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Abstract: Photocatalytic production from water is considered an effective solution to fossil fuel-related
environmental concerns, and photocatalyst surface science holds a significant interest in balancing
photocatalysts’ stability and activity. We propose a plasma-wind method to tune the surface properties
of a photocatalyst with an amorphous structure. Theoretical calculation shows that the amorphous
surface structure can cause an unsaturated coordination environment to adjust the electron distribution,
forming more adsorption sites. Thus, the photocatalyst with a crystal–amorphous (C–A) interface
can strengthen light absorption, harvest photo-induced electrons, and enrich the active sites, which
help improve hydrogen yield. As a proof of concept, with indium sulfide (In2S3) nanosheets used as
the catalyst, an impressive hydrogen production rate up to 457.35 µmol cm−2 h−1 has been achieved.
Moreover, after plasma-assisted treatment, In2S3 with a C–A interface can produce hydrogen from
water under natural outdoor conditions. Following a six-hour test, the rate of photocatalytic hydrogen
evolution is found to be 400.50 µmol cm−2 g−1, which demonstrates that a catalyst prepared through
plasma treatment is both effective and highly practical.

Keywords: photocatalytic hydrogen evolution; crystal–amorphous interface; plasma-wind treatment;
indium sulfide

1. Introduction

Overusing fossil fuels is the primary cause of global environmental problems and the
energy crisis. Photocatalytic hydrogen production from water is a promising green route to
address such issues. With its high energy density, hydrogen gas is a clean replacement for
fossil fuels [1–5]. However, a significant obstacle to the industrialization of photocatalytic
hydrogen production is low conversion efficiency. Many strategies have been therefore
proposed to enhance the optical, electrical, and catalytic properties of photocatalysts to
improve their efficiency, including heterojunction structural design [6,7], the introduction
of plasmonic materials [8–10], defect engineering (e.g., oxygen or sulfur vacancy) [11,12],
phase transition [13,14], and single-atom catalysis [15–17]. It is worth noting that catalysis is
a surface redox reaction on the photocatalyst, where the water molecules split into hydrogen
and oxygen [18]. Therefore, it makes sense to tune and improve the surface structure of
photocatalysts to enhance their reactive interface with water molecules. However, some
photocatalysts’ surface structure can usually be adversely affected in the liquid water
environment, degrading catalytic stability and the chemical reaction. Thus, any industrially
promising photocatalyst for hydrogen evolution reaction should balance material stability
and activity with a harmonized surface structure design.
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We report a plasma-wind strategy to realize the “surface amorphous engineering” to
improve photocatalysts’ surface structure. A photocatalyst with a crystalline–amorphous
(C–A) interface can boost light absorption and accelerate charge transfer [19–21]. In this
work, In2S3 nanosheets are used as a typical catalyst with plasma treatment to obtain a
tunable amorphous surface structure. In2S3 is a standard IIIA-VIA semiconductor that can
be prepared through sol–gel or hydrothermal methods. This nanosheet has been researched
as a visible-light-driven photocatalyst for water splitting and degradation [22–25]. Based
on experimental observations and theoretical calculations, the coordination environment in
the In2S3 nanosheet has been tuned through the plasma treatment. Thus, plasma-treated
In2S3 (P-In2S3) with rich active sites has been achieved. Furthermore, considering the
convenience of this plasma treatment, we have tested a practical model under natural
outdoor conditions for further development, which displays the potential of this technique
for industrialization.

2. Materials and Methods
2.1. Synthesis of the In2S3

FTO glass was pre-cleaned through ultrasonic cleaning in ultrapure water and ethanol.
After that, FTO glass was further treated with UV cleaning. InCl3 (0.05 g), thioacetamide
(0.05 g), and the treated FTO glass were added into a Teflon-lined stainless steel autoclave.
Then, 40 mL of ultrapure water was added to obtain a mixed solution. The autoclave
was heated at 150 ◦C (about 0.4 MPa) for 6 h and cooled to room temperature naturally.
Hereafter, the resulting samples were named In2S3.

2.2. Synthesis of the P-In2S3

The prepared In2S3 in FTO was placed in the plasma-treatment device (AC220-2g).
The Ar gas was the carrier gas, and the time was set for 60 min. The power was 200 W.
The chamber pressure was 200 Torr, and the Ar flow rate was 50 cc min−1. The sample
was placed 25 mm away from the powered electrode. Then, after the reaction, the P-In2S3
was obtained.

2.3. Characterization of the Photocatalysts

The morphology and structure of the samples were characterized using a scanning
electron microscope (SEM) (FEI NOVA 450, FEI Company, Hillsboro, OR, USA) and trans-
mission electron microscope (TEM) (FEI Talos F200X). The absorption spectrum was mea-
sured using an ultraviolet-visible (UV-Vis) spectrophotometer (Perkin-Elmer Lambda 35
UV-VIS-NIR, Waltham, MA, USA). The electrochemical workstation (Chenhua 760e, CH
Instruments, Shanghai, China) was used for the photoelectric performance test. The EIS at
a frequency range from 100 kHz to 1 Hz was measured. The Raman spectra were collected
through the Renishaw with the 532 nm laser. During the catalytic measurements, the
Raman spectra were collected at the same interval voltage to eliminate the extra influence
induced through bias voltage (the measurement voltage was 0.05, 0.00, −0.05, −0.10, and
−0.15 V) under the same light intensity (5 mW), and the exposure time was 5 s.

2.4. Photocatalytic Activity

The photocatalytic reaction was conducted by photocatalysts (1 cm−2) with 50 mL
of deionized water in a quartz cell, loaded with 0.3 M Na2S and 0.3 M Na2SO3 as hole
scavengers. A light source was equipped with a fin-like heat sink for dissipating excessive
heat effectively. The incident power was measured by a power meter. The average power
was determined to be 100 mW cm−2. The gases evolved during the photocatalytic reaction
and were transferred into a sample loop by a peristaltic pump. They were further quantified
using gas chromatography (Shimadzu GC-2014c (Kyoto, Japan), Ar carrier gas, and molec-
ular sieve-5A column), equipped with a thermal conductivity detector (TCD) with a set
temperature of 422 K. The yield of hydrogen gas produced from the reactor was measured
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every 15 min. For the cyclic test, the reactor is replenished with 0.3 M Na2S and 0.3 M
Na2SO3 and degassed in a vacuum before starting the irradiation for another measurement.

2.5. Computational Details

All calculations presented here were implemented in the Vienna ab initio simulation
package (VASP 5.4, Hafner Group, Wien, Austria) [26]. The generalized gradient approx-
imation (GGA) in Perdew–Burke–Ernzerhof (PBE) format was used for the exchange-
correlation function [27]. The long-range van der Waals interaction was described by the
DFT-D3 approach [28]. The cut-off energy for the plane wave was set at 400 eV. The energy
and force convergence criteria for structure relaxations were 0.1 meV/atom and 0.03 eV/Å,
respectively. The geometry was optimized with a 3 × 3 × 1 k-mesh grid.

The bulk In2S3 constituted 80 atoms, the lattice parameters were obtained by fully
relaxing the structure, and the obtained a and c were 7.74 Å and 32.85 Å, respectively. Amor-
phous In2S3 structure was constructed by density functional theory molecular dynamics
(DFT-MD). The atoms in the crystal structure were melted at 2000 K for 7000 MD steps
and quenched from 2000 to 300 K for 7000 MD steps [29]. A surface model of In2S3 in (002)
orientation was created based on the optimized crystal and amorphous bulk geometry.
A vacuum region of 15 Å was added perpendicular to the sheet to avoid artificial interaction
between periodic images; the bottom layers of the slabs were fixed during relaxation.

The free energies were calculated by treating the H adsorbate within the harmonic
oscillator approximation, which is given by ∆G = ∆E +∆ZPE −T∆S, where ∆ZPE and ∆S
are the changes in the zero-point energy and entropy, respectively, and T is the temperature
of 298.15 K.

3. Results and Discussion
3.1. The Synthesis Process and Related Morphological, Spectroscopic Characterization

As shown in Figure 1, indium chloride and thioacetamide are used to prepare the
In2S3 nanosheets. The nucleation event of In2S3 nanosheets takes place on the surface of
fluorine-doped tin oxide (FTO) glass. The In2S3 nanosheets are distributed uniformly on
the surface of the FTO glass, and the assembly is then subject to plasma treatment. Thus, the
plasma-wind-assisted In2S3 (P-In2S3) with a C–A interface is obtained. Compared to bare
In2S3 nanosheets, there is a slight difference in the surface gloss of the P-In2S3 nanosheets.

Nanomaterials 2022, 12, 1761 3 of 13 
 

 

and were transferred into a sample loop by a peristaltic pump. They were further 
quantified using gas chromatography (Shimadzu GC-2014c (Kyoto, Japan), Ar carrier gas, 
and molecular sieve-5A column), equipped with a thermal conductivity detector (TCD) 
with a set temperature of 422 K. The yield of hydrogen gas produced from the reactor was 
measured every 15 min. For the cyclic test, the reactor is replenished with 0.3 M Na2S and 
0.3 M Na2SO3 and degassed in a vacuum before starting the irradiation for another 
measurement. 

2.5. Computational Details 
All calculations presented here were implemented in the Vienna ab initio simulation 

package (VASP 5.4, Hafner Group, Wien, Austria) [26]. The generalized gradient 
approximation (GGA) in Perdew–Burke–Ernzerhof (PBE) format was used for the 
exchange-correlation function [27]. The long-range van der Waals interaction was 
described by the DFT-D3 approach [28]. The cut-off energy for the plane wave was set at 
400 eV. The energy and force convergence criteria for structure relaxations were 0.1 
meV/atom and 0.03 eV/Å, respectively. The geometry was optimized with a 3 × 3 × 1 k-
mesh grid. 

The bulk In2S3 constituted 80 atoms, the lattice parameters were obtained by fully 
relaxing the structure, and the obtained a and c were 7.74 Å and 32.85 Å, respectively. 
Amorphous In2S3 structure was constructed by density functional theory molecular 
dynamics (DFT-MD). The atoms in the crystal structure were melted at 2000 K for 7000 
MD steps and quenched from 2000 to 300 K for 7000 MD steps [29]. A surface model of 
In2S3 in (002) orientation was created based on the optimized crystal and amorphous bulk 
geometry. A vacuum region of 15 Å was added perpendicular to the sheet to avoid 
artificial interaction between periodic images; the bottom layers of the slabs were fixed 
during relaxation. 

The free energies were calculated by treating the H adsorbate within the harmonic 
oscillator approximation, which is given by ∆G = ∆E + ∆ZPE − T∆S, where ∆ZPE and ∆S  are the changes in the zero-point energy and entropy, respectively, and T is the 
temperature of 298.15 K. 

3. Results and Discussion 
3.1. The Synthesis Process and Related Morphological, Spectroscopic Characterization 

As shown in Figure 1, indium chloride and thioacetamide are used to prepare the 
In2S3 nanosheets. The nucleation event of In2S3 nanosheets takes place on the surface of 
fluorine-doped tin oxide (FTO) glass. The In2S3 nanosheets are distributed uniformly on 
the surface of the FTO glass, and the assembly is then subject to plasma treatment. Thus, 
the plasma-wind-assisted In2S3 (P-In2S3) with a C–A interface is obtained. Compared to 
bare In2S3 nanosheets, there is a slight difference in the surface gloss of the P-In2S3 
nanosheets. 

 
Figure 1. The schematic of the fabrication process of the sample P-In2S3. 

Both samples are measured for further analyzing the surface structure. As shown in 
Figure S1, the morphology and the crystalline structure of the In2S3 sample are displayed, 

Figure 1. The schematic of the fabrication process of the sample P-In2S3.

Both samples are measured for further analyzing the surface structure. As shown in
Figure S1, the morphology and the crystalline structure of the In2S3 sample are displayed,
and the nanosheets grow vertically on the substrate. Figure 2 illustrates the morphology
and structure of the P-In2S3 sample. Similarly, the SEM image in Figure 2a shows that
the P-In2S3 sheets are vertically distributed on the substrate. As shown in Figure 2b, the
nanosheets are tangled with the black lines on the nanosheet edges, most notably the
gradually structural changing of the crystalline–amorphous (C–A) interface in Figure 2c.
The four box areas in Figure 2c show Fourier transforms. Witness how the demonstrating
microstructure changes from box 1 to box 4. Furthermore, the HRTEM and the related
filtered images (Figure 2d,e) show that the lattice fringes are inconsecutive, and some of
the lattice fringes are ambiguous, indicating the existence of an amorphous region.
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Figure 2. (a) The SEM image, (b) the TEM image, (c) the HRTEM image of the P-In2S3 sample. The
Fourier transforms of the image involving the four box areas are displayed. (d) the HRTEM image of
the P-In2S3 sample, (e) the filtered image of the red square area in (d).

To obtain the structural information, X-ray diffraction (XRD), Raman, and X-ray
spectroscopy (XPS) are used to analyze the samples. In Figure 3a, the XRD patterns of
both In2S3 and P-In2S3 nanosheets are indexable with the standard powder diffraction
card #84-1385. The peaks of the bare In2S3 nanosheets located at 2θ degrees of 27.2◦, 28.5◦,
33.5◦, 47.1◦, and 48.2◦ are attributed to crystal faces (311), (222), (400), (440), and (531),
respectively. After the plasma treatment, there is little change in the crystal face position
but the weakened intensity of the crystal face (440), exhibiting robust long-range lattice
arrangement and short-range structure conversion. As shown in Figure 3b, the different
vibration modes, A1g and E2g of In2S3, are d, with the related Raman peaks located at 244.23,
305.96, 320.69, and 360.40 cm−1, respectively [30,31]. After plasma treatment, the Raman
vibration modes have been heavily altered. The Raman vibration modes are affected by local
atomic arrangement, including factors such as stress, defects, and structural disorder [31],
thus exhibiting the partial conversion of the atomic structure.

The XPS spectra further explore the conversion of crystal structure due to plasma
treatment. Figure 3c shows high-resolution XPS spectra of elemental indium from samples.
The In 3d3/2 and 3d5/2 peaks at 441.1 and 448.7 eV for the bare In2S3 nanosheets red-shift
to 441.6 and 449.2 eV for the P-In2S3 nanosheets, respectively [32]. The red-shift of In
binding energy shows that the electron cloud density of In atoms is reduced to indicate the
coordination structure variation. Additionally, the sulfur’s 2p3/2 and 2p1/2 peak locations



Nanomaterials 2022, 12, 1761 5 of 12

at 157.8 and 158.9 eV show a b (Figure 3d), indicating the electron cloud density around
the S atom has increased [33,34], which would favor the hydrogen adsorption. All these
measurements show that the atomic structure of In2S3 nanosheets can be altered through
the plasma treatment, confirming the C–A interface present in the P-In2S3 nanosheets.
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3.2. The Photocatalytic Hydrogen Production Performance

The photocatalytic reaction activity is mainly controlled by optical properties, elec-
tronic structure, and catalytic reactivity. First, as shown in Figure 4a, the light absorption
spectra of the two samples have been measured, and the P-In2S3 sample has better light
absorption compared with bare In2S3. This implies that plasma treatment is an effective
way of improving photocatalyst optical absorption. The highest apparent quantum yield
(AQY) of bare In2S3 is just 20.1% at 380 nm, whereas the AQY of P-In2S3 at 380 nm and
420 nm is 26.2% and 19.8%, respectively.

As for electronic properties, as shown in Figure 4b, the bandgap (Eg) of these two
materials can be calculated based on the UV-vis light absorption spectra. The bandgap of
bare In2S3 is about 1.7 eV; it is about 1.5 eV for P-In2S3, which is beneficial to the use of
visible light in the catalytic reaction. The Mott–Schottky (MS) curves of the samples are
used to evaluate the carrier density (Figure 4c) preliminarily. The MS curve slope of P-In2S3
is larger than that of bare In2S3, indicating that more charge carriers exist in the P-In2S3
sample under illumination. As a result of the positive values of these MS slopes, the two
samples behave as n-type semiconductors [35]. Considering that the conduction band is
near the flat potential in an n-type semiconductor, the conduction bands of P-In2S3 and
bare In2S3 are estimated to be −0.47 eV and −0.45 eV, respectively. Based on this analysis,
the energy band structure can be summarized in Figure 4d, where the conduction band of
P-In2S3 is more negative to the H+/H2 potential than that of In2S3, favoring the hydrogen
production reaction in water molecules splitting. The changing trend of electron structure
is also supported by the theoretical calculations (Figures S2 and S3).
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The optical–electrical property is also mined through the photocurrent density, as
shown in Figure 4e. The photocurrent density of P-In2S3 is about 0.48 mA cm−2, which is
2.4 times higher than that of In2S3 (0.21 mA cm−2). Such high photocurrent density results
in a highly effective hydrogen production reaction. The charge separation efficiency (ηsep)
of the sample is calculated based on the equation

ηsep = Jsul f ite
/

Jabs
(1)

where Jsulfite is the photocurrent density with the addition of Na2SO3 in the electrolyte
solution, Jabs is the photocurrent density when the adsorbed photons completely convert
to currents. The calculated process is presented in supporting information [36,37]. The
photocurrent densities Jsulfite of the In2S3 and P-In2S3 samples are measured to be 0.21 and
0.48 mA cm−2, as shown in Figure 5e, and the Jabs of the In2S3 and P-In2S3 samples are
calculated to be 0.51 and 0.85 mA cm−2, respectively. Thus, the ηsep values of the In2S3
and P-In2S3 are 41.3 % and 56.2 %, respectively, exhibiting that the plasma treatment can
regulate the electronic structure to accelerate the separation of the charge carriers. In
addition, the electrochemical impedance curves of the P-In2S3 and bare In2S3 samples are
measured and shown in Figure 4f, where a smaller arc radius is observed for the P-In2S3
sample, implying faster interfacial electron transfer. The equivalent circuit of the impedance
curve fitting of the resistance–capacitance scheme is displayed, and the addition of the C–A
interface resulting from plasma treatment plays a crucial role in boosting electron transfer.

The active electrochemical area is a significant indication of the catalytic reaction
property of the sample. As shown in Figure S4, the electrochemical surface area in bare
In2S3 is about 3.62 mF cm−2, whereas, with P-In2S3, the electrochemical surface area is
10.88 mF cm−2, which favors hydrogen adsorption in a catalytic reaction.

Moreover, the hydrogen adsorption process is further explored through the operando
Raman measurement displayed in Figures 5a and S5. Both bare In2S3 and P-In2S3 samples
are deposited on the FTO as the working electrode. The counter and reference electrodes
are platinum and silver/silver chloride (saturated potassium chloride electrolyte). After
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hydrogen adsorption to the active regions of the catalyst surface, intermediate bonds can
form and be detected by Raman. At the same time, linear sweep voltammetry curves
are measured to monitor the catalytic reaction stage, as shown in Figure 5b. As potential
increases in value, the current density also increases in value. At the same potential,
the current density of P-In2S3 is higher than that of bare In2S3, indicating more reactive
electrons in the P-In2S3 sample. At different potentials, specifically −0.05, −0.10, −0.15,
and −0.20 V, Raman spectra are collected to analyze hydrogen adsorption in the catalytic
reaction (Figures 5c and S6). The Raman peak at 2611 cm−1 is attributed to the S−H
Raman vibration [38], which implies that the active sites are the sulfur atoms to adsorb the
hydrogen atoms. Figure 5c shows that S−H Raman intensity rises with increased potential,
suggesting that more hydrogen adsorption can be realized at a relatively high potential
range. Importantly, it is noticed that the S−H Raman intensity of P-In2S3 is higher than
that of bare In2S3 at any given potential, indicating that more hydrogen atoms are adsorbed
onto the P-In2S3 surface during the catalytic reaction process compared with that of bare
In2S3 (Figure S7).
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and CE are the reference electrode, working electrode, and counter electrode, respectively. (b) LSV
curves of the samples during the operando Raman measurement, (c) potential impact on the S–H
bond Raman intensity during the operando Raman measurement of P-In2S3. The inset scheme is
the hydrogen adsorption process of P-In2S3. (d) differential charge of hydrogen adsorption on the
crystal surface and crystal–amorphous surface structures. The yellow spheres are S atoms, and the
purple spheres are In atoms. The white sphere is the adsorption H atom. (e) Gibbs free energy of the
hydrogen adsorption.
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The theoretical calculation is applied to analyze the catalytic performance of hydrogen
adsorption (Figures 5d and S8). About 0.373 (e) electron transfer on the amorphous surface,
which is larger than that on the crystal surface (0.282 (e)). The Gibbs free energy of the
hydrogen adsorption is calculated in Figure 5e, and a value closer to zero corresponds to
better hydrogen adsorption performance [39]. On the crystal–amorphous surface, the free
energy of the hydrogen adsorption is −0.27 eV, which is closer to zero than that on the
crystal surface (−0.37 eV) in value (i.e., the absolute value of free energy of the hydrogen
adsorption on the crystal–amorphous surface is smaller than that on the crystal surface),
indicating that the crystal–amorphous surface favors the hydrogen adsorption.

Photocatalytic hydrogen production is measured with different samples, as shown
in Figure 6a. The sacrificial agents of 0.3 M Na2S and 0.3 M Na2SO3 are used to capture
photo-induced holes. At the end of a 120 min test, the amount of hydrogen production with
bare In2S3 is about 337.5 µmol, and the average hydrogen production rate is calculated
to be 168.60 µmol cm−2 h−1. In comparison, hydrogen production with P-In2S3 is about
914.7 µmol after 120 min, and the average hydrogen production rate is estimated to be
457.35 µmol cm−2 h−1 (the mass catalyst: 133 mg, converted rate 3438.72 µmol h−1 g−1).
The comparison of the measurement data from this work with other references, including
the hydrogen production rate, current density, and bandgap, has been made in Table S1
in the supporting information, exhibiting that the photocatalytic performance of P-In2S3
is dominant in these In2S3-based catalysts. These results have shown that plasma treat-
ment can substantially enhance photocatalytic hydrogen production from water. It is
easily observed from Figure 6b that the level of hydrogen production after the seventh
test (about 840 min) is slightly smaller than that of the initial stage for P-In2S3, which is in
sharp contrast to the catalytic performance of bare In2S3, which shows drastic reduction of
hydrogen production after only four test cycles, exhibiting high stability in the photocat-
alytic reaction of P-In2S3, also reflected by the morphology and structure of the samples
(Figures S9 and S10).

A schematic of the photocatalytic hydrogen production reaction using P-In2S3 is
shown in Figure 6c. After the plasma treatment of bare In2S3, the atomic arrangement of
the nanosheets is altered to form an amorphous surface layer based on the bombardment
from the plasma gas [40–42]. The amorphous region in the In2S3 nanosheets creates
an unsaturated coordination environment to tune the electron structure. Therefore, P-
In2S3 nanosheets with a C–A interface can improve light absorption and electron transfer.
Moreover, the unsaturated coordination environment from the amorphous region endows
the electrons gathering around S atoms, providing rich active sites for the catalytic reaction,
thus leading to a highly efficient hydrogen production reaction.

A practical demo of the P-In2S3 photocatalytic system to satisfy real-world conditions is
shown in Figure 6d. The P-In2S3 catalysts are laid on the surface of a perforated diaphragm,
and the photocatalyst construction is immersed in water with the sacrificial agent. Owing
to the transparency of the reactor, natural sunshine can illuminate the catalytic system. The
reaction chamber outlet is connected to a gas collector, and the collected gas is detected
through gas chromatography (GC) every two hours. A molecular hydrogen (H2) GC
signal is detected, showing that the photocatalytic reaction works under natural outdoor
conditions (Figure 6e). Three two-hour measurements are also shown in Figure 6f with a
rate of H2 production of about 400.96 µmol cm−2 g−1 at the first 2 h, and the production
rate of 400.50 µmol cm−2 g−1 after the 6 h test, indicating excellent stability.
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Figure 6. (a) accumulated amount of hydrogen production of different samples, (b) seven photocat-
alytic hydrogen production cycles of the P-In2S3 vs. four cycles of the bare In2S3, (c) the schematic of
the photocatalytic hydrogen evolution reaction of the P-In2S3, (d) the photo of the P-In2S3 photocat-
alytic system, (e) the GC signal of the gas collector after 2 h collection, and (f) the rate of H2 evolution
of the P-In2S3 photocatalytic system during the outdoor measurement.

4. Conclusions

We have designed and demonstrated a plasma-wind strategy for preparing In2S3
with an amorphous surface. We can achieve a photocatalytic water-splitting hydrogen
production rate of 457.35 µmol cm−2 h−1 with high stability. Such impressive performance
is due to the C–A interface, which improves light absorption and boosts charge carrier
transfer to gather photo-induced electrons on the catalyst surface better. More importantly,
the surface amorphous structure can cause an unsaturated coordination environment and
gather electrons around the S atoms. In addition, the active reaction sites can be enriched
as a result of the disordered atomic structure. This C–A interface can effectively balance
catalytic activity and stability. Extending the P-In2S3 photocatalytic system under natural
light conditions, a catalytic hydrogen production rate of 400.50 µmol cm−2 g−1 has been
achieved, hopefully taking photocatalytic water splitting to a whole new level in practical
energy applications.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12101761/s1, Figure S1: (a) The SEM image, (b) the TEM image,
and (c) the HRTEM image of the In2S3 sample. The inset is the Fourier transform of the black box area,
and (d) the magnified HRTEM image of the In2S3 sample. The inset is the diffraction pattern of the
sample; Figure S2: The material structures from the theoretical calculations. The yellow spheres are S
atoms, and the purple spheres are In atoms; Figure S3: (a) The band structure of the crystal In2S3,
(b) the band structure of the crystal–amorphous In2S3; Figure S4: (a) Electrochemical active area of the
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In2S3. The inset is the CVs of the In2S3 with different scan rates and (b) the Electrochemical active area
of the P-In2S3. The inset is the CVs of the P-In2S3 with different scan rates; Figure S5: The photo of the
operando Raman measurement; Figure S6: The potential impact on the operando Raman intensity of
the bare In2S3 sample; Figure S7: The S–H bond Raman intensity after background subtraction versus
the different potential during the operando Raman measurement; Figure S8: The hydrogen adsorption
on the crystal surface and crystal–amorphous surface. The yellow spheres are S atoms, and the purple
spheres are In atoms. The white sphere is the adsorption H atom; Figure S9: The morphology of the
sample after the catalytic reaction. (a) bare In2S3, (b) P-In2S3. It is noticed that the surface of the bare
In2S3 has been destroyed through the HRTEM imaging; comparatively, the structure of the P-In2S3
is well maintained; Figure S10: The Raman spectra of the P-In2S3 sample before and after catalytic
reaction; Table S1: The comparison of hydrogen production rate, morphology, current density, and
bandgap. References [24,25,43–48] are cited in the supplementary materials.
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