements

All electrochemical measurements were conducted on the CHI660D electrochemistry
station at room temperature using a conventional three-electrode system. The saturated
calomel electrode (SCE) and Pt foil were used as the reference and counter-electrodes,
respectively. All the potentials reported referred to SCE unless otherwise stated. For
the preparation of the working electrode, the electrocatalyst (1 mg) was dispersed into
a mixture of water (800 µL) and isopropanol (200 µL) under ultrasonic for 30 min. The
dispersion solution (2 µL) was cast on the glassy carbon electrode (GCE). After drying in
air, Nafion solution (0.05%, 2 µL) was dropped on the GCE to improve the attachment.
Cyclic voltammetry and chronoamperometry were performed for diagnostic purposes and
catalytic activity investigation. The working electrolyte was purged with pure nitrogen for
15 min before each measurement.

3. Results and Discussions
3.1. Synthesis of Pd@PdPt/CNTs Electrocatalyst

The synthetic diagram of Pd@PdPt/CNTs is illustrated in Scheme 1. PdO/CNTs
was synthesized by hydrolysis of K2PdCl4 in the presence of carbon nanotubes (CNTs).
Due to the high affinity of Pd toward oxygen, [PdCl4]2− would first coordinate with the
oxygen-containing functional groups present on the CNTs surface and slowly hydrolyze to
yield supported monodispersed PdO nanoparticles. The resulting PdO was subsequently
reduced to Pd nanoparticles by hydrogen under 60 ◦C to generate a surfactant-free surface
for further modification. PdPt alloy coating of the Pd nanoparticles was achieved by the
galvanic replacement between [PtCl4]2− and Pd. Several reports in the literature discussed
that the driving force for alloy formation is mainly due to the difference in the surface
free energy [38,39]. The surface free energies of Pt and Pd are 2.204 Jm−2 and 1.743 Jm−2

respectively [40]. Based on this premise, the significant difference of surface free energy
makes the direct PdPt alloying process occur on the surface of Pd nanoparticles.

This synthetic protocol is environmentally benign as it does not involve any surfactants
and capping agents. It can achieve better particle size distribution and avoid further
washing steps to remove surfactants. Hence a clean electrocatalytic surface is expressed,
which is beneficial and ensures efficient galvanic replacement and the later electro-oxidation
of methanol. Moreover, it is applicable for mass production with a high demand for fuel
cell electrocatalysts production.

3.2. Physical Characterization of Electrocatalysts

CNT is a superior supporting material for precious metals such as Pt and Pd to enhance
their use when used as electrocatalysts for PEMFCs. It has stimulated numerous research
works in studying the electrochemistry of CNTs supported metal nanoparticles [41–43]. It
has been reported recently that CNTs could be used as supporting material and reducing
agents for the fabrication of M/CNTs composites (where M is Pt or Au) [44]. Xie et al. also
demonstrated successful synthesis of Pd/graphene composite through the redox reaction
between [PdCl4]2− and graphene.
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Scheme 1. The schematic diagram illustrates the synthesis of Pd@PdPt/CNTs nanoparticle electrocatalyst.

However, in our present work, the PdO/CNTs composite was obtained before the
reduction by hydrogen, which was examined by XRD analysis (Figure 1b, labeled in black).
A relatively strong diffraction peak appears with a diffraction angle of 34 degrees in the
diffraction pattern corresponding to the [101] crystal plane of PdO [45]. The XRD pattern
of as-synthesized PdO/CNTs aligns well with the standard diffraction pattern, supporting
our proposal of oxide formation.

The discrepancy between our synthetic protocol and that reported in the literature
might be the different synthetic reaction conditions. A relatively high temperature (60 ◦C)
in our presented preparation was employed, whereas 0 ◦C was chosen in Xie’s preparation.
Hydrolysis of [PdCl4]2− could occur at 60 ◦C to form stable PdO nanoparticles, hindering
the electron transfer from CNTs to Pd2+. Moreover, the redox potential of graphene and
CNTs also plays a critical role as it closely depends on the physical state of the graphene
layer [46,47].

Hydrogen was chosen as the reducing agent to reduce PdO to Pd as it does not
contaminate any metal particles with organic residue. The formation of Pd nanoparticles
was proven by the XRD analysis, which shows typical face center cubic (fcc) diffractions
(Figure 1b, labeled in red) with the most intensive diffraction peak of [111] crystal plane.
The morphology of the Pd/CNTs composite was characterized by TEM. As shown in
Figure 1a, monodispersed Pd nanoparticles with a diameter of 3.5 nm are decorated on the
surface of CNTs. HR-TEM and FFT confirm that the nanoparticles present are Pd with a
d-spacing of 2.26 Å, which is corresponded to the [111] crystal plane of Pd.

To further confirm the formation of PdO, the same procedure was repeated in H2SO4
(0.1 M) instead of Milli-Q water. The TEM micrograph of the resultant CNTs confirms
that no nanoparticles are formed on its surface (Figure 2). It suggests that the hydrolysis
[PdCl4]2− is wholly inhibited under an acidic medium.

Furthermore, the introduction of [PdCl4]2− to CNTs led to a decrease in the solution
pH by 2 (Table 1), which implies that hydrolysis takes place. To investigate the effect of
the Pd precursor on the overall loading, the hydrolysis was repeated using solutions with
different concentrations of Pd ions. Increasing the concentration of the initial [PdCl4]2−

solution, the overall metal loading increased from 6.1% to 58.0%. The sizes of the Pd
nanoparticles were also increased slightly from 2.3 nm to 3.6 nm (Figure 3). Despite
increasing the overall Pd loading, no significant nanoparticle aggregation is observed even
without surfactants and capping agents.
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Table 1. pH value of the relevant solutions.

Solution pH

Milli-Q water 5.62
CNTs + Milli-Q water 5.32

K2PdCl4 4.21
CNTs + K2PdCl4 3.45
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The as-prepared surfactant-free Pd/CNTs was allowed to be stirred in [PtCl4]2−

solution for the galvanic replacement to yield Pd@PdPt/CNTs. After decoration by Pt,
no apparent changes in morphology are observed, as shown in Figure 1c. However, a
d-spacing of 2.28 Å correlating with the [111] crystal plane is obtained by the HR-TEM
(inset of Figure 1c), indicating the formation of a PdPt alloy [31–33,48]. The slight increase
in d-spacing was further confirmed by XRD measurement in which a slight decrease in all
diffractions peaks is observed. Furthermore, the EDX analysis also proves the presence of
the Pt with the atomic ratio of Pd to Pt of 2.6:1 as shown in Figure 1d.

3.3. Electrochemical Characterization of Pd@PdPt/CNTs Electrocatalyst

The as-prepared composite was characterized by cyclic voltammetry in H2SO4 (0.1 M)
to further verify the successful decoration of Pd surface by PdPt alloying. The CV curves for
Pd/CNTs, Pt/CNTs and Pd@PdPt/CNTs are presented in Figure 4a. A noticeable change
can be observed for the Pd/CNTs after modification by Pt. In the characteristic hydrogen
region, namely between −0.24 V and 0 V (vs SCE), both the adsorption and desorption
peaks shifted negatively. On the other hand, considering the metal oxide reduction region
between 0.4 V and 0.8 V, the intensity of the metal oxide reduction peak decreased for
Pd@PdPt/CNTs compared to that of Pd/CNTs accompanied by a positively shift of the
onset potential, which indicates the coating of PdPt alloy on the surface of Pd nanopar-
ticles. These results can be attributed to the presence of PdPt alloy on the surface of Pd
nanoparticles, which could modify the hydrogen adsorption and desorption characteristics
and the metal oxide formation and reduction upon electrochemical cycling [49].
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The Pd@PdPt/CNTs catalyst displayed an excellent electrochemical performance
towards methanol oxidation. The CVs of methanol oxidation in H2SO4 solution (0.1 M)
containing methanol (0.1 M) using Pt/C, Pt/CNTs Pd/CNTs, and Pd@PdPt/CNTs are
displayed in Figure 4b. The current values were normalized to the total metal mass of
catalysts measured by ICP-MS. It is well known that Pd is inert towards methanol ox-
idation. The CV of Pd/CNTs in H2SO4 (0.1 M) containing methanol (0.1 M) shows no
observable peak corresponding to methanol oxidation which confirms the inactiveness of
Pd towards methanol oxidation. However, the Pd@PdPt/CNTs displayed superior activity
for methanol, as demonstrated by the CVs in Figure 4. The specific mass activity at 0.55 V
on Pd@PdPt/CNTs (400.2 mAmgPt

−1) is 2.8 times that of commercially available Pt/C
(142.8 mAmgPt

−1) and 2.4 times of Pt/CNTs (164.1 mAmgPt
−1). Compared to Pt contain-

ing electrocatalyst towards methanol oxidation reaction in the literature, as-synthesized
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Pd@PdPt/CNTs demonstrates a higher specific mass activity as summarized in Table 2.
Moreover, the onset potential for the methanol oxidation revealed a negative shift of around
40 mV for the Pd@PdPt/CNTs (ca. 0.117 V) compared to that of Pt/C and Pt/CNTs (ca.
0.153 V). The enhanced electrocatalytic activity of the Pd@PdPt/CNTs could be ascribed
to the synergetic effect caused by the formation of the PdPt alloy. The PdPt alloy has a
modified electronic structure compared to its monometallic counterparts; therefore, the
improvement of electrocatalytic properties results [50–52]. To further investigate the elec-
tronic structure of electrocatalysts, X-ray photoelectron spectroscopy (XPS) was conducted
to study the binding energy of the Pd atoms present. As depicted in Figure 5, the binding
energy of Pd5/2 and Pd3/2 for Pd@PdPt/CNTs and Pd/CNTs was 335.1 eV, 340.4 eV and
335.7 eV, 340.9 eV, respectively. The binding energy for the Pd@PdPt/CNTs was lower than
that of the Pd/CNTs unambiguously, indicating the modification of the electronic structure
due to the alloy formation. The surface ratio of Pd to Pt measured by XPS analysis is found
to be around 1:1, which is lower than the atomic ratio of Pd to Pt measured by EDX analysis
(2.6:1). It could be explained that XPS analysis is a surface characterization method without
detecting the signal originating from the Pd core and thus resulting in a higher atomic ratio
of Pt. This finding is consistent with the Pd@PdPt/CNTs core-shell structure as proposed.

Table 2. The Specific mass activity for Pd containing electrocatalysts towards methanol oxidation reaction.

Electrocatalyst Specific Mass Activity
(mAmgPt−1) Reference

PtPd nanocubes 340 [53]
PtCo nanoflowers 380 [54]

Pt/C 142.8 -
Pt/CNTs 164.1 -

Pd@PdPt/CNTs (This study) 400.2 -
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Long term stability is a critical issue for developing efficient electrocatalysts. The
chronoamperometry results of Pt/C, Pt/CNTs and Pd@PdPt/CNTs in 0.1 M H2SO4 + 0.1 M
methanol are displayed in Figure 6. The polarization potential was set at 0.45 V and was
held for 1000 s. The Pd@PdPt/CNTs exhibited the highest current response throughout the
whole measurement. The retained current for Pd@PdPt/CNTs, Pt/C and Pt/CNTs were
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33.4%, 28.3% and 21.2% respectively, demonstrating that the Pd@PdPt/CNT exhibits the
highest stability among the three electrocatalysts. To further investigate the stability of the
as-synthesized Pd@PdPt/CNTs electrocatalyst, the accelerated durability test (ADT) was
also performed by conducting continued CV cycles. The as-synthesized Pd@PdPt/CNTs
electrocatalyst achieves high stability for 10 CV cycles without a noticeable change.
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4. Conclusions

Pd@PdPt/CNTs nanoparticles electrocatalyst was successfully synthesized through a
two-step method. A surfactant-free monodispersed Pd/CNTs as a precursor was prepared
by hydrolysis of [PdCl4]2− in the presence of CNTs and subsequently by hydrogen reduc-
tion. The Pd@PdPt alloy core-shell electrocatalysts were obtained through the galvanic
replacement reaction. The synthetic method is environmentally benign since no surfactants
and capping agents are involved, demonstrating an effective and simple route for preparing
monometallic or bimetallic nanoparticles with an absolutely clean surfactant-free electro-
catalytic surface. It is quite promising for large-scale preparation. The Pd@PdPt/CNTs
electrocatalyst exhibits a high electrochemical activity and excellent stability towards direct
methanol oxidation.
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