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Abstract: Decentralized execution is a widely used framework in multi-agent reinforcement learning.
However, it has a well-known but neglected shortcoming, redundant computation, that is, the
same/similar computation is performed redundantly in different agents owing to their overlapping
observations. This study proposes a novel method, the locally centralized team transformer (LCTT),
to address this problem. This method first proposes a locally centralized execution framework that
autonomously determines some agents as leaders that generate instructions and other agents as workers
to act according to the received instructions without running their policy networks. For the LCTT,
we subsequently propose the team-transformer (T-Trans) structure, which enables leaders to generate
targeted instructions for each worker, and the leadership shift, which enables agents to determine
those that should instruct or be instructed by others. The experimental results demonstrated that the
proposed method significantly reduces redundant computations without decreasing rewards and
achieves faster learning convergence.

Keywords: cooperation; multi-agent deep reinforcement learning; redundant computation

1. Introduction

Multi-agent reinforcement learning (MARL) has achieved impressive success in several
domains, including autonomous driving [1–5], sensor networks [6], and game playing [7,8].
Centralized training and centralized execution (CTCE) [9,10] and centralized training and de-
centralized execution (CTDE) [11,12] are two primary frameworks of MARL. In CTCE, the
information of all agents is processed in a centralized network, and the network determines
the joint actions to control all agents. However, owing to the positive and negative interfer-
ence between the actions of the agents and the exponential size of the joint action space,
CTCE can only be used in limited applications. In contrast, in CTDE, agents learn policies
in a centralized manner to avoid non-stationarity while making decisions based only on
their local observations. In this sense, the CTDE framework seems to be more appropriate
for applications of multi-agent systems (MASs) [13–18].

However, certain shortcomings of the CTDE framework have been neglected for
a long time. Specifically, redundant computation, which implies that the same or similar
computation is performed redundantly by different agents, is a well-known traditional
problem in MASs [19] and comes from overlapping observations, leading to similar as-
sociated processes in several agents. This problem widely exists in applications such as
distributed robot systems [20], distributed sensor networks [19,21] and distributed air
traffic control [22], where there is a natural spatial distribution of information and where
the agents have many overlapping observations. As shown in Figure 1a, the observations
of the decentralized executing agents contain numerous overlapping regions. Information
on agents and other entities, such as obstacles and tasks, in the overlapping regions is pro-
cessed by multiple agents to determine their actions, which superficially appears as a waste
of computational resources, particularly for cooperative tasks with communications among
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agents. By contrast, such redundant computations do not appear in CTCE because their
observations are aggregated before they are fed into the centralized network (Figure 1b).

(a) (b)

(d)

(c)

Leaders

Workers

Agent

Non-Agent Entity

Observable Area

Figure 1. MARL environments. (a) Decentralized execution: agents observe and process their local
information. (b) Centralized execution: agents process aggregated global information. (c) Locally
centralized execution: agents perform less repeated observations and processes than those in (a).
(d) Dispersed decentralized execution: agents with sparse observations.

A proper reduction in overlapping observations can significantly eliminate the waste
of computational resources without lowering the performance of an MAS. Therefore, we
propose an execution framework between centralized and decentralized executions, re-
ferred to as the locally centralized execution (LCE) framework, after centralized training (CT),
as shown in Figure 1c. By making some agents leaders that make decisions for themselves
and for other agents, called workers, within their observable regions, workers are freed from
observing their surroundings and determining their actions. The LCE framework does not
rely on aggregated observations by all agents but on the local observations of leaders; thus,
it alleviates redundant computations and reduces the cost of determining joint actions from
a combinatorial but much smaller joint action space.

Another noteworthy feature of the LCE framework is that it does not compete with
existing approaches that reduce computational expenses (e.g., pruning inputs [23] and
designing more concise network structures) because it is an extension of another indepen-
dent dimension. Thus, it can be easily integrated with them. Based on LCE, we further
demonstrate a centralized training and locally centralized execution (CTLCE) framework and
propose a locally centralized team transformer (LCTT) to generate targeted messages to other
agents. To quantitatively describe the redundant computation of an MAS algorithm, we
also define the redundant observation ratio Rdd (≥ 1), which can be used to accurately com-
pare the computational expenses of methods using deep networks with a similar parameter
number. To the best of our knowledge, this study is the first approach to address redundant
computation issues in the context of multi-agent deep reinforcement learning.

The proposed LCTT method comprises LCE, team transformer (T-Trans), and leadership
shift (LS). First, LCE is a collaboration regime in which agents are dynamically divided
into leader–worker groups according to the direction of the associated instruction messages.
Second, T-Trans applies an attention-like mechanism [24] to enable leaders to provide
targeted instructions to each worker. Finally, the leadership Q-value whose value is used
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for each agent to decide its suitability as a leader, is introduced because we must solve the
following problem for agent grouping: how to determine which agent is suitable to be the leader.
Thereafter, we propose LS, which allows a leader to designate the observable workers
that should be leaders in the next time step based on leadership Q-values. Thus, agents
continuously hand over their leadership throughout the episodes, ensuring that the most
suitable agents lead the group.

We implemented the proposed LCTT method based on QMIX [25], trained it in the
CTLCE framework, and experimentally evaluated it in level-based foraging (LBF) [7,26] and
cooperative navigation (CN) environments. The experimental results in LBF demonstrated
that the proposed method obtained comparable rewards with faster convergence while
reducing redundant computation by comparing the baselines, which are QMIX without
LCTT and multi-agent incentive communication (MAIC) [7]. Through ablation studies, we
further confirmed that LS can reduce redundant computation and mitigate the reward
decrease with the number of leaders and that the policy learned through our method can
provide effective instructions for both leaders and workers. The experimental results in
CN also clearly show the behavioral patterns of leader agents, in that they tend to stay in
specific areas to instruct workers to ensure that the agent team can achieve more rewards
and smaller redundant observation ratios.

The contributions of this study are four-fold: First, we analyze the redundant computa-
tion problem, which has been neglected for a long time, and propose a metric, theredundant
observation ratio, to describe the degree of redundant computation. Second, we intro-
duce the CTLCE framework to reduce redundant computation and enhance multi-agent
cooperation. Thereafter, we provide an LCE-based method, LCTT, and demonstrate its
effectiveness in reducing redundant computation. Finally, we conduct experiments in two
typical multi-agent cooperation tasks, LBF and CN, to show that the proposed framework,
CTLCE, can eliminate redundant actions. Because the proposed method can be easily
integrated with existing methods to improve efficiency, we believe that it can be applicable
to broader areas.

2. Related Work
2.1. Centralized Training and Decentralized Execution

A simple approach to tackling multi-agent learning problems is treating the learning
problem as a single-agent case and learning from a centralized network to determine
joint actions to control the behaviors of all agents. This scheme is typically known as
CTCE [10,27]. A centralized network can comprehensively consider the information of all
the agents and achieve remarkable performance [8,28]. However, the joint action space
increases exponentially with the number of agents, thereby limiting the application of CTCE
methods to environments with a large number of agents. Another scheme is DTDE [27].
DTDE methods directly apply reinforcement learning to each agent and independently
train their policies [29]. Thus, DTDE avoids the combinatorial joint-action space.

However, from the perspective of individual agents, the environment is non-stationary,
owing to the dynamics of other agents; that is, they are also learning and may change their
activities. Thus, DTDE methods are typically confronted with convergence problems, mak-
ing it difficult to achieve state-of-the-art performance. CTDE methods [12,25] learn a shared
policy for all agents in a centralized manner and enable agents to act based on local observa-
tions in a decentralized manner. Therefore, the CTDE scheme avoids non-stationarity and
alleviates the combinatorial joint action space problem. However, decentralized execution
(DE) methods (i.e., DTDE and CTDE) have the disadvantage of redundant computations,
as mentioned. We proposed LCE to reduce redundant computations and demonstrated a
CTLCE framework, which can be considered a scheme between CTCE and CTDE.

2.2. Multi-Agent Communication

Effective communication is crucial to facilitate cooperation and has been applied
in CTCT, DTDE, and CTDE methods. CTCE methods involve communication layers for
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sharing information among agents. Sukhbaatar et al. [30] collected and averaged the hidden
states of agents and broadcast them to all the agents. Peng et al. [28] used recurrent neural
networks to process agent observations sequentially. Han et al. [10] used fully convolutional
networks to provide a large receptive field for agents to communicate. DTDE and CTDE
agents exchange messages with others during the execution phase for communication.
Jaques et al. [31] used influence rewards to encourage each agent to generate messages
that affected the behaviors of others. Ding et al. [32] enabled agents to learn adaptive
peer-to-peer communication. Yuan et al. [7] allowed agents to generate incentive messages
to directly bias the value functions of others. In these DE methods, the behavior of an
agent is determined by its observations, policies, and messages received from others.
When the DE agents generate messages and actions, redundant computations are likely to
occur because of their overlapping observations and the accompanying similar reasoning
processes performed simultaneously.

In contrast, we enable dynamically determined leader agents to generate instructions
for workers in their local area. The instructions can be considered a special message
because the worker receiving them will act without considering their surroundings. In this
manner, redundant computations in the system will be drastically reduced. We have already
reported this method from the same perspective [33], but its formulation was not complete,
and the experimentation was limited. Therefore, we described and discussed the proposed
method in more detail. We also conducted extensive experiments, including easier and
harder problems, to investigate how leaders cover other agents and the effectiveness of the
proposed method in reducing redundant computations.

3. Background and Problem
3.1. Cooperative Decentralized Partially Observable Markov Decision Process with Communication

We considered a fully cooperative decentralized partially observable Markov decision
process (Dec-POMDP) augmented with communication, similar to several previous meth-
ods [6,7,32,34]. Let N = {1, . . . , n} be the set of n agents, S be the set of global states, and
let A be the finite set of actions executed by ∀i ∈ N . We also introduce a discrete time step
t ≥ 0, and for simplicity, the subscript t is omitted in this paper. At each time step t, agent
i ∈ N obtains a local observation oi = O(s, i), where s ∈ S and O(·) denote partial obser-
vation functions. Based on oi, i may generate a message mi and send it to other observed
agents. Simultaneously, i may receive messages from other agents, m∗,i = (m1,i, . . . , mn,i),
where mj,i is the message sent from agent j to i. If no message arrives from j, mj,i = null.
We also assume mi,i = null. Then, according to oi and m∗,i, i selects action ai ∈ A based on
policy πi(ai|oi, m∗,i). After i executes ai, it receives reward ri(s, ai) from the environment
and the state s changes to the next state. The objective of i is to maximize the expected
discounted cumulative reward Ri = E[∑t γtri(s, ai)] by optimizing πi.

Q-learning [35,36] is the primary approach in reinforcement learning that determines
the optimal policy of each agent. Q-learning methods construct action–value functions
Q(oi, ai) to enable agents to appropriately determine their actions. DQN [37,38] represents
the action–value functions with a deep neural network Q(oi, ai|θ) parameterized by θ. The
parameters are learned by minimizing the loss as follows:

LQ(θ) = Eoi ,ai ,ri ,o′i
[(ri + γmaxa′i

Q̄(o′i , a′i|θ̄)− Q(oi, ai|θ))2], (1)

where o′i and a′i are the observation and action at the next time step. To generate stable target
values for the training of the Q network, a target network Q̄ is used, whose parameters θ̄
are periodically updated with θ. Policy πi is then learned using the DQN.

3.2. Level-Based Foraging (LBF) Environment

We will evaluate the proposed method in the CN [12] and LBF [26] environments.
Because LBF is slightly complicated, we will explain it briefly (the CN environment used
in the experiments in this study will be explained in Section 5.4). In an LBF environment,
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each agent must learn to cooperate with other agents to collect and load food. We selected
LBF because agents acting alone are often unlikely to be rewarded, and overlapping
observations seem to be a prerequisite for agent coordination/cooperation to earn rewards.
Thus, the learning convergence in instances of LBF clearly indicates that the proposed
method can perform coordination and cooperation using different approaches from those
of existing methods, thereby reducing overlapping observations and eliminating redundant
associated computations.

At the beginning of the game, β (> 0) foods { f1, . . . , fβ} and n agents spawn at random
locations. Any food fµ has an association level lv f ( fµ) > 0, which indicates the difficulty
in obtaining food fµ. Agent i also has its associated level, lva(i), indicating the ability of
i to obtain food. Figure 2 presents a snapshot of the LBF environment. At each time step
t, the agents obtain local observations, communicate with each other, and execute actions
selected from A. The action space A comprises six actions: movement in four directions,
a “none” action that means doing nothing, and a “loading” action with which the agent
attempts to load the food fµ on the adjacent node. Then, only when the sum of the levels of
the agents attempting to collect fµ simultaneously is greater than or equal to the level of
fµ, that is, ∑i∈N f µ

lva(i) ≥ lv f ( fµ), can they collect, divide, and load it, where N f µ denotes
the set of agents that performed “loading” fµ simultaneously at its neighbor. Hence, if
lva(i) < lv f ( fµ), agent i cannot collect fµ alone, and its attempt fails. For instance, agent j
in Figure 2 will fail if it attempts to collect food at a level of five; thus, it must wait for other
agents (e.g., i and k) to come up to the food.

When agents successfully load fµ, they earn their rewards by dividing lv f ( fµ) by the
ratio of their levels, that is, for ∀i ∈ N f µ:

ri(s, ai) = lv f ( fµ) ·
lva(i)

∑∀j∈N f µ
lva(j)

. (2)

This also implies that the reward for food is identical to the associated food level.
Agent i attempts to earn more individual rewards Ri from the environment, as well as more
team rewards R = ∑i∈N Ri. Therefore, although the agents are cooperative in terms of
maximizing R, this may not be the case for Ri if an extra agent redundantly joins the team
to collect food.

3

2
1

3
4

5

𝑖𝑖
𝑗𝑗

𝑓𝑓𝜇𝜇
𝑘𝑘

Figure 2. Example snapshot of LBF. The numbers on the agents and foods indicate their levels. The
observable area of each agent is indicated by the color that is a lighter shade of that of the agent.
Apples indicate foods whose levels are shown as the numbers inside apples.
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3.3. Problem Description

In Figure 2, agents i, j, and k observe food fµ and communicate and cooperate to load
it. However, the information in the observations of i, which includes information on i,
j, and fµ, is also included in those of j. Similarly, the information in the observations of
k is included in those of the j observation. Overlapping information is processed in all
networks of i, j, and k, which is a waste of computational resources. In particular, when all
the agents share the same network parameters in the CTDE framework and communication
is allowed, this problem is likely to be pronounced.

Therefore, rather than having i, j, and k make decisions separately, it is better to
let j, using j’s observation and network, instruct i and k to act coherently by allowing
communication, instead of running the networks in agents i and k. We believe that this can
reduce the computational cost and improve the learning efficiency of the entire MAS. This
study proposes a framework in which agents autonomously decide which agents should
instruct and be instructed by others and how.

4. Proposed Method
4.1. Redundant Observation Ratio

The amount of computational resources occupied by redundant computation is related
to the degree of overlap in the agents’ observations. The more overlapping observations in
the environment, the more resources are occupied due to redundant calculations. To grasp
the degree of redundant computation, we introduce a metric redundant observation ratio to
describe the number of times the information of each entity is processed by agents on average. We
define the redundant observation ratio Rdd for DE in MASs as follows:

Rdd =
∑i∈N Ui

∑e∈E δ(e)
, (3)

where E = {e1, . . . , e|E|} denotes the set of entities (including agents, obstacles, and targets)
in the environment, and the positive integer Ui is the number of entities observed by agent
i (we assume that any agent can recognize (and observe) itself). We set δ(e) = 1 if entity
e ∈ E is observed by at least one agent; otherwise, δ(e) = 0. Thus, Rdd reflects the degree of
overlapping observations and associated redundant computations. Typically, Rdd ≥ 1. For
instance, Rdd values in Figure 1a,c are 2.75 and 1.17, respectively. Moreover, when agents
are dispersed, they have fewer overlapping observations and a smaller Rdd. Figure 1d
shows a special case in which agents have no overlapping observations and their Rdd value
is 1.0 For a centralized-executing MAS (Figure 1b), we define Rdd ≡ 1 because all the
observations of agents are aggregated before they are fed into the centralized network.

4.2. Locally Centralized Execution (LCE)

To reduce redundant observations and computations, we enable l (≤ n) agents, re-
ferred to as leaders, to generate instructions for actions for both themselves and other n − l
agents, referred to as workers, such that the workers can act on instructions from leaders
and be freed from observing their surroundings (so their observations in Equation (3) were
excluded), and their actions were determined. The sets of leaders and workers are denoted
by L and W , respectively (where L,W ⊆ N ). The instruction mi,k from leader i to worker
k is the Q value of k’s possible actions, mi,k = Qi,k(oi, ak|θ) for observation oi and ak ∈ A.

Figure 3 shows an example of the CTLCE framework, in which each agent can observe
its adjacent two agents. Agents 1, 3, and 5 are workers, and agents 2 and 4 are leaders.
Agents 2 and 4 can instruct the actions of its adjacent workers. A more detailed pseudocode
for LCE in one episode is shown in Algorithm 1.

When leaders observe each other, they also generate instructions for themselves and
other observed leaders. When a worker/leader agent j receives more than one instruction
from multiple leaders, it calculates the average value of these instructions as the Q values.
We normally set 0 < l < n for an LCE framework; LCE with l = 0 corresponds to
a DE without communication, and that with l = n corresponds to a DE with dense
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communication among agents. In practice, selecting an appropriate value for l through
experiments and experience is necessary.

Agent-1; worker

𝜃𝜃
Agent-2; leader

Agent-3; worker
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(a) (b)

Figure 3. Example structure of the CTLCE framework, where θ is the policy network, s is the global
state, and Qtot is the global Q-values. Agents 1, 3 and 5 are workers, and agents 2 and 4 are leaders.
(a) The LCE phase. The actions of agents 1, 3, and 5 are instructed by their adjacent leaders. (b) The
CT phase. The policy can be trained similarly to the standard QMIX.

Algorithm 1 Locally Centralized Execution

1: Initially, we randomly select l agents as leaders.
2: Other (n − l) agents are workers.
3:
4: for t = 0, . . . , T do
5: parallel for all leaders i ∈ L do
6: Obtain local observation oi.
7: parallel for observed agents j (including i) do
8: Generate an instruction mi,j
9: Send mi,j to agent j

10: end parallel for
11: Leadership Shift: Appoint an observed agent to be the leader at the t + 1.
12: end parallel for
13: parallel for all worker k ∈ W do
14: if k does not receive any instruction then
15: Acquire local observation ok.
16: Determine an instruction for itself, mk,k.
17: end if
18: end parallel for
19: Calculate average values of instructions as Q-values. for all agents in N
20: Agents act based on the Q-values.
21: end for

Note that all agents have the same network, even though the workers almost do not run
their networks. When a worker is not observed by any leader and receives no instructions, it
observes its surroundings and runs its network to generate Q-values for itself (line 13∼18 in
Algorithm 1). These workers that can determine their own actions are called positive workers;
the experiments show that positive workers are essential for the LCE method to achieve
high rewards and low redundant observation ratios (as described in Section 5.2). Moreover,
positive workers provide the proposed method with the ability to resist communication
obstruction. When applying our method in practice, the instructions may be interfered
with or blocked and cannot be received by the workers. Then, the workers can determine
their actions by themselves. Positive workers can make the performance of the proposed
method not worse than those of the DE methods. The negative impact of communication
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obstruction on the proposed algorithm is similar to that of an excessively small l; that is,
workers experience difficulty receiving instructions from leaders and have to frequently
make decisions on their own. Therefore, in practical applications where communication
quality cannot be guaranteed, we can manually set the number of leaders to be slightly
larger to alleviate and offset the adverse effects of communication obstruction. Details of
generating instructions (lines 8 and 16 in Algorithm 1) and LS (line 11 in Algorithm 1) are
described in Sections 4.3 and 4.4 using Figure 4 and Algorithm 2.

Instructions from 
other agents 

resize

𝑛𝑛 × 𝑑𝑑
Agent obs.

𝐸𝐸 × 𝑑𝑑

Non-agent 
entity obs.

Raw obs.
1 × 𝑛𝑛 + 𝐸𝐸 𝑑𝑑

MLP MLP MLP
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(a) GRU

MLP

Leadership scores
1 × 𝑛𝑛

Attention

𝑛𝑛 × 𝑑𝑑𝑎𝑎𝑎𝑎𝑎𝑎
attention feature1 × 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔

Hidden state duplicate
concat.
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𝑜𝑜𝑖𝑖

𝒒𝒒𝒊𝒊 𝒌𝒌𝒊𝒊 𝒗𝒗𝒊𝒊

𝒛𝒛𝒊𝒊

𝑛𝑛 × 𝑑𝑑𝑔𝑔𝑔𝑔𝑔𝑔

𝒎𝒎𝒊𝒊,∗

Send to 
other agents 
respectively 

𝑄𝑄𝑖𝑖𝒎𝒎∗,𝒊𝒊

𝑚𝑚𝑖𝑖,𝑖𝑖

….

𝑔𝑔𝑖𝑖

(b)

(c)

Figure 4. Structure of T-Trans, where d is the dimension of observation of each entity; dgru and datt

are dimensions of features of GRU and attention layers. qi is the query matrix, and its size is n × datt.
ki and vi are key and value matrices, respectively, and their sizes are (n + |E|)× datt. (a) The GRU
cell to extract temporal information. (b) The attention-like module represents the association between
entities. (c) The classifier to select a leader.

Algorithm 2 Leadership Shift (LS)

1: Set the leadership scores gi = (gi,1, . . . , gi,n).
2: Select agent l that is the best suited to be the leader based on l = argmaxjgi,j.
3:
4: if agent l is not appointed to be a leader at t + 1 then
5: Send a signal to l to appoint it to be a leader at t + 1.
6: Appoint agent i to be a worker at t + 1.
7: else
8: Appoint agent i to be a leader at t + 1.
9: end if

4.3. Team Transformer (T-Trans)

In some conventional studies, teammate modeling [6,7] is used to enable agents
to generate targeted messages for a specific teammate. However, this technique is not
applicable to our leaders, because the behaviors of the workers are not (always) determined
by their own policies. Therefore, we proposed T-Trans for leaders to produce targeted
messages for each of their teammates. The proposed T-Trans used in the CTLCE framework
with LS, which is described below, is called the locally centralized T-Trans (LCTT).

The structure of T-Trans is shown in Figure 4. First, we represent the observation
of i as a tuple of the respective information of entities, oi = (oi,1, . . . , oi,i, . . . , oi,|E|), and
oi,j = ∅ if entity ej ∈ E is not in the observable area of i. The observations are thereafter
fed into a gate recurrent unit (GRU) [39] cell (Figure 4a) to extract temporal information,
and an attention-like module [24] (Figure 4b), which represents the association between
entities. The features of each agent are concatenated with the temporal features and finally
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processed by an action head to generate the Q values. A classifier (Figure 4c) is used to
select the most suitable agent as the leader in the next time step.

In the attention module (Figure 4b), the attention feature is calculated as follows:

zi = softmax(
qikT

i√
datt

)vi, (4)

where kT
i denotes the transpose of ki and zi contains a teammate-specific representation

of the agents. zi,j ∈ zi can be interpreted as follows: i imagines that if i was j, j would
observe zi,j. Subsequently, zi is concatenated with the duplicated hidden states. Then, the
result is converted into teammate-specific instructions by a fully connected layer (FC-layer)
action head.

4.4. Leadership Shift (LS)

Initially, l (> 0) agents were randomly designated as leaders in each episode (line 3 in
Algorithm 1). Thereafter, we designed an LS to allow agents to automatically hand over
leadership to ensure that instructions for workers are provided by suitable agents. The
leader agents use a multi-layer perceptron (MLP) (Figure 4c) to produce the hidden states
and generate the leadership scores, gi = (gi,1, . . . , gi,n), where gi,j represents i’s consideration
of the degree of j’s appropriateness as a leader. Then, according to the scores, the leader
appoints an observed agent as a leader at the next time step. The pseudocode of LS for
agent i is presented in Algorithm 2.

The leadership Q-value to construct pseudo-labels for gi is introduced to effectively train
the leadership scores gi. First, we calculate the leadership Q-value for every agent k ∈ N
as follows:

Q̄L
k (ok, oj, |θ̄) = ∑

j
Q̄j(oj, argmaxaj

Q̄k(ok, aj|θ̄)|θ̄), (5)

where j is an agent observed by k. Note that oj is required to calculate Q̄L
k only in CT. The

proposed method does not rely on obtaining observations of other agents during LCE.
Subsequently, the pseudo-labels for gi, expressed by g∗i , are calculated as follows:

g∗i = ONE_HOT(g∗i,1, . . . , g∗i,n), (6)

where ONE_HOT is a onehot function. g∗i,k = Q̄L
k if k is in the observable area of i; otherwise

g∗i,k = −∞. Subsequently, gi is learned by minimizing the cross-entropy loss as follows:

Lg
i (θ) = H(g′∗i ) + DKL(g′∗i ||gi), (7)

where H(g′∗i ) is the entropy of g′∗i and DKL(g′∗i ||gi) is the Kullback–Leibler divergence
of g′∗i from gi. Note that g′∗i is calculated using the observations at t + 1 from the target
network with θ̄, whereas gi is calculated using the observations of i at t from the network
with θ.

Finally, the Q-values of the agents are input into a mixing network [25], and the overall
learning objective of all the parameters is

L(θ) =
n

∑
i=1

LQ
i (θ) + λ

n

∑
i=1

Lg
i (θ), (8)

where LQ
i (θ) is the standard DQN loss function (Equation (1)) and λ is a weight hyperpa-

rameter. The overall framework of the proposed LCTT is shown in Figure 5.
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Figure 5. Example structure of the CTLCE framework in which ϕ is the network parameter for
generating leadership scores. Agents 1, 3, 5 are workers, and 2 and 4 are leaders. (a) The LCE phase.
Agents 2, 4 can instruct the actions of their adjacent workers and appoint leaders at the next time step.
(b) The CT phase. Note that observations from other agents are only required when calculating the
leadership Q-value Q̄L

∗ .

5. Experiments
5.1. Comparison to Baselines

We evaluated the proposed method, LCTT, by comparing it to the baselines, MAIC [7]
and QMIX [25], in the LBF environment, as shown in Figure 2, where n = 4, β = 2 and the
size of the grid world is 10 × 10. The level of any agent i is a random integer 1 ≤ lva(i) ≤ 5.
The level of food fµ is also a random integer 1 ≤ lv f (µ) < ∑i∈N lva(i). All the agents have
observable areas of size 5 × 5. The experimental environment was the same as that of the
official repository of MAIC. The network architecture we used to conduct experiments in
LBF is illustrated in Figure 4. Raw observation is processed by a GRU cell (Figure 4a) with a
dimension of 64 to extract historical information. The attention-like module (Figure 4b) uses
three MLPs, each containing two FC layers with 32 units, to represent the features of entities.
The classifier (Figure 4c) has two fully connected layers with 64 units to calculate leadership
scores. We selecteed λ = 0.01 for the weight of the leadership loss. The entire architecture
is trained end-to-end by an RMSProp optimizer with parameters including the learning
rate of 5 × 105, α = 0.99, and RMSProp ϵ = 1 × 105. The number of model parameters of
QMIX, MAIC, and LCTT in Section 5.1 are 27, 260, 48, 796, and 45, 802, respectively.

The experimental results are shown in Figure 6, in which LCTT-lL indicates the LCTT
with l leaders. Therefore, LCTT-1L indicates that one leader instructs others although the
leader may change over time. LCTT-0L correspond to DE, whereas in LCTT-4L, all agents
attempted to instruct other agents. We also conducted an experiments in CN environment
to understand the behaviors of leader agents. We explain the experimental setting of
CN below.

Figure 6a illustrates the mean rewards of LCTT and baselines over timestep in the test
phase. All methods achieved similar rewards after convergence; however, LCTT with two
leaders, referred to as LCTT-2L, showed the fastest convergence. MAIC allows each agent
to generate incentive messages and directly bias the value functions of other agents. MAIC
can be considered a special case of LCTT in which l = n = 4; that is, all agents are leaders
and can mutually instruct others. LCTT-4L converged faster than MAIC probably because
we used T-Trans rather than teammate modeling to generate messages, and T-Trans does
not require explicit modeling or an additional loss functions. QMIX is a frequently used
learning method based on CTDE and is the basis of LCTT and MAIC, in which agents
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make decisions based only on their own observations without communication. QMIX can
be considered as a special case of LCTT in which l = 0; that is, all agents are workers. Thus,
they determine their actions individually, without relying on T-Trans. Figure 6a shows
that LCTT-0L converged faster than QMIX, indicating that T-Trans can learn better than
naive MLP networks. We omitted the curves of LCTT-1L and LCTT-3L for the readability
of Figure 6. They both converge faster than MAIC but slower than LCTT-2L.
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Figure 6. Experimental results of LCTT and baselines in the LBF environment. (a) Mean rewards.
(b) Mean redundant observation ratios. The curves in (a,b) show mean performance over five random
seeds, and light-colored areas show standard deviation.

The mean values of the redundant observation ratio, Rdd, are shown in Figure 6b. The
redundant observation ratio of LCTT-2L is obviously lower than that of the other methods,
which indicates that the two leaders of LCTT-2L learned to instruct workers to cooperate,
rather than letting them make their own decisions. In LCTT-4L, LCTT-0L, MAIC, and
QMIX, the redundant observation ratios are larger than those of LCTT-2L, because all four
types of agents must make their own decisions independently. The Rdd after convergence
for MAIC and LCTT-2L are around 2.1 and 1.3, respectively. Therefore, we believe that
our method saves about 38.1% of the computational resources. ((2.1 − 1.3)/2.1 ≈ 38.1%).
In addition, at the beginning of the learning process, their redundant observation ratios
increased temporarily, implying that agents realize that they usually cannot load food
alone and must gather to load jointly. Their redundant observation ratios then gradually
decreased to a relatively stable range, probably because they became aware that they
required proper dispersion to explore the environment to find foods. In contrast, the
redundant observation ratio of LCTT-2L was maintained at a low level owing to LCE,
although it decreased slightly over time. Specifically, while agents gathered, the redundant
observation ratio would not increase because the worker entered the instruction region
of leaders and stopped observing; while agents dispersed, the redundant observation
ratio would not decrease because the worker left the instruction region of leaders and
started observing.

Moreover, the proposed method requires a small bandwidth because instruction
messages are unidirectional from the leaders to the workers instead of bidirectional between
agents like existing methods. Table 1 lists the number of messages per time step in an
episode. The values are calculated over 1000 test episodes. As the number of leaders
decreases, that of messages decreases significantly, resulting in smaller communication
bandwidth and costs. Considering convergence (Figure 6a), redundant observation ratios
(Figure 6b), and communication costs (Table 1), we believe that LCTT-2L achieves the
best performance.
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Table 1. Mean number of messages per time step in LBF.

MAIC LCTT-4L LCTT-3L LCTT-2L LCTT-1L

5.071 ± 0.223 5.288 ± 0.414 4.106 ± 0.252 3.338 ± 0.203 1.528 ± 0.075

5.2. Ablation Study and the Effect of the Number of Leaders

We conducted ablation studies to evaluate the contributions of LS and the decisions
of worker agents for themselves. We also analyzed the effect of the number of leaders on
the overall performance, i.e., individual and team rewards. First, by omitting LS, l agents
are randomly designated as leaders initially in each episode, and they do not hand over
the leadership; therefore, we refer to them as fixed leaders, and this setting is denoted by
“Fl,” such as F2. In contrast, in the normal LCTT, l leaders can hand over their leadership
by LS, and this setting is denoted by “Sl.” Second, in LCTT with Fl or Sl settings, workers
out of leaders’ instructing regions will determine their actions themselves (lines 13∼18
in Algorithm 1); these workers are called positive workers, and this setting is denoted by
“+” such as Fl+ and Sl+. Meanwhile, if the workers out of leaders’ instructing regions do
not decide their action autonomously and take random actions, they are called negative
workers and the experimental setting in which all workers are negative is denoted by “−”
such as Fl−. Therefore, LCTT-0L, LCTT-2L, and LCTT-4L in Figure 6a can also be concisely
denoted by S0+ (= F0+), S2+ and S4+ (= F4±).

Figure 7 shows the mean rewards and redundant observation ratios of QMIX, MAIC,
and ablation versions of LCTT with different numbers of leaders after convergence. Ac-
cording to the numbers of leaders, these 16 algorithms can be classified into five groups
(0 leaders, 1 leader, and 3 workers). QMIX, F0+, F4+, and MAIC achieved similar perfor-
mance with large rewards and high redundant observation ratios. In contrast, the LCTT
with 0 < l < n can obviously reduce redundant observation ratios. Comparing the respec-
tive algorithms of the groups with 1, 2, and 3 leaders, generally, fewer leaders lead to lower
redundant observation ratios but also result in smaller rewards; for instance, F1+, F2+, and
F3+ achieved rewards of 0.873, 0.894, and 0.921, with redundant observation ratios of 1.30,
1.35, and 1.64, respectively. We believe that S2+ shows the best performance; it achieved
relatively low redundant observation ratios without causing a reduction in rewards.
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Figure 7. Mean rewards (bars) and redundant observation ratios (lines). All values are averaged from
1600 test episodes among five random seeds.

Moreover, Sl+ (Sl−) achieves larger rewards than Fl+ (Fl−), indicating that LSs can
help agents find suitable ones to generate effective instructions for their workers. The
special case is that S3+ achieves smaller rewards than F3+, probably because, when
most agents are leaders, LS brings limited benefits but also causes certain learning dif-
ficulties. Additionally, Sl+ (Sl−) achieved lower redundant observation ratios than Fl+
(Fl−), indicating that LS tends to find agents that can observe more entities as leaders.
Furthermore, Sl+ (Fl+) achieves larger rewards and higher redundant observation ratios
than Sl− (Fl−), indicating that the policy learned in the CTCLE framework can not only
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generate effective instructions for other agents but also generate effective actions for worker
agents themselves.

5.3. Experimental Results on the Difficult LBF Setting

We evaluated LCTT in a more difficult mode of LBF. In this case, the environment only
contains food of a specific level such that all agents must cooperate to successfully load the
food, i.e., lv f ( fµ) = ∑i∈N lva(i). This environment has the same size and number of agents
and foods as those shown in Figure 2. We refer to this setting as LBF-hard.

Figure 8a shows the reward of LCTT and baselines. Some random seeds of QMIX
failed to converge; therefore, QMIX achieved low mean rewards and large variance. MAIC
and versions of LCTT achieved similar rewards. Figure 8b shows the redundant observa-
tion ratios of LCTT and baselines. As the number of leaders decreases, the redundancy
decreases significantly, indicating that LCTT leaders can effectively instruct workers in
this difficult game. In this particular experiment, as all agents need to cooperate to load
food, a centralized regime to control other agents would be better. In this situation, LCE
functions like CE, and our experiment shows that agents in LCE can achieve cooperative
behaviors by appropriately selecting leaders that directly instruct other agents in their
observable regions.

We also evaluate the proposed method in environments with larger sizes and more
entities; the results are provided in Appendix A.
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Figure 8. Mean rewards and redundant observation ratios on LBF-hard.

5.4. Experimental Results on Cooperative Navigation

To show the behaviors of leader agents more clearly, we conducted experiments in
a CN environment [12], as shown in Figure 9a. Initially, in each episode, 16 agents and
16 landmarks appear randomly in the square area M (−1 < x < 1 and −1 < y < 1) of a
two-dimensional space. Agent i ∈ N can observe landmarks and other agents within its
visible range within a radius of 0.5. Throughout the task, agents move around, attempting
to cover landmarks within their view while avoiding collisions with other agents. Note that
the agents may move out of M. All the agents shared a negative team reward, represented
by the sum of the negative distances between each landmark and its nearest agents. The
team receives a negative reward of −1 upon each collision. Agents obtained no positive
rewards, and rewards closer to 0 indicate better behavior. Figure 10 presents the mean
rewards and redundant observation ratios per time step of LCTT-2L, LCTT-4L, LCTT-9L,
and QMIX baseline. All the three LCTT models achieved higher rewards and smaller
redundant observation ratios than the QMIX baseline model. This figure shows that LCTT-
2L achieved the largest rewards (Figure 10a) and LCTT-4L achieved the smallest redundant
observation ratios.
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Figure 9. (a) A CN environment. Agents cover landmarks without collision. Agents have visible
ranges with radius of 0.5. (b) A manually set CN environment for analyzing the behaviors of leader
agents. Landmarks are arranged in a square array.

0 300

Timesteps

(a)

−5.4

−5.2

−5.0

−4.8

100 200

−4.6

Te
st

 R
ew

ar
d 

M
ea

n

−5.6
0 300

Timesteps

(b)

2.0

2.5

3.0

100 200

3.5
Te

st
 𝑅𝑅
𝑑𝑑𝑑𝑑

 M
ea

n

1.5

LCTT-2L LCTT-4L LCTT-9L QMIX

1 × 103 1 × 103

Figure 10. Mean rewards and redundant observation ratios on CN.

To understand this phenomenon in CN, we further analyzed the behaviors of leader
agents by counting their location distribution in a manually set environment in which all
landmarks were arranged in a square array, as shown in Figure 9b. Thereafter, we loaded
the models that are trained in the previous environment (Figures 9a and 10) and tested
their performance in this environment (Figure 9b). We tested models of LCTT-2L, LCTT-4L,
and LCTT-9L, and recorded the locations of the leaders in 1000 episodes. These locations
are shown in Figure 11 as heat maps, where the color temperature indicates the frequency
of staying locations on the map. In Figure 11a, the two leaders of LCTT-2L tend to remain
in two main areas. We believe that leaders in these two areas can provide instructions to a
larger number of workers, which will help the team obtain greater rewards and achieve
smaller redundant observation ratios. Similarly, in Figure 11b,c the leaders of LCTT-4L
and LCTT-9L tended to be distributed across four and nine areas, respectively. We believe
that this behavioral pattern of the leaders is the reason why our method can achieve more
rewards than the QMIX baseline.

In contrast, LCTT-2L achieved the largest rewards (Figure 10a) while LCTT-4L achieved
the smallest redundant observation ratios (Figure 10b). In LCTT-4L, Figure 11b shows
that as Rdd is the smallest, its four leaders could just barely cover other workers and the
square environment, M. However, it also showed that four leaders were not enough to
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appropriately determine the instructions of all workers. Meanwhile, in LCTT-2L, two
leaders could not cover the entire environment; thus, some worker agents determined
their actions individually. This mixed regime with two leaders and a few independent
worker agents achieved locally centralized control with distributed autonomous decisions
and was appropriate for obtaining higher rewards, although this regime led to the higher
redundant observation ratio. The redundant observation ratio of LCTT-9L is slightly lower
than that of LCTT-2L; however, like LCTT-4L, LCTT-9L was still sufficient to cover the
entire environment. Therefore, some workers near the boundary of visible area of leaders
waited for the instructions, although they might be able to autonomously determine better
actions using the information on the other side of the leaders.
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Figure 11. Heat maps of locations of LCTT leaders. (a) Leader locations of LCTT-2L. (b) Leader
locations of LCTT-4L. (c) Leader locations of LCTT-9L.

This discussion also suggests another issue for CTLCE, particularly LS. Figure 10
indicates that CTLCE decides that the key location in CN is the center area, because leaders
were selected based on the number of visible entities. Therefore, agents located near the
boundary were unlikely to be selected as leaders. This selection is effective when the
number of leaders is not as large; however, even with more agents, the current CTLCE does
not fully utilize them. Covering the observable area in a mutually complementary manner
is advisable. This issue must be our future research topic.

6. Conclusions

This study focused on the redundant computation problem of multi-agent systems, a
well-known but neglected traditional problem. We proposed the redundant observation
ratio metric to quantitatively describe the degree of redundant computations. Thereafter,
we demonstrated that the redundancy can be reduced by enabling the agents to generate
instructions. Therefore, we introduced the LCTT framework in which each agent deter-
mines which agents should instruct other agents and be instructed by leaders, and how.
The results of the experiments using LBF showed that the proposed method significantly
eliminates redundant computation while simultaneously ensuring that it does not decrease
the rewards, enhancing the efficiency of the learning process. Through an ablation study,
we confirmed that LS can reduce redundant computation and mitigate the reward decrease
with the number of leaders. Additionally, we confirmed that the policy learned through
CTLCE can provide effective instructions for other agents and each agent itself. Further-
more, in the CN environment, we demonstrated the behavioral pattern of leaders who
prefer to stay in key locations where they can instruct more workers, leading to higher
rewards and smaller redundant observation ratios.

The proposed method can significantly reduce the redundant observation ratios;
thus, during the execution stage, a large computational cost of the MAS can be saved.
Note that the proposed method does not compete with existing approaches that reduce
computational costs because it is an extension of another independent dimension; thus,
it can be easily integrated with them. We believe that further discussions on reducing
overlapping observation and redundant computation will be of great interest, such as the
issue discussed in Section 5.4. We believe that flexibly integrating this study with studies
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on multi-agent communications, for instance, developing communication between leader
agents, can achieve some remarkable results.
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Appendix A. Experimental Results in a Large Environment

We evaluate the scalability of the proposed method to a larger number of entities in
three larger LBF environments. The first one, whose size is 15 × 15, contains eight agents
and four foods, and this setting is denoted by LBF15. The second one also contains eight
agents and four foods, but its size is 20 × 20, denoted by LBF20. The last one has the same
number of entities and environment size as LBF20, but the observable areas of agents are
7 × 7, instead of 5 × 5. We refer to this setting as LBF20/7. Therefore, the LBF setting in
Figures 2 and 6 is denoted by LBF10. Note that LBF15 has a similar entity density to LBF10,
i.e., (8 + 4)/15 × 15 ≈ (4 + 2)/10 × 10. In contrast, LBF20 provides a sparser and more
capacious environment.

Figure A1 shows the rewards and redundant observation ratios of LCTT and baselines.
Figure A1a shows that in LBF15, LCTT achieved similar rewards to baselines with a lower
redundant observation ratio, indicating that the LCTT can scale up to eight agents. Note
that in Figure A1b, LCTT-6L, LCTT-4L, and LCTT-2L achieved lower redundant observation
ratios with a smaller number of leaders; however, LCTT-1L achieved higher redundant
observation ratios than LCTT-4L and LCTT-2L. This is because one leader cannot instruct
the behaviors of several (seven) workers with its small indicating region; the workers must
frequently leave the instructing region of the leader to explore and observe the environment.

However, in LBF20, LCTT cannot achieve significantly lower redundant observation
ratios with fewer leaders. Figure A2b shows the redundant observation ratios of LCTT
and baselines in LBF20. As we reduce the number of leaders, the redundant observation
ratios slightly decrease instead of decreasing significantly similar to that in Figure 6b.
This is because first, in the LBF20 environment, entities are sparsely distributed, and
agents of baseline methods also have fewer overlapping observations and lower redundant
observation ratios (approximately 1.5 after convergence) than those in LBF10 and LBF15
(approximately 2.0). Second, even with our designated leaders, workers must leave the
indicating regions to explore and observe the environment. Figure A2a shows that LCTT
achieved fewer rewards and slower convergence than baselines, probably because the
leaders tend to maintain the workers not far away from leaders to instruct their behaviors,
which limits the agents from fully exploring the environment.

We further evaluate LCTT and baselines in LBF20/7 to verify our speculation on
the reason why LCTT degrades the performance in LBF20. In LBF20/7, LCTT achieved
similar rewards to baselines with lower redundant observation ratios because of the larger
observable/instructing area than LBF20, by which LCTT leaders can instruct workers both
to spread out to explore the environment and to gather to loading foods. This indicates
that our speculation for LBF20 is reasonable.
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Figure A1. Mean rewards and redundant observation ratios on LBF15.
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Figure A2. Mean rewards and redundant observation ratios on LBF20.
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Figure A3. Mean rewards (a) and redundant observation ratios (b) on LBF20/7.
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