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Abstract: Ransomware poses a significant threat by encrypting files or systems demanding a ransom
be paid. Early detection is essential to mitigate its impact. This paper presents an Uncertainty-
Aware Dynamic Early Stopping (UA-DES) technique for optimizing Deep Belief Networks (DBNs)
in ransomware detection. UA-DES leverages Bayesian methods, dropout techniques, and an active
learning framework to dynamically adjust the number of epochs during the training of the detection
model, preventing overfitting while enhancing model accuracy and reliability. Our solution takes a
set of Application Programming Interfaces (APIs), representing ransomware behavior as input we call
“UA-DES-DBN”. The method incorporates uncertainty and calibration quality measures, optimizing
the training process for better more accurate ransomware detection. Experiments demonstrate
the effectiveness of UA-DES-DBN compared to more conventional models. The proposed model
improved accuracy from 94% to 98% across various input sizes, surpassing other models. UA-DES-
DBN also decreased the false positive rate from 0.18 to 0.10, making it more useful in real-world
cybersecurity applications.

Keywords: ransomware; early detection; deep learning; early stopping mechanisms; dynamic
bayesian; deep belief network

1. Introduction

In the digital age, devices are typically connected, facilitating the exchange of data and
making it easy for users to communicate. Such connectivity introduces various security
risks to user and business data [1]. Among these risks are the malware attacks utilized
by attackers to steal data, disrupt operations, or hijack systems causing operational inter-
ruptions as well as impacts affecting reputation and compliance [2]. Ransomware is one
type of malware that attackers use to lock user data using the operating system’s own
cryptographic utilities [3,4]. Ransomware presents a significant threat to organizations
and individuals, as it encrypts files rendering computer systems inoperable. A decryption
key may be provided after a ransom is paid [5,6], but not always. The irreversible effect
of such an attack can be devastating due to the disruption in services and especially be-
cause, in some cases, after paying the ransom, the decryption key provided is useless [7]
in restoring operations. Detecting ransomware early is crucial to minimizing its impact.
Several studies [7–9] emphasize the importance of timely detection in reducing the dam-
age caused by ransomware attacks. Urooj et al. [10] highlight the significance of early
detection by proposing a machine learning-based model for detecting ransomware before
the encryption phase takes place. Additionally, [11] suggests monitoring external server
connections to identify ransomware activities early on, thereby preventing the completion
of the encryption processes. Bold et al. [12] stress the importance of intelligent early detec-
tion in reducing false negatives, emphasizing the advantages of promptly identifying and
eradicating ransomware. Thus, early detection of ransomware through advanced detection
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techniques is essential to prevent data loss, financial harm, and operational disruptions
resulting from ransomware attacks.

Conventional deep-learning methods have been used in the detection of malware and
ransomware. Al-Garadi et al. [13] discussed advancements in machine and deep learning
methods for Internet of Things (IoT) security, showcasing the practical basis for the use
of machine intelligence. Shaukat et al. [14] provided insights into the performance and
challenges of machine learning techniques in cybersecurity, emphasizing the critical role
of deep learning models in enhancing security measures. Regarding malware detection,
Liu et al. [15] conducted a literature review on deep learning for Android malware defenses,
highlighting trending research focused on deep learning techniques to combat Android
malware attacks. Additionally, Uysal et al. [16] conducted a survey on data-driven malware
detection, emphasizing the importance of continuous learning and explainability through
visualization thus improving malware detection performance. Urooj et al. [17] explored
ransomware detection using dynamic analysis and machine learning, demonstrating the
effectiveness of deep learning methodologies in identifying and mitigating ransomware
attacks. Furthermore, Shemitha and Dhas [18] developed a deep belief network model
for ransomware detection, emphasizing the significance of optimal feature selection for
enhancing the detection performance of deep learning models.

Deep learning models have gained significant attention in the context of cybersecurity
using the various models being developed and tested for misuse and anomaly detection and
to prevent or deter different types of intrusions [19]. The rise of deep learning has improved
the conventional signature and specification-based detection solutions, making these crucial
tools for protecting systems and networks against cyberattacks [20]. Deep learning is
recognized for its ability to rapidly analyze data streams as a basis to actively deploy and
adjust countermeasures for improved detection of malware attacks [21,22]. Furthermore,
the limitations of conventional approaches have led to the proposal of hierarchical deep
learning systems for analyzing content and behavioral features to attack patterns and
intrusions [23]. In the context of early stopping mechanisms, it is crucial to consider
the potential of deep learning models to overfit the training data leading to reduced
generalization performance (A common metric of inference accuracy, or error, for input
data of a trained neural network model, and not for the training data). This is where early
stopping mechanisms can play an important role in preventing overfitting. By monitoring
a model’s performance on a separate validation dataset and thereby stopping the training
process when the performance begins to degrade [24]. In this paper, we show that the use
of early stopping in deep learning-based malware detection can improve the generalization
performance of deep learning models by enhancing their accuracy specifically against
ransomware attacks.

The existing methods used for early stopping of deep learning model training encom-
pass a range of strategies to prevent overfitting and enhance generalization performance.
In their study, Cho et al. [25] emphasized the utilization of early stopping to prevent perfor-
mance degradation from excessive training, highlighting its significance in hyperparameter
tuning of deep neural networks. Dorka et al. [26] highlighted the popularity of early stop-
ping based on validation set performance to achieve a balance between underfitting and
overfitting in supervised learning. Rezaeezade and Batina [27] discussed the use of early
stopping as one of the techniques to combat overfitting in deep learning-based side-channel
analysis, emphasizing its role as a regularizer. The study conducted by Moodley et al. [28]
demonstrates the efficiency of early stopping in non-degenerate ghost imaging, showing
potential for real-time implementation across various scenarios. Kaandorp et al. [29] ex-
plored the impact of early stopping criteria on intravoxel incoherent motion modeling,
emphasizing its role in ensuring adequate convergence during training. Dossa et al. [30]
conducted an empirical investigation into early stopping optimizations in proximal pol-
icy optimization, highlighting the practical implications of reinforcement learning. Choi
and Lee [31] have studied a method that exploits all samples in low-resource sentence
classification through methods that utilize early stopping and initialization parameters,
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which demonstrate their versatility across different applications. Moreover, two other
studies, Wang et al. [32], and Li et al. [33], have utilized early stopping in the deep image
prior and single-instance deep generative priors, respectively. Their work further indicates
their potential utility in diverse deep-learning contexts. Furthermore, Dai et al. [34] have
proposed DIPDefend, a defense mechanism against adversarial examples emphasizing
the role of early stopping toward achieving robustness against attacks as well as creating
augmented resilience.

Conventional measures such as validation accuracy, which are commonly used to
determine when to stop training, may be influenced by data skew, which may result in
underfitting. Such measures, if they do not accurately capture significant improvements
that occur later in the training process, are destined to fail when faced with more diffi-
cult examples. Thus, the implementation of adaptive learning rates, which are a widely
used optimization technique, introduces dynamic adjustments that static stopping criteria
usually do not consider. This may result in missed opportunities to achieve even better
generalization performance. Such constraints underscore the necessity for more advanced
methods in terminating the training process for deep learning models. Studies utilizing
dynamic stopping have shown they are adaptable to changes in training dynamics, such as
variations in data complexity and fluctuations in learning rate.

While current dynamic stopping criteria have certain benefits compared to static met-
rics, the inclusion of uncertainty and variability holds the potential for additional progress.
Current point estimates of performance frequently fail to consider these factors, which may
result in incorrect decisions regarding when to stop. Bayesian methodologies, dropout
techniques, calibration methods, and active learning frameworks present promising op-
portunities for incorporating uncertainty and variability. This can result in (i) more precise
stopping decisions, (ii) training that requires fewer data, and (iii) improved generalization
from the model. Considering these factors will likely facilitate the realization of more
dependable dynamic stopping techniques that mitigate overfitting and enhance the pre-
cision of deep learning models. To this end, this paper is devoted to demonstrating a
dynamic early-stopping method for DBN-based ransomware detection, which overcomes
the limitations of existing solutions. The contribution of this paper is three-fold.

1. We proposed and developed an Uncertainty-Aware Dynamic Early Stopping
(UA-DES) technique to optimize the training process of Deep Belief Networks (DBNs).

2. We integrated the UA-DES into a DBN-based ransomware detection model to prevent
both underfitting and overfitting, for more accurate detection to test our theory.

3. We evaluated the performance of the proposed technique against existing solutions.

The lack of available ransomware data poses a significant obstacle to training deep
learning models. Primarily, this is because of the high likelihood of overfitting, a problem
that is less common in other domains with access to larger datasets such as computer
vision. To address this issue, we utilize various strategies to reduce the occurrence of
overfitting. Advanced regularization techniques, such as dropout and data augmentation,
aim to increase the variety of small training sets. Meanwhile, the UA-DES mechanism
monitors performance to stop training early if overfitting is detected. Additionally, our
active learning framework enhances data utilization by selectively training on the most
informative samples, toward enhancing model performance despite the limitations of
the available data. These integrated methodologies are designed to optimize knowledge
acquisition from a limited dataset in the context of ransomware detection.

The rest of this paper is organized as follows. The related works are explained in
Section 2. The methodology is described in Section 3. The results and discussion are in
Section 4. Conclusive remarks are found last in Section 5.

2. Related Studies

Deep learning has been identified as a promising approach for the early detection of
ransomware, offering enhanced capabilities in identifying and mitigating evolving cyber
threats. Research by Urooj et al. [17] has demonstrated the effectiveness of dynamic analysis
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and machine learning in ransomware detection, highlighting the potential of deep learning
models in strengthening cybersecurity measures. Almomani et al. [35] have pointed out the
limitations of traditional malware detection methods in combating ransomware. They have
stressed the importance of utilizing deep learning techniques to address challenges posed
by highly imbalanced data in ransomware detection scenarios. These insights collectively
highlight the crucial role of deep learning in improving the early detection of ransomware,
enabling proactive measures to protect digital assets against malicious attacks. Moreover,
the integration of deep learning methodologies in ransomware detection has shown promis-
ing results in enhancing detection accuracy and efficiency. Sharmeen et al. [36] introduced
a framework that incorporates behavioral and anomaly detection schemes powered by
deep learning to enhance the accuracy of ransomware detection in the early stages before
encryption occurs. The study by Fernando and Komninos [37] explored the evolution of
ransomware detection using machine learning and deep learning techniques, weighing
the critical need for early detection mechanisms to mitigate the destructive impacts of
ransomware attacks. These findings underscore the significance of leveraging deep learn-
ing algorithms for ransomware detection, enabling proactive identification and mitigation
of threats before they escalate, thereby enhancing the overall cybersecurity posture for
organizations and individuals.

Early stopping mechanisms are crucial in training deep learning models for malware
and ransomware detection, ensuring optimal model performance and preventing overfit-
ting. Studies such as Kim et al. [38] have highlighted the significance of multimodal deep
learning methods in malware detection, emphasizing the need for effective early stopping
strategies to enhance model training efficiency. The utilization of ensemble models, as
demonstrated by Hemalatha et al. [39], underscores the importance of combining multiple
deep-learning models for robust malware detection. Such early stopping mechanisms can
aid in optimizing the ensemble model’s performance by preventing unnecessary training
iterations and improving convergence. In the context of malware detection based on deep
neural network (DNN) models, researchers like Du et al. [40] have shown a growing inter-
est in autonomic methods utilizing deep learning for malware detection. Early stopping
mechanisms are essential in training DNN models effectively, ensuring that the models
do not overfit the training data and can effectively generalize toward robust detection of
new and evolving malware threats. The study by [41] emphasizes the need for utilizing
deep sequence learning models like Long Short-Term Memory (LSTM) models for malware
detection based on network traffic. In all of these works, the emerging trend highlights
the use of early stopping criteria to optimize the training process and enhance model
generalization performance.

Deep Belief Networks (DBNs) have emerged as a powerful tool in the realm of cy-
bersecurity, particularly in the detection of malware and ransomware. Various studies
have explored the efficacy of DBNs in enhancing detection accuracy and robustness against
evolving cyber threats. Al-Garadi et al. [13] showed significant improvements in malware
detection accuracy by utilizing a DBN-based model compared to traditional machine learn-
ing algorithms. Similarly, Duhayyim et al. [42] employed the Artificial Algae Optimization
Algorithm with Optimal Deep Belief Network (AAA-ODBN) technique, by integrating
DBNs for ransomware detection in IoT environments, showcasing the versatility of DBNs
in addressing diverse cybersecurity challenges. Urooj et al. [17] focused on ransomware
detection using DBNs, emphasizing the effectiveness of DBNs in hardware-based security
solutions. Moreover, DBNs have been successfully applied in detecting malware attacks, as
highlighted by [43], who evidenced the utility of DBNs in detecting malware. Additionally,
DBNs have been utilized in extracting invariant representations of malware behavior, as
evidenced by [16], exposing the adaptability of DBNs to capture complex malware behavior
patterns. Moreover, DBNs have been demonstrated to be instrumental in Android malware
detection with studies by [44,45] which demonstrated the efficacy of DBNs in processing
static features and enhancing detection accuracy. The application of DBNs in cybersecurity
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extends to the detection of intrusions and malware, as highlighted by [46], emphasizing
the broad utility of DBNs in safeguarding systems against cyber threats.

As a graphical model, the DBN has multiple layers as defined by J. Qiu, et. al. [47], that
generate data. Therein, the top two layers form associative memory and the lower layers
create a belief network for probabilistic estimation of variable states and their connections
to input data. DBNs stand out from other neural networks due to their unique architecture
and learning approach, utilizing stacked Restricted Boltzmann Machines (RBMs) for pre-
training to capture data representations and joint probability distributions, followed by
possible supervised fine-tuning. The “belief” in DBNs, a quantitative likelihood, helps
identify hidden data patterns, making them particularly adept at tasks like ransomware
detection which for discerning the subtle signs of malicious activity is essential.

The DBN uses several hyperparameters that can be optimized for a specific application.
The values of these parameters are adjusted at the beginning of the model training. Among
these parameters, batch size, L2 regularization, momentum, dropout, and learning rate
are the most effective for improving generalization performance. Within a DBN, the term
“batch size” pertains to the number of training examples that are processed during a single
forward/backward pass (i.e., epoch).

• Batch size has an impact on both the speed and stability of the learning process.
• L2 regularization is a technique employed to mitigate overfitting by imposing a penalty

on the size of the model’s parameters.
• Momentum is a parameter that aids in the acceleration of gradients in the appropriate

direction, thereby facilitating the smoothing of updates during training.
• Dropout is a regularization technique that involves randomly excluding certain neu-

rons during the training process. This helps to mitigate overfitting by reducing the
model’s reliance on the precise weights of individual neurons.

• The learning rate is a crucial factor during the iterative process of moving towards the
minimum of a loss function. Learning rate determines the size of the step taken at
each iteration and plays a key role toward efficiently converging to the best, so-called
“best” solution.

3. The Methodology

This section provides a detailed account of the methodology employed to create the
proposed early-stopping method for the DBN-based ransomware detection model. We
begin by explaining the design of the suggested dynamic early stopping technique, and
subsequently explore its integration within the detection model. An explanation of the
dataset and technique for training the model is provided.

3.1. Uncertainty-Aware Dynamic Early Stopping (UA-DES)

The UA-DES technique is a method for improving the training process of the DBN
model for ransomware detection. The process starts by utilizing the Bayesian method to cre-
ate a model of the posterior distribution of performance metrics. This enables measurement
of the level of uncertainty associated with these metrics described above in the previous
section. The dropout technique is utilized as a Bayesian approximation that models the
posterior distribution which facilitates the computation of predictive uncertainty. Tem-
perature Scaling is used as a calibration technique to enhance the accuracy of probability
estimates, ensuring that they are dependable and accurately represent the desired perfor-
mance. A framework for active learning is incorporated to prioritize training on samples
that are anticipated to yield the highest information gain, thereby improving the efficiency
of the model’s learning process. The process concludes with a dynamic stopping criterion
that integrates performance improvement thresholds with measures of uncertainty and
calibration quality. These criteria guarantee that training ceases not only when there are
minimal improvements in performance, but also when the model attains a satisfactory level
of uncertainty and calibration. By ensuring that the model is both precise and dependable,
our proposed UA-DES model enhances the generalization and accuracy of DBNs, thereby
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increasing their effectiveness in detecting ransomware attacks. Figure 1 shows the general
structure and process implemented by the UA-DES.
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Figure 1. The architecture of the proposed UA-DES training process.

To establish a formal mathematical representation of the UA-DES, we precisely define
the essential elements and procedures that are part of the process. This formulation offers a
systematic method for implementing UA-DES in training Deep Belief Networks (DBNs)
specifically for ransomware detection.

Step 1: Bayesian Performance Modeling

1. Posterior Distribution of Performance Metrics:

Let y be the true label and ŷ be the predicted label by the DBN. This label takes two
values, ransomware and benign. The performance metric P (e.g., accuracy, precision) can
be modeled as:

P(θ | D) =
P(D | θ)P(θ)

P(D)

where θ represents the parameters of the DBN, D is the observed data, P(D | θ) is the
likelihood of the data given the parameters (model evidence), P(θ) is the prior distribution
of the parameters, and P(D) is the evidence or marginal likelihood of the data. The DBN
parameters were set as follows. The batch size is 64, the L2 regulation is 0.0002, the
Momentum is 0.7, the dropout rate is 0.2 and the learning rate is 0.05. Those parameters
were selected following the standard setup. The model was trained using a set of API-based
features selected using the mutual information feature selection.

2. Uncertainty Estimation:
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The uncertainty in performance metric P can be quantified using the variance of the
posterior distribution:

σ2
P = Var[P(θ | D)]

Step 2: Dropout as a Bayesian Approximation

Perform N stochastic forward passes through the DBN with dropout enabled to sim-
ulate sampling from the posterior distribution. Dropout is a technique used to prevent
overfitting in neural networks by randomly setting neuron activations to zero during train-
ing, with a dropout rate hyperparameter set at 0.2. This random deactivation of neurons
ensures that the network does not rely on any single neuron and thus learns more robust
features. While dropout is consistently applied in training iterations, it is not used during
validation or testing, allowing the full network to be evaluated. The training process, with
dropout, helps in adjusting the network’s weights and biases to develop redundancy in rep-
resentation, ensuring stability in the network’s predictions. The performance metrics from
the training phase guide the optimization, while the complete network’s capabilities are
harnessed during validation and testing for an accurate assessment of its predictive power.

For each pass n, obtain prediction yn, then calculate the predictive uncertainty as:

Uncertainty =
1
N

N

∑
n−1

(
ŷn − ŷ

)2

where ŷ is the mean prediction over the N passes.

Step 3: Calibration Techniques for Reliable Probability Estimates

After obtaining the raw model output probabilities p, apply a calibration function f to
adjust these probabilities:

calibrated = f (p)

Temperature Scaling (TS), as mentioned above, is used as a calibration technique. This
is a post-processing method that adjusts the confidence levels (SoftMax outputs) of a neural
network to make them more representative of the true probabilities. The SoftMax function
is a mathematical function that transforms a vector of real numbers into a probability
distribution by exponentiating each element and normalizing them. The choice of TS was
made because it does not change the model’s architecture or the relative order of predictions.
This calibration method adjusts the model’s output probabilities to ensure they accurately
represent true threat levels, thus improving the system’s ability to differentiate between
actual threats and false alarms without causing unnecessary alerts. The integration process
involves calibrating the temperature parameter using a validation set post-training, which
helps to align the predicted probabilities with actual outcomes, enhancing the model’s
generalization, reliability, and comprehensibility of its predictions. This makes the UA-
DES-DBN model more effective in detecting and managing ransomware threats, ensuring
that early stopping does not compromise the predictive quality.

The TS calibration function works as follows. Let z be the logits (i.e., pre-SoftMax
activations) output from the DBN model for each class. In other words, the logits are
the output values generated by the neural networks before applying the activation func-
tion. The standard SoftMax function applied to these logits, which transforms them into
probabilities, is given by:

P(y = i|x) = ezi

∑j ezj

where y is the predicted class, x is the input, zi is the logit for class i and the denominator
sums over all possible classes. Temperature Scaling introduces a temperature parameter T
to modify the SoftMax function. The adjusted SoftMax function becomes:

PT(y = i|x) = ezi/T

∑j ezj/T
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Here, T is a scalar that adjusts the “sharpness” of the probability distribution. A higher
T makes the distribution softer (more uniform), while a lower T makes it sharper. The
goal of calibration is to find the optimal temperature T that aligns the model’s predictive
probabilities with the true likelihood of the outcomes. This is typically performed by
minimizing a loss function on a validation set, with the most common choice being the
Negative Log-Likelihood (NLL):

NLL = ∑
(x,y)∋Validation Set

log PT(y|x)

The objective is to find:
T∗ = arg min

T
NLL(T)

where T∗ is the temperature that minimizes the NLL over the validation data.
Once T∗ is determined, the model’s final output probabilities are adjusted using this

optimal temperature:

PT∗(y = i|x) = ezi/T∗

∑j ezj/T∗

This calibrated probability distribution is used for all subsequent predictions, ensuring
that the model’s confidence levels are more aligned with actual outcomes, thus enhancing
reliability and decision-making accuracy in the application of the model for ransomware
detection.

When referring to “output probabilities” in the context of a Deep Belief Network
(DBN) handling ransomware detection, we are discussing the computed probabilities
that classify a network event as either ransomware or not ransomware, within a binary
classification framework. Specifically, the model generates two probabilities: one that
represents the likelihood of an event being ransomware, and another for its being benign,
with both probabilities summing to one (i.e., being complementary). This approach, where
the network outputs a vector of probabilities for all possible classes—even in binary
classification scenarios—is typical in machine learning. This standard practice helps ensure
that models are versatile and can be adapted to handle multiple classes, reflecting a general
application design prevalent in machine learning environments.

Step 4: Active Learning Framework

Select samples for which the expected information gain, based on the model’s current
state, is highest. That is, information gain is maximized by selecting and labeling those
data samples that yield the highest entropy when evaluated by the model. These high-
entropy samples were chosen to maximize the reduction in uncertainty about the model’s
predictions, thus enhancing its accuracy and robustness through targeted training on the
most informative data. By focusing on samples with the highest entropy, the model learns
from the most uncertain data points, which generally provide the most informational value.
Information gain (IG) for a sample x can be defined as:

IG(x) = H(ŷ)− Ep(θ|D)[H(ŷ | x, θ)]

where H is the entropy, representing uncertainty, and Ep(θ|D)[H(ŷ | x, θ)] is the expected
value over the posterior distribution of the parameters. In our active learning framework,
we employ an uncertainty sampling query strategy to efficiently select the most informative
data samples for training. This strategy is particularly useful when dealing with large,
unlabeled datasets, as it aims to identify and label only those instances where the model’s
predictions are least confident. The strategy is grounded in measuring the uncertainty of
the model’s predictions on unlabeled data. We typically use the entropy-based uncertainty
measure, defined as follows.

H(y|x) = −∑p P(y = i|x)logP(y = i|x)
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Here, H(y | x) represents the entropy of the predicted probability distribution for a
data sample x, where P(y = i | x) is the probability that x belongs to class i, as predicted by
the model. Higher entropy values indicate higher uncertainty, suggesting that the model is
less sure about its prediction.

Step 5: Dynamic Stopping Criteria

Define a stopping criterion based on a combination of accuracy performance improve-
ment threshold ∆P, predictive uncertainty σ2

threshold, and calibration quality measure C. The
rationale behind selecting these criteria is that early stopping is intended to enhance detec-
tion accuracy by reducing the potential for overfitting. Consequently, the aforementioned
accuracy-related metrics are the appropriate ones to consider. The effectiveness of this
technique was demonstrated in our experimental evaluation, where our model exhibited
superior performance compared to those developed in related studies. Stop training if:

∆P < ϵ and σ2
p < σ2

threshold and C > Cmin

where ϵ is a small positive value indicating the minimum acceptable performance improve-
ment, σ2

threshold is the maximum acceptable uncertainty level, and Cmin is the minimum cali-
bration quality threshold. The use of the AND operator in our stopping criteria is primarily
intended to optimize protection against overfitting, a prominent concern in ransomware
detection. This technique guarantees that the model continues training until it meets all
conditions, avoiding early termination based on a single criterion, which could undermine the
model’s ability to generalize. This is especially important due to the nature of ransomware
early detection which should happen as early as before the encryption phase takes place.

The above formalization (i.e., steps 1–5) provides a mathematical foundation for
implementing the UA-DES technique, guiding the early stopping decision-making process
in a principled manner. By quantitatively assessing performance, uncertainty, calibration,
and information gain, this technique aims to optimize the training of DBNs for ransomware
detection, thus enhancing model generalization and accuracy. Algorithm 1 shows the
pseudocode for the proposed UA-DES and integration into the DBN.

Algorithm 1 Pseudocode describing the proposed UA-DES and integration with the DBN model

Initialize DBN model
Initialize training parameters (epochs, learning rate, etc.)
Initialize early stopping parameters (threshold for performance improvement, uncertainty
threshold, calibration quality threshold)
1: For each epoch in training:
2: Train DBN on training dataset
3: Evaluate DBN on validation dataset
4: Calculate performance metric (e.g., accuracy, F1 score)
5: # Dropout as Bayesian approximation for uncertainty estimation
6: Perform dropout simulations on validation dataset
7: Calculate mean and standard deviation of performance metric across simulations
8: # Calibration of probability estimates
9: Calibrate model outputs on validation dataset
10: Calculate calibration quality (e.g., Expected Calibration Error)
11: # Active learning for data efficiency
12: If epoch % active_learning_interval == 0:
13: Identify and prioritize uncertain samples in training dataset
14: Retrain DBN model including prioritized samples
15: # Dynamic stopping criterion VALIDATION based on performance improvement,

uncertainty, and calibration
16: If (performance improvement < performance improvement threshold) and
17: (standard deviation of performance metric < uncertainty threshold) and\
18: (calibration quality > calibration quality threshold):
19: stop the training
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The pseudocode above outlines a structured technique for the integration of our
proposed UA-DES into training Deep Belief Networks (DBNs) for ransomware detection,
emphasizing the mitigation of overfitting and the enhancement of model generalization.
Initially, the algorithm sets up the DBN with specific training parameters and establishes
early stopping criteria based on performance improvement, uncertainty thresholds, and
calibration quality. Training proceeds in epochs, where the model is iteratively trained and
evaluated against a validation dataset to assess its performance. The algorithm utilizes
dropout simulations during validation to estimate uncertainty. It calculates the mean and
standard deviation of the performance metrics across these simulations, which approxi-
mates Bayesian inference. In addition, it adjusts the model’s output probabilities to ensure
that they accurately represent the actual likelihood of outcomes, as evaluated by metrics
like the Expected Calibration Error (ECE). During the training process, an active learning
phase is periodically implemented to prioritize samples that provide the most valuable
information, thereby improving the efficiency of learning. The algorithm utilizes a dynamic
stopping criterion (lines 16 to 19), which stops the training process when there is minimal
improvement in performance, low uncertainty, and satisfactory calibration quality. This
ensures that the model is neither underfit nor overfit. The process is finalized by saving
the trained model, which is then prepared for deployment in tasks related to detecting
ransomware. This model combines advanced techniques to create a strong and precise
DBN model for detecting ransomware. Precision using the DBN, means that time and
again when the circumstances present (i.e., ransomware attacks) the correct classification is
achieved (detection).

3.2. The Development of Improved UA-DES DBN for Ransomware Detection

The utilization of the UA-DES mechanism during the training process of a DBN model
introduces a novel method for improving the model’s precision, specifically in the domain
of ransomware detection. The process begins by initializing the DBN with predetermined
parameters, such as learning rates and layer configurations. Additionally, early stopping
criteria are established, which include thresholds for performance improvement, prediction
uncertainty, and calibration quality. During the training process, the model goes through
repeated learning cycles called epochs. In each epoch, the model is trained using the
training dataset and then assessed using a separate validation set to measure important
performance metrics. These metrics evaluate both the model’s current ability to detect
ransomware and provide a foundation for making dynamic early stopping decisions.

The main advancement of the UA-DES method is its integration of uncertainty esti-
mation using dropout simulations and the calibration of model predictions to guarantee
reliability and precision. The algorithm uses dropout simulations to estimate Bayesian
posterior distributions, which provide a quantifiable measure of uncertainty in the model’s
predictions. By calibrating predicted probabilities to accurately reflect true outcomes, this
measure offers a more nuanced comprehension of the model’s performance and reliability.
Active learning enhances the training process by choosing and giving priority to data
samples that provide the most useful information, thus increasing the efficiency of the
model’s learning while simultaneously making it more effective. The dynamic early stop-
ping criterion uses uncertainty and calibration to evaluate performance improvements and
ensures that the model stops training at the optimal point. By preventing overfitting, the
DBN model becomes robust and accurate in detecting ransomware threats.

3.3. Experimental Environment and Setup

In this section, the experimental results are described. This includes a description
of the dataset used and the experimental environment. The experimental study utilized
Python packages such as Sklearn, Pandas, Numpy, and SkFeature to analyze a dataset
of 8152 crypto-ransomware samples from various families including Cerber, TeslaCrypt,
CryptoWall, Petya, and WannaCry. These samples were obtained from the public repository
virusshare.com. Additionally, 1000 benign programs were downloaded from informer.com,
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a well-known repository for Windows applications. Both the ransomware and benign
programs were executed in a sandbox environment for the evaluation.

Table 1 displays a sample of API call features that were used as input to the proposed
model. These features are directly correlated with the actions typically carried out by ran-
somware, making them essential for comprehending ransomware behavior. Cryptographic
application programming interfaces (APIs) such as CryptEncrypt and CryptGenKey play
a crucial role in the process of encrypting files, which is a defining characteristic of ran-
somware attacks. File access application programming interfaces (APIs), such as CreateFile
and DeleteFile, are utilized to access and potentially modify or remove files, indicat-
ing unauthorized manipulation of files. Network Application Programming Interfaces
(APIs) like WinHttpConnect and WinHttpOpenRequest are crucial for establishing net-
work connections, potentially for the purpose of data exfiltration or command-and-control
communication.

Table 1. Feature samples used as input to the proposed model.

Type Features

Crypto APIs

CryptEncrypt
CryptGenKey

CryptDestroyKey
BCryptGenRandom

File access APIs

CreateFile
FindFirstFileEXA

FindNextFileA
DeleteFile

Network APIs WinHttpConnect
WinHttpOpenRequest

4. Results and Discussion

The accuracy comparison, as shown in Figure 2 between the proposed UA-DES-DBN
model and the related models (VGG16-PSO [48], DBN-IDS [49], and DBN [50]) across
various input layer sizes reveals that the UA-DES-DBN model consistently outperforms
the other models, at almost all input sizes. The results show that as the input layer size
increases from 5 to 20, the UA-DES-DBN model’s accuracy improves significantly, reaching
a peak accuracy of 0.986 at an input size of 20. It maintains a high accuracy level with a
slight decrease as the input layer size continues to increase, demonstrating the robustness
of our proposed model. The CNN-MD model follows a similar trend but generally exhibits
slightly lower accuracy rates than UA-DES-DBN. DBN-IDS and DBN models show more
variability and generally lower accuracy rates compared to the proposed model. At an
input layer size of 25, all models except the DBN reach their peak accuracy, with UA-DES-
DBN achieving 0.982, which is notably higher than DBN-IDS and DBN. Figure 2 illustrates
that the proposed UA-DES-DBN model is a strong performer across the board, particularly
in the middle range of input layer sizes.

The results obtained from various input layer sizes, as shown in Figure 2, highlight the
efficacy of the UA-DES mechanism in improving the performance of the DBN for detecting
ransomware. The superior performance of the UA-DES-DBN model, especially with larger
input sizes, can be attributed to the UA-DES mechanism’s capability to adaptively modify
the training process according to the model’s uncertainty and calibration quality. This tech-
nique enables the model to concentrate on acquiring knowledge from the most informative
data points and to stop training before it becomes too specialized, thus maintaining the
model’s ability to generalize across a wide range of diverse and intricate input patterns.
The effectiveness of UA-DES-DBN in utilizing additional information without overfitting
is demonstrated by the significant improvement observed, particularly at input sizes of
20 and 40 features. Overfitting, a common issue in deep learning models as they scale, is
successfully avoided. The adaptability of the UA-DES is a consequence of its sophisticated
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method for early stopping, which utilizes Bayesian inference and dropout techniques to
estimate uncertainty and make well-informed decisions about when to stop. Hence, the
UA-DES not only enhances accuracy rates but also guarantees that these rates are a result of
authentic learning and strong model performance. This sets the proposed model apart from
similar ones and emphasizes the importance of incorporating advanced early stopping
mechanisms in deep learning architectures.
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Figure 2. Comparison of accuracy between our proposed UA-DES-DBN and related studies.

From the results in Figure 2, it can be seen that the proposed model maintains better
performance than what has been reported in related studies. However, at some points,
the difference is rather narrow. The various ransomware evasion techniques, such as
polymorphic and metamorphic behaviors, are highly advanced and aim to conceal their
presence and imitate harmless software, making detection difficult during the early stages.
Our model specifically focuses on the pre-encryption phase of ransomware, which is a
crucial juncture in the attack process where the patterns of the attack are scarce and not
well-defined. At this stage, ransomware may not display enough unique behaviors to be
accurately distinguished from legitimate activities. Therefore, even a slight improvement
in the accuracy of detecting ransomware is a noteworthy accomplishment, as it strengthens
the model’s capability to proactively identify and mitigate the encryption processes before
they are fully carried out. Such improvements are crucial for enhancing the model’s ability
to adapt and thereby accurately identify subtle anomalies that may indicate the beginning
of a ransomware attack. This provides a significant advantage in actively defending against
these malicious entities including the constant escalation and/or evolving strategies.

The proposed UA-DES-DBN model demonstrates better performance in minimizing
the false positive rate compared to related models (CNN-MD, DBN-IDS, and a standard
DBN) as shown in Figure 3. This is evident when comparing the false positive rate (FPR)
across different input layer sizes. Significantly, as the size of the input layer increases from
20 to 50, the UA-DES-DBN consistently shows lower FPRs compared to other models. This
demonstrates its effectiveness in accurately differentiating between harmless and harmful
activities without excessively punishing legitimate behavior. At an input layer size of 25,
the UA-DES-DBN demonstrates a notably lower FPR of 0.104, highlighting its exceptional
ability to effectively process intricate data inputs. This trend demonstrates the model’s
strength and its capacity to maintain high specificity across various input dimensions.
The reduction in FPR, particularly for larger input sizes, can be ascribed to the effective
control of the training process by the UA-DES mechanism. This mechanism dynamically
adapts based on model uncertainty and calibration quality to avoid overfitting and enhance
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decision-making thresholds. This technique guarantees that the model is not only adept at
identifying ransomware threats but also highly accurate in avoiding false positives, thus
improving its practical usefulness in security-conscious environments.
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The observed improvements in false positive rate (FPR) shown in Figure 3 measure
how the proposed UA-DES-DBN model can be directly linked to the sophisticated early
stopping mechanism provided by the UA-DES strategy. This strategy, by incorporating
uncertainty estimation and calibration techniques, optimizes the training phase to precisely
tune the model’s sensitivity to genuine threats while minimizing misclassifications. The
gradual reduction in FPR, particularly at higher input sizes (e.g., from 0.104 at size 25 to
0.149 at size 50), exhibits the model’s ability to effectively manage the complexity and
variability inherent in larger datasets. The UA-DES mechanism enhances the model’s dis-
cernment capabilities, allowing it to better differentiate between actual threats and benign
anomalies, which is critical in ransomware detection (i.e., avoiding false positives). This is
achieved by leveraging dropout as a Bayesian approximation to estimate predictive uncer-
tainty and actively adjusting the training process to focus on data points that contribute
most significantly to reducing uncertainty. As a result, the model learns a more accurate
representation of the threat landscape, leading to lower FPRs. The improvements seen
with UA-DES-DBN suggest that the early stopping mechanism not only aids in preventing
overfitting but also plays a crucial role in enhancing the model’s predictive precision, thus
making UA-DES a valuable component in the development of more robust and efficient
IDS solutions.

The proposed UA-DES-DBN model is compared to other related models (CNN-MD,
DBN-IDS, and a standard DBN) in terms of detection rate (DR), also known as sensitivity,
across different input layer sizes. This comparison (as shown in Figure 4) offers valuable
insights into their effectiveness in identifying ransomware threats. The UA-DES-DBN
model consistently achieves a high detection rate, often outperforming or closely matching
the performance of other models, as the input size ranges from 5 to 50. Remarkably,
when the input layer size is set to 25, the UA-DES-DBN achieves a DR of 0.956, which
is substantially higher than the rates observed in other models. This emphasizes its
exceptional capability to accurately identify ransomware attacks. The observed trend
indicates that the UA-DES-DBN model effectively utilizes larger input sizes to improve its
ability to detect complex and evolving ransomware signatures, which is a crucial advantage.
The innovative UA-DES mechanism is responsible for the model’s superior detection rates,
particularly when dealing with critical input sizes such as 25 and 35. This mechanism
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enhances the training process by adaptively adjusting to the model’s learning progress
and uncertainty levels, guaranteeing that the model does not excessively fit the training
data and retains its capacity to generalize to novel, unknown ransomware threats. The
consistent and high rates of detection, regardless of the size of the input, highlight the
robustness of the UA-DES-DBN model. This model has the potential to be a highly effective
tool in the field of cybersecurity for combating ransomware.
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The UA-DES-DBN model has demonstrated improved detection rates (in Figure 4)
when tested with various input layer sizes. This highlights the effectiveness of incorpo-
rating the UA-DES mechanism during the training process. The mechanism’s capacity
to adaptively modify training time, taking into account real-time evaluations of model
performance and uncertainty, is crucial in enhancing the model’s sensitivity to ransomware
patterns. The UA-DES technique guarantees that the model is not stopped too early or
trained excessively, enabling it to effectively extract and learn the most distinguishing
features from the input data. The model’s performance at medium to large input sizes
(such as 25 and 35) can be attributed to UA-DES’s ability to deal with the complexity
and variability in the data. This allows the model to continuously adapt and enhance its
detection capabilities. The UA-DES mechanism utilizes dropout simulations as a substitute
for Bayesian inference to achieve a more precise estimation of model uncertainty. This
estimation is then used to make an early stopping decision that aims to optimize both
high detection rates and low false positives. By following the principles of UA-DES, this
customized training method guarantees that the DBN model attains an ideal balance be-
tween the depth and breadth of learning, thereby significantly improving its ability to
detect ransomware threats. The findings not only emphasize the capability of UA-DES in
enhancing the accuracy of detection, but also its contribution in promoting models that are
robust, flexible, and extremely efficient in practical cybersecurity scenarios.

The F score comparison between the proposed UA-DES-DBN model and other models
(CNN-MD, DBN-IDS, and a standard DBN), considering various input layer sizes, demon-
strates the UA-DES-DBN model’s ability to achieve a delicate balance between precision
and recall in the specific context of ransomware detection (see Figure 5). The proposed
model consistently achieves high F scores, demonstrating its capacity to maintain a strong
detection accuracy while minimizing both false positives and false negatives. This is a
crucial aspect of effective cybersecurity measures. The UA-DES-DBN model demonstrates
better capability in accurately classifying ransomware attacks, as evidenced by its F score
of 0.962 at an input size of 30. This outperforms the other models and highlights its
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good performance. The UA-DES-DBN model consistently outperforms its counterparts,
particularly in more challenging scenarios characterized by larger input sizes. Although
there are slight variations in its F score, the UA-DES-DBN model maintains a competitive
advantage across different input sizes. The UA-DES-DBN model consistently achieves
high F scores due to the effectiveness of the UA-DES mechanism in optimizing the training
process. The UA-DES mechanism ensures that the model’s training duration is adjusted
dynamically based on its performance and uncertainty levels. This prevents the model
from being underfit or overfit, thus improving its ability to generalize effectively to new
data. This technique enhances not only the model’s ability to detect but also its balance
between precision and recall, as indicated by the high F scores. The findings highlight the
effectiveness of incorporating advanced early stopping mechanisms such as UA-DES in
creating precise and dependable models for detecting ransomware. This further solidifies
the UA-DES-DBN model as a valuable asset in the field of cybersecurity.
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Figure 5. Comparison of F1 score between proposed UA-DES-DBN and related studies.

The F score results (shown in Figure 5) further highlight the suitability of the UA-DES
mechanism for improving the performance of the DBN model for detecting ransomware.
The increase in F scores for different input sizes, especially when the UA-DES-DBN model
performs better than other models, highlights the mechanism’s ability to optimize the
trade-off between precision and recall, which are crucial components of the F score. The
balance between accurately detecting threats and avoiding an excessive number of false
alarms is crucial in the field of cybersecurity. The role of the UA-DES is to adjust training
cessation criteria based on uncertainty and performance metrics. This ensures that the
model accurately captures the complex patterns of ransomware behavior without becoming
too specialized to the specific training data. A customized training program enables the
model to retain a strong ability to detect attacks while minimizing the occurrence of
false positives, as demonstrated by the higher F scores. The UA-DES-DBN consistently
performs well regardless of the input size, demonstrating its robustness and adaptability.
These attributes are essential in the rapidly changing field of cyber threats. The UA-
DES technique utilizes uncertainty estimates to make informed decisions on when to
stop training. This not only enhances the model’s performance but also improves its
efficiency by reducing unnecessary computational loads. The efficiency of incorporating
sophisticated early-stopping mechanisms like UA-DES in the development of deep learning
models for cybersecurity is demonstrated by its practical benefits and effectiveness. This
demonstrates the potential of advanced methodologies to greatly enhance the detection
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capabilities of models, rendering them indispensable assets in combating ransomware and
other cyber threats.

Figure 6 compares the false negative rates (FNR) for the proposed UA-DES-DBN
model and other models such as VGG16-PSO, DBN-IDS, and a standard DBN. The analysis
is conducted across different input feature sizes, ranging from 5 to 50. The UA-DES-DBN
model consistently exhibits lower false negative rates (FNRs), with the rate decreasing as
the size of the input layer increases, reaching its minimum at an input size of 25. When
the input layer size is reduced to 5, the UA-DES-DBN exhibits a false negative rate (FNR)
of 0.150. However, when the input layer size is increased to 50, it consistently maintains
a relatively low FNR of 0.128. The observed pattern demonstrates that as the size of the
input layer increases, the proposed model shows improved capability in reducing false
negatives. However, there are some fluctuations in this trend, as evidenced by an increase
in the false negative rate at sizes 30, 35, and 45.
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Figure 6. Comparison of False Negative Rate (FNR) between proposed UA-DES-DBN and re-
lated studies.

As shown in Figure 6, it is evident that the UA-DES-DBN model excels in reducing
false negatives, which are crucial in detecting ransomware. This highlights the model’s
reliability, as false negatives indicate missed security incidents, making their reduction
extremely important. The model demonstrates exceptional performance, especially when
the input size is 25. In this case, the False Negative Rate (FNR) is significantly lower
compared to the other models. This is attributed to the architecture and training process
of UA-DES-DBN effectively capturing the subtle details of ransomware activity within a
specific range of input data complexity. The observed rise in false negative rate (FNR) for
specific feature sizes indicates a potential overfitting when data dimensionality increases,
potentially highlighting the model’s susceptibility to changes in the dimensionality of the
feature space.

The results in Figure 7, which compared the specificity of the proposed UA-DES-DBN
model with VGG16-PSO, DBN-IDS, and standard DBN using input layer sizes ranging
from 5 to 50, consistently demonstrate that the UA-DES-DBN model generally outperforms
or achieves similar specificity compared to the other models. The UA-DES-DBN model
achieves a specificity of 0.896 at an input layer size of 25, which surpasses the performance
of all other models. The specificity values of the UA-DES-DBN exhibit a progressive
rise until size 25, subsequently displaying minor variations while still maintaining strong
performance, thus demonstrating commendable capacity for class differentiation.
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As shown in Figure 7, it is evident that the UA-DES-DBN model consistently achieves
higher specificity rates for the various input sizes. This indicates its effectiveness in ac-
curately identifying instances that are not ransomware, which is essential for reducing
false positives in ransomware detection. The highest level of performance achieved when
the input size is 25 indicates an ideal equilibrium between the complexity of the model
and the dimensionality of the input data. This could be a sign of the model’s ability to
learn efficiently at this particular scale. Nevertheless, the marginal decline in specificity
observed beyond this threshold may indicate overfitting or inadequate model adaptability
to larger input sizes, necessitating additional investigation and potential model adjust-
ment. The observed trends in specificity support the potential of the proposed model in
offering dependable and precise security measures against ransomware. This validates the
effectiveness of the UA-DES methodology.

From the results above (Figures 2–7), it can be seen that the proposed model maintains
performance levels higher than related studies. However, at some points, the difference
was narrow, due to the evasion techniques employed by ransomware (i.e., polymorphic
and metamorphic behaviors). As mentioned above, these attacks are highly advanced and
aim to conceal their presence and imitate harmless software, making it difficult to detect
them in the early stages. Our model specifically focuses on the pre-encryption phase of
ransomware, which is a crucial point in the attack process where the patterns of the attack
are scarce and not well-defined. At this stage, ransomware may not display enough unique
patterns to be accurately distinguished from legitimate activities. Therefore, even a slight
improvement in the accuracy of detecting ransomware is a noteworthy accomplishment, as
it strengthens the model’s capability to proactively identify and mitigate the encryption
processes before they are carried out. This improvement is crucial, as it enhances the
model’s ability to accurately identify subtle anomalies that may indicate the beginning of a
ransomware attack. This provides a significant advantage in actively defending against
these malicious entities.

Although the use of deep learning algorithms like DBN has gained wide popularity
for malware detection (including ransomware), there are some limitations that need further
investigation by the research community. One of the potential research directions is to
explore the interpretability of the model, which could lead to figuring out where models
could fail to detect the attacks. The interpretability makes it easy for researchers to pinpoint
the critical aspects of the model that can be improved.
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5. Conclusions

The UA-DES technique greatly improves the detection of ransomware in Deep Belief
Networks (DBNs) by exploiting the uncertainty and calibration quality measures described
herein as was demonstrated through experimentation. This is true because UA-DES
enhances the training process using uncertainty estimation and calibration techniques
which are different from typical dropout simulations. Another important feature of our
methodology is that it represents an active optimization learning framework leading to
specific and measurable improvements in overall performance.

During our experiments, the UA-DES-DBN model exhibited an increase in accuracy
from 94% to 98% across different input sizes, surpassing other models such as VGG16-PSO
by up to 4%, DBN-IDS by up to 6%, and standard DBN by as much as 8%. In addition, the
model demonstrates a decrease in the false positive rate from 0.18 to 0.10 (45% savings),
indicating a substantial reduction that improves its usefulness in real-world cybersecurity
applications. The model’s false negative rates also improved, decreasing from 0.15 at an
input size of 5 to 0.128 at size 50 (15% savings trend).

These measurements demonstrate our model’s robustness to effectively detect ran-
somware. Future efforts could concentrate on improving the calibration process to enhance
the accuracy of probability estimates. The efforts could also explore other deep learning
architectures to broaden the model’s effectiveness in addressing a wider range of cyberse-
curity threats using the early stopping criteria defined here. Thus, our ongoing research
aims to enhance the detection capabilities against advanced cyber ransomware threats.
At this point, our novel ransomware detection methodology has been shown to facilitate
the development of a more robust and accurate deep learning methodology to address an
ever-changing landscape of advanced and persistent ransomware attacks.
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