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Abstract: Anticipating and planning for the urgent response to large-scale disasters is critical to
increase the probability of survival at these events. These incidents present various challenges that
complicate the response, such as unfavorable weather conditions, difficulties in accessing affected
areas, and the geographical spread of the victims. Furthermore, local socioeconomic factors, such as
inadequate prevention education, limited disaster resources, and insufficient coordination between
public and private emergency services, can complicate these situations. In large-scale emergencies,
multiple demand points (DPs) are generally observed, which requires efforts to coordinate the
strategic allocation of human and material resources in different geographical areas. Therefore, the
precise management of these resources based on the specific needs of each area becomes fundamental.
To address these complexities, this paper proposes a methodology that models these scenarios as
a multi-objective optimization problem, focusing on the location-allocation problem of resources
in Mass Casualty Incidents (MCIs). The proposed case study is Mexico City in a earthquake post-
disaster scenario, using voluntary geographic information, open government data, and historical
data from the 19 September 2017 earthquake. It is assumed that the resources that require optimal
location and allocation are ambulances, which focus on medical issues that affect the survival of
victims. The designed solution involves the use of a metaheuristic optimization technique, along
with a parameter tuning technique, to find configurations that perform at different instances of the
problem, i.e., different hypothetical scenarios that can be used as a reference for future possible
situations. Finally, the objective is to present the different solutions graphically, accompanied by
relevant information to facilitate the decision-making process of the authorities responsible for the
practical implementation of these solutions.

Keywords: multi-objective optimization; mass casualty incidents; location-allocation problem;
p-median problem; maximum coverage problem.

MSC: 90C29

1. Introduction

The International Federation of Red Cross (IFRC) defines a disaster as “an event
that disrupts the normal functioning conditions of a community and exceeds its ability to
deal with the effects with its own resources [1]”. The term natural risks refers to “natural
phenomena that have the potential to cause a disaster, such as climatologist, meteorologist,
hydrologist, biological or geophysical phenomena”. Given the natural conditions of the
planet, all geographic regions are exposed to different types of natural risks that have the
potential to cause disasters that are inevitable and sometimes unpredictable. However,
disasters that could occur from these natural phenomena are also avoidable and it is
the responsibility of the population to prepare to reduce its impact in three different
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stages: before the event (proactive), during the event (active), and after the event (reactive).
The World Health Organization (WHO) defines four phases for disaster management:
prevention, to minimize the effects of the incident; preparation, to plan the actions to
take in each dangerous situation and to educate the population on the subject; response,
to act immediately after the incident and provide medical assistance and resources; and
finally recovery, to return to normal once the tasks associated with the response phase are
completed [2].

If a disaster leads to a large number of casualties beyond the capabilities of healthcare
providers, it is considered a Mass Casualty Incident (MCI). Medical problems resulting from
an MCI are those defined by the National Association of Emergency Medical Technicians
(NAEMT) in the Manual for Prehospital Trauma Life Support (PHTLS) [3] that include the
following five elements:

• Search and Rescue: This activity involves identifying and removing victims from a
dangerous situation.

• Triage and Initial Stabilization: This is the process of classifying victims according to
the severity of their injuries and the primary medical care they require.

• Patient Monitoring: This refers to continuously monitoring a patient’s health status
from identification to evacuation.

• Definitive Medical Care: It is the component in which specialized care is provided to
the patient according to his needs until his recovery is complete.

• Evacuation: This refers to the transfer of the patient from the disaster area to the area
of definitive medical care.

These elements describe the tasks carried out in the disaster response phase from a
medical perspective, although there are other aspects to consider when participating in
an MCI. One of the most widely used risk management tools is the Incident Command
System (ICS), which is designed to facilitate the coordination of agencies in different
jurisdictions to work effectively together [3,4]. This system is based on an organizational
structure for managing the response to any small or large incident. The ICS describes
best practices for trained personnel to address the five medically relevant elements safely
and efficiently; however, various factors can make the scenario more complex, such as the
dynamic nature of a disaster, the uncertainty of the damage caused, and the location of the
victims, among others.

A scenario that can occur in large-scale disasters is when a large geographic area is
affected (originated from fires, floods, earthquakes, and pandemics), where there is a multi-
tude of demand points and the victims are not concentrated in a single area, which means
that medical personnel cannot move between them in a reasonable amount of time. In this
scenario, the process of assigning the available resources needs to be analyzed. The ICS
recommends that “to avoid the problems that might be caused by the massive convergence
of resources to the scene and to manage them effectively, the Incident Commander (IC)
may establish the required holding areas”.

In these types of situations, units are typically sent to a staging area rather than going
directly to the incident location [3]. A staging area, or preparation area, is a location near
the incident where multiple units can be held in reserve, and dinamically assigned as
required. With this in mind, a hypothetical ambulance allocation proposal is to allocate
only those ambulances necessary to care for confirmed victims at each care center, then
place the rest of the available ambulances in one (or more) staging areas, and then allocate
them to nearby care centers as the presence of victims is confirmed. This assignment
means that an ambulance will go to a demand point, then paramedics will evacuate the
victim to a hospital and return to the staging area, thus distributing the workload among
all available units. However, this requires the selection and activation of staging zones,
ensuring the following:
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• They are close to the centers of attention to which ambulances will be directed.
• The number of activated zones does not create an unnecessary logistical problem.
• They have easy access to the roads and do not represent an obstacle for vehicle traffic.

For this reason, it is recommended to identify the candidate staging areas (candidate
bases) in advance. From these candidates, the areas to be activated can be determined
according to the disaster conditions. According to the state-of-the-art, various authors
consider hospitals and ambulance bases as starting points that can be used as candidate
stating areas. However, this approach is not applicable to all countries and cities considering
the local characteristics of the medical service infrastructure. Alternatively, road transport
infrastructure can be used to temporarily locate this type of resources, as long as it satisfies
the previous requirements. In summary, there are three major tasks to solve this problem:

1. Define a methodology to find candidate areas to reduce the search space, given the
number of road segments that can be considered as staging areas.

2. Find the best staging areas to activate from the set of candidate zones, taking into
account the travel time to the attention centers and the number of activated zones.

3. For each enabled staging area, assign the focus of attention to cover, considering
proximity and capacity.

Taking these aspects into account, there is an opportunity to improve the ability
to respond to disasters by optimizing the use of medical assistance resources, reducing
the impact on the number of human losses. In the present work, these three tasks are
addressed in a specific study area, adapting to local protocols and regulations; however,
the methodology developed and the mathematical model of the problem can be adapted to
other regions, when relevant information is available.

This article is organized as follows: Section 2 presents related work; Section 3 presents
materials and methods; Section 4 presents the obtained results; and Section 5 describes the
conclusions and future work. Finally, references are listed.

2. Related Work

This section presents the most relevant research related to the issues analyzed in this
paper. The studies include proposals for the location of ambulances and analysis of disaster
situations such as earthquakes. Others, although not directly related (such as the permanent
or temporary location of medical aid facilities or centers), offer solutions that have inspired
the formulation of the strategy proposed in this work.

The problem of facility location and resource allocation (location-allocation prob-
lem) has been addressed by many authors from different perspectives. For example,
Halper et al. [5] considered the Mobile Facility Location Problem (MFLP) to minimize the
cost of moving existing facilities and the cost of traveling to the assigned facility. Obtaining
satisfactory results using a dynamic model, the authors proposed to analyze the problem by
decomposing it into two subproblems: the first to assign facilities and the second to assign
customers. Both are solved in polynomial time using local search neighborhoods. On the
other hand, Barojas-Payán et al. [6] considered two problems in the same form: one to
determine the optimal locations of warehouses to provide humanitarian assistance and the
other to determine the levels of stock in these facilities. In addition, the authors proposed
solving two problems: determining the optimal location of temporary medical stations
and allocating the minimum number of stations to optimally cover the entire demand
area. Similarly, in this paper, the optimal location of temporary ambulance stations and
the assignment of the smallest number of stations are studied to optimally cover the entire
demand area.
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In the location-allocation research area of medical support vehicles (ambulances),
Zaffar and colleagues [7] found that the main objective of most state-of-the-art work is
related to finding the best distribution of ambulances to maximize coverage and minimize
response times. Mohri and Haghshenas [8] analyzed the problem using the Ambulance
Location Problem (ALP) as an extension of the Set Coverage Problem introduced by
Toregas [9]; Kavhe and Mesgari combined the Maximum Coverage Location Problem
(MCLP) and metaheuristics [10]; Hashtarkhani et al. proposed the use of MCLP and
combinatorial optimization techniques [11]; while Barojas-Payán et al. [12] addressed the
problem using the p-median problem.

However, in the particular case of disasters, in addition to maintaining an adequate
response time as the primary objective, the location of emergency medical services (both
facilities and vehicles that are temporarily or permanently located at a site) frequently
must also attempt to satisfy constraints associated with the number of available resources
(sometimes insufficient for the demand points), the heterogeneity of demand (that changes
over time), and other uncertain or indeterminate factors [13]. For this reason, and following
earlier contributions, this paper models this request using a multi-objective function that
combines the p-median and MCLP (the model description is detailed in Section 3.

Zheng and colleagues [13] presented a collection of algorithms designed to solve
combinatorial optimization problems in disaster situations. The algorithms were classified
by problem type, such as transportation planning, location of the facility, route, or integrated
(combining multiple problems). The proposed algorithms formulate functions with one or
more objectives and some are considered uncertain or random factors. In the collection,
Genetic Algorithms (GAs) were the most used, followed by Particle Swarm Optimization
(PSO), and other heuristic techniques such as Simulated Annealing (SA), Tabu Search (TS),
Harmony Search (HS), Variable Neighborhood Search (VNS), as well as hybrid models that
combine different metaheuristics to solve the problem. The NGSA-II algorithm was used for
evacuation planning and transportation costs by Saadseresht et al. [14]; for relief planning
by Nolz et al. [15]; and for dynamically adjusting supply distribution plans according to
demand requirements, delivery time, and transportation costs by Chang et al. [16].

In this work, the behavior of the NGSA-II algorithm for finding the temporary locations
of emergency vehicles is studied, which is supported by the results of Schjølberg et al. [17]
and Saeidian et al. [18]. They found in their experiments that for the problem of finding the
location of emergency vehicles, the Genetic Algorithm achieves better results when compar-
ing different metaheuristics, achieving a better response time, which is more pronounced
in scenarios with a high demand for emergency vehicles.

Particularly in earthquake disasters, the following research proposed resource man-
agement models with different considerations. Geng et al. [19] focused on the perception of
victims’ distress to analyze optimization of storage location and the allocation of supplies
for emergency rescue. Alinaghian et al. [20] used harmony and taboo metaheuristics in
combination with variable neighborhood metaheuristics to suggest the location of per-
manent health centers and temporary relief centers under normal and critical conditions,
considering the characteristics before and after a disaster. To improve preparedness and
response in the first 72 h after an earthquake, Oksuz and Satoglu [21] introduced a multi-
objective stochastic programming model to optimize allocation of resources, temporary
health centers, and medical personnel. Similarly to [21], where the model considers pos-
sible damage to roads and hospitals, including distance restrictions, in this research the
characteristics of roads are evaluated.
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Real-time decision-making has been studied in several contexts, but it is still chal-
lenging [22,23]. Location problems (including the p-median and MCLPs discussed in
this paper) are NP-hard problems, meaning that they are extremely difficult to solve in
terms of computational complexity and cannot be solved optimally for large input data.
Moreover, there is no known efficient algorithm that can solve all instances of the problem
in polynomial time in an NP-hard problem. To reduce computational complexity, some
proposals require the list of possible candidate locations in advance or otherwise include in
the methodology an approach to decrease the search space [11,21]. Saeidian et al. [18] used
a GIS to select candidate locations that satisfied the initial conditions, followed by applying
a metaheuristic to calculate the optimal location of temporary help centers. However, even
with a list of candidate locations, conditions can change in disaster situations. Therefore,
this article uses the proposal detailed in [24] to find possible locations based on the initial
conditions of the problem and to reduce the search space according to the disaster scenario.

Finally, one of the works that is most closely related to the present proposal is described
in [25]. Karpova et al. presented a technique for dynamically relocating ambulances that
are available at a specific time, attempting to maintain complete coverage that adapts
when an ambulance is occupied. Their proposal did not consider large-scale emergency
scenarios, but rather everyday medical emergencies in which ambulances are individually
assigned to care locations. Likewise, Caglayan and Satoglu [26] proposed a multi-objective
model with three objectives: minimize the number of victims unable to be transported to
hospitals after the disaster, reduce the number of additional ambulances needed in the
response phase, and reduce the total transport time. Caglayan and Satoglu considered
the assignment of triage points to emergency stations prior to the event and decided the
number of ambulances that may be needed in advance. The number of unattended victims
and the time spent in transport were minimized based on their health status.

On the other hand, Wang et al. [27] proposed a model for ambulance location-
allocation in disaster management, addressing the identification of both temporary bases
and medical centers with funding restrictions. It is a combination of SA, GA, and PSO.
The main contribution of this research is the consideration of relocating temporary am-
bulance stations as the demand rate changes. The work of [28] analyzed the problem of
ambulance location-allocation considering the station preference order to dispatch ambu-
lances, the temporal variation in demand and travel time, the probabilities of station-specific
ambulance occupancy, and possible everyday ambulance relocation. Their proposal used
a particle swarm approach to obtain the number of ambulances assigned to each station.
The adaptive VNS metaheuristic was used to solve the problem. However, both [27,28]
recommended for future work to extend model experiments with different travel times
from temporary stations to demand points, considering different times of day, since in
a disaster situation the closest temporary station will not always be the first to arrive.
To address this issue, the model proposed in the present paper consulted the traffic data
corresponding to the time of day of each scenario analyzed. Thus, the actual travel time
(taking into account the level of congestion of different roads) was considered to select the
optimal locations to reach the demand points.

3. Materials and Methods

The proposed methodology is shown in Figure 1 and consists of eight stages: Problem
Model, Historical Data, Incident Data, Data Integration, Algorithm Selection, Optimization
Process, Solution Visualization, and Implementation Plan. The purpose of each stage and
its components are described in the following.



Information 2024, 15, 260 6 of 33

Figure 1. Proposed methodology.

3.1. Problem Model

The problem can be described as a combination of the p-median problem and the Max-
imum Coverage Problem, with two objectives. Formally, use the following representations:

• bi is the i-th candidate base (decision variable).
• pj is the j-th demand point.
• I is the set of candidate bases.
• J is the set of demand points.
• U is the set of urgencies of the demand points.
• aij is the coverage from bi to pj (decision variable).
• C is the cost matrix of |I| × |J|.
• cij is the cost of travel from bi to pj.
• li is the capacity of bi.
• dj is the demand for pj.
• uj is the urgency of pj.
• α is the maximum cost that a route can have.

The first objective consists of minimizing the cost (distance) between the candidate
bases and their respective assigned demand points (see Equation (1)), and the second is to
activate the smallest possible number of candidate bases (see Equation (2)). In consequence,
the two objective functions are as follows:

minimize f1 = ∑
i∈I

∑
j∈J

cijaij (1)

minimize f2 = ∑
i∈I

bi (2)

Subject to the restrictions described by the Equations (3)–(10).

aij =

{
1, if bi attend pj

0, other
(3)



Information 2024, 15, 260 7 of 33

∑
i∈I

aij = 1, ∀j ∈ J (4)

∑
j∈J

aij ≥ bi, ∀i ∈ I (5)

aij ≤ bi, ∀i ∈ I, j ∈ J (6)

∑
j∈J

djaij ≤ libi, ∀i ∈ I (7)

maxj∈J(cijaij) ≤ α, ∀i ∈ I (8)

∑
i∈I

bi ≤
|J|
2

(9)

bi ∈ {0, 1}, aij ∈ {0, 1}, ∀i ∈ I, j ∈ J (10)

Taking into account the observation in [29] on the p-median problem, it is established
that “if you have a solution with p installations, increasing another installation in any of
the candidate nodes that do not have an installation will reduce the total weighted cost.
Therefore, the objective function will decrease”. However, in the proposed model, adding
an installation p deteriorates the second objective, so there is a conflict between the two
objectives. Figure 2 shows an example of the relationship between the bipartite graph and
the location of the candidate bases and the demand points. In this figure, the cost matrix is
represented by straight gray dotted lines, and the values of aij = 1 are represented by red
lines. On the other hand, Figure 3 contains the matrices that describe this scenario.

Figure 2. Representation of the problem using a bipartite graph.

Several definitions of the p-median problem specify aij = 1 − cij < cik , i ̸= k ∀ i,
k ∈ I, j ∈ J. However, this is not always possible when the problem has limited capacity.
For this reason, a criterion must be defined to process each pj ∈ J, taking into account
demand (dj), capacity (li), distance (cij), or urgency (uj) (several examples of urgency
calculation can be consulted in [30]). For the processing of each j-th element, it is possible
to apply one of the following allocation methods:

• Classic: A pj is randomly chosen and assigned to the nearest bi.
• Urgency-based: uj, ∀j ∈ J is calculated and processed in descending order of uj.
• Demand–urgency-based: Elements are processed in descending order of dj and later

in descending order of uj.
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Figure 3. Decision variables and fitness value of the solution for the scenario represented in Figure 2.

Figure 4 shows the results obtained using the classic, urgency-based, and demand–
urgency-based allocation methods for the same set of vectors I and J, with their correspond-
ing capacity and demand values. It is evident that the demand–urgency-based method is
less expensive. However, this condition cannot be guaranteed in all scenarios, so it must be
determined which method is more appropriate for a particular case and considered as a
hyperparameter for further adjustment.

Figure 4. Example of allocation methods.

3.2. Historical Data

These is a result of acquiring or generating information from the case study in which
the problem is analyzed. Examples of required information include road transport infras-
tructure, hospital locations, reception centers, temporary refuges, and potential staging
areas. Some of these data were obtained from open access databases and official sources.
The remaining data set is generated specifically for the problem.

3.2.1. Official Data

These data were obtained from the Mexico City Open Data Portal (Portal de Datos
Abiertos de la Ciudad de México, in Spanish) and the Risk Atlas Portal (Atlas de Riesgos,
in Spanish). All layers were modified to homogenize common characteristics and repro-
jected to SRS EPSG:6369, Mexico ITRF2008/ UTM Zone 14N. The names of the layers and
each attribute are written in lowercase, and a crop was applied using the boundary of the
polygon of Mexico City. The layer list and related information are described in Table 1.
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Table 1. Data retrieved from official data sources.

Layer Description Geometry
Type

Number of
Records Features

mayorships [31] Geographic boundaries of each mayorship polygon 16 6

risk_zones [32] Earthquake risk zones polygon 4908 2

regions * [33] Classification of urban areas according to the unit responsible for
rescue operations polygon 5 3

hospitals [34] Public and private hospitals operating in the CDMX point 584 59

gathering_centers [35] Emergency collection centers available point 67 10

refuges [36] Temporary emergency shelters available pint 67 10

collapses [32] Collapsed buildings from the 2017 earthquake point 38 1

damages [32] Damaged buildings from the 2017 earthquake point 38 1

blocks [37] Geographic delimitation of blocks and 2020 population census data polygon 1,215,066 18

seduvi [38] Buildings Centroid and their characteristics, provided by SEDUVI point 1,215,066 18

land_registry [39] Geographical delimitation of the buildings and their characteristics,
provided by Land Registry Department polygon 1,607,109 7

* Data created from the description.

3.2.2. Generated Data

The set of geographic data required for the multi-objective optimization process is
obtained and adapted in this stage. It consists of obtaining data on the road transport
network and the set of possible locations for candidate bases.

Road Transport Network. The OSMNX Python library is applied to generate a graph
using the Mexico City polygon as a reference. A multi-digraph object is obtained from
NetworkX, where the edges represent the roads and the vertices describe their intersections.
All components of the graph are georeferenced with the SRS EPSG:4326, so a reprojection
is applied to the system EPSG:6369.

Candidate bases. Several approaches assume that the candidate locations where the
ambulances will be placed are known in advance and are typically hospitals. In Mexico
City, there are no official data, but in practice the same road transport infrastructure is
generally used to place ambulances. Applying this alternative to other models, each road
could be considered a candidate location, i.e., there would be 305,190 possible locations
using the roads individually, or 128,825 considering only the intersections as starting
points. However, the search space for the location problem would be 2128,825, which is not
computationally efficient. Therefore, in this work, a simplification process based on [24]
is proposed to segment the road transport network, described as a road transport graph
Gt = {Vt, Et}, and to obtain a filtered graph G f = {Vf , E f }, such that G f ⊂ Gt, considering
a limit representing the minimum capacity (µ) and a proximity factor (λ). The process used
is described in the following:

1. Selection by characteristics: Roads with any of the following characteristics are discarded:

• It is a highway, incorporation, residential street, or it has no classification;
• It has fewer than 3 lanes;
• It is represented with a bidirectional edge and has fewer than 4 lanes;
• The number of lanes is unknown and it has a lower hierarchy than the type of

secondary road.

2. Selection by capacity: The road segments are discarded where it is not possible to
assign a minimum of µ ambulances. On average, the length of an ambulance is
considered equal to 6 m, and the use of µ = 15 removes all segments that are shorter
than 90 m. Furthermore, isolated vertices are eliminated and the filtered graph G f is
updated with the capacity factor.
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3. Elimination of redundancy: Roads are represented by their terminal vertex, i.e., the
vertex v of the road (u, v), because this is the point from which an ambulance will start,
and intersections of two or more roads can have a common terminal node. To avoid
redundancy, roads that share a terminal node v are grouped, but their individual
characteristics are preserved. As a result, a subset of vertices Vs ∈ Vf is obtained,
which stores the attributes of the edges {(u1, v), (u2, v) → (v) | u1, u2, v ∈ Vf }
and contains two new attributes, length and total capacity, which are the sum of the
lengths and capacities of the grouped edges, respectively.

4. Proximity grouping: The vertices of the set Vs that are “close” are grouped according
to a proximity parameter λ. This proximity factor is measured by the path from point
a ∈ Vs to point b ∈ Vs using a path in G f . Using a clustering algorithm, information
from multiple vertices (w1, w2, ..., wn) is added to a representative vertex v.

A reduction is applied when obtaining the network using OSMNX, in which the edges
representing connected roads without intersections are merged, i.e., the edges (u, v), (v, w)
are merged into (u, w) if the vertex v has no neighbors (either ancestors or predecessors)
except u and w. For this reason, 21,454 edges in the graph represent more than one road,
having multiple attribute values such as name, type, and number of lanes, among others.
In the previous simplification process, the merged roads were considered a single road
of the type of lower hierarchy present in the merged roads, i.e., if a primary road and
a secondary road have been merged, the new edge is considered a secondary road but
preserves the original attributes of the merged roads. To verify the coverage that the bases
have throughout the city, the distance between each vertex of Gt and its nearest base is
evaluated using the Voronoi diagram of the graph with the resulting candidate bases as
control points, i.e., the set V. To detect possible changes in this coverage, different weights
can be applied to the edges using historical traffic data.

3.3. Incident Data

In this stage, event information is collected from the location of the demand points,
considering the confirmed or possible number of victims, as well as blocked roads, traffic
data, and available hospital capacity. In a real scenario, these data are obtained from
government sources as the information is being integrated. In an experimental scenario,
historical data from previous incidents are used.

Location of demand points. The CDMX Open Data Portal provides georeferenced data
on buildings that collapsed or suffered damage during the 19 September 2017 earthquake,
which can be used to estimate the probability distribution of damage locations that could
occur in future events. It is proposed to generate new hypothetical scenarios that follow
this spatial distribution and enable an adjustment of the algorithm parameters based on
different instances of the same problem, using the kernel density estimation of the buildings
damaged in the 2017 earthquake, and using the library scikit learn and a Gaussian kernel.
To determine the bandwidth of the kernel, a grid search is performed (in one dimension)
with 1000 values of powers of 10, from 101 to 104. For each bandwidth value, the KDE is
obtained using the leave one out validation method, and selecting the maximum likelihood
logarithmic estimation.

In addition, the demand for each of them has to be estimated. In a real scenario,
the responsible official reports the location of the incident and its characteristics to make
an initial estimation of the damage per quadrant [40]. This estimation includes details of
damaged buildings (does not change), as well as the number of victims (may change as more
specific information becomes available). The official data reported in the September 2017
earthquake do not have this information; therefore, it is proposed to make an approximation
of the number of victims by using the points generated with the kernel density, the data
from the land census, and the SEDUVI, which requires the following modifications:

• Only residential buildings with information on the number of levels are considered.
• If a building does not have the number of levels but the height, then half of the height

in meters is used as the number of levels.
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• For blocks that do not have the average number of occupants, the average of the
surrounding blocks is used.

To estimate the number of victims in each pj, the following steps were performed:

• n points are sampled using the kernel with 15 ≤ n ≤ 60;
• Search for the nearest building in the land records layer using Euclidean distance.
• The block in which each building is located is identified by calculating the Euclidean

distance between the building and the centroids of the blocks.
• The average number of occupants per apartment pocup in the block is taken and

rounded to the closest integer using the ceiling function.
• If the building has three floors or less, it is considered a single-family unit, so the

number of victims of the block is equal to nvictims = poccup.
• If the building has more than three levels, it is considered a multi-family building,

and the average number of residents in the block is multiplied by the number of levels
nvictims = nlevels × poccup.

Traffic data. Traffic data can be obtained in real time through TomTom’s TrafficFlow
API according to the specifications provided on the website, which is in raster format
and segmented into fixed-size rectangular tiles, representing an exponential division of
space [41], as is described in Figure 5a. To optimize the memory required to maintain all
tiles, the data are converted to single-band rasters that preserve the different traffic classes
by mapping the RGB components with a range of [0, 255] to a class index of [0, 6]; see
Figure 5b.

(a) (b)

Figure 5. Mexico City traffic on 20 October 2023 at 18:58 obtained with a zoom level of 12. (a) Tiles
required to cover the bounding box in Mexico City (red box). (b) Final result of conversion to single-
band raster.

When tiles are available as single-band raster data, a sampling is performed for each
edge of the graph. This is performed by calculating the center of the sampling window,
which is the end of the line segment perpendicular to the intermediate line segment of the
edge geometry and crossing its center. The final result of the extraction of traffic data is
a Pandas dataframe that associates the id of each edge (u, v, k) with an integer value for
each color that corresponds to the most commonly used value in the sampling window.
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However, if the sample window does not contain a number other than 0, it is assumed to
represent free traffic segment and the number 1 is assigned.

3.4. Data Integration

At this stage, the Historical Data and Incident Data are concentrated and processed.
Analysis is performed to ensure that all geographic data are in the same coordinate system
and that all files are properly formatted. The incident data update the status of previous
data, with features such as the possibility of traveling along the road axes, obtaining a
geospatial model that describes the complete scenario of the incident. Specifically, to obtain
the required Geospatial Model, it is necessary to apply the procedure described below.

3.4.1. Upload Information

The data previously obtained must be loaded, processing the following information:

• Candidate locations as temporary bases I, li, ∀i ∈ I. Since bases are a subset V ∈ Vt,
they are identified by the id of the vertex in Gt, i.e., the node attribute is used as
an index;

• The road transport graph Gt = Vt, Et;
• The location of hospitals with more than 10 beds;
• The points where the victims are located are identified by an id denoted num;
• Traffic data associated with the incident.

3.4.2. Update Previous Data with Incident Data

For each particular scenario, the following data must be modified before performing
an optimization technique, in order to consider the specific characteristics of each incident:

1. The traffic information is included in the traffic graph Gt as an attribute (traffic) of the
edges. If historical traffic data are used, all available data collected on the same day of
the week with the closest time to the event are obtained.

2. A version of the graph is obtained in which there are no vertices that cannot be reached
from a candidate base. Since the simplification of Gt excludes unclassified roads, some
points cannot be traveled to from a temporary base. This does not mean that they
cannot be accessed, but only that they will not be considered as a destination point and
the nearest available edge or vertex will be considered instead. To determine which
points must be discarded, the Voronoi diagram of Gt is calculated using the candidate
bases as control points. Vertexes that are not grouped in any cell are eliminated from
G, resulting in a graph Gu.

3. The nearest edge to each demand point and to each hospital in the graph Gu is
identified. These edges are stored with their identifier (u, v, k) in independent lists
that will be used later.

4. Edges of Gt that are not traversable are identified, either because they have a value of
5 or 6 in the traffic classification, or if it is the closest edge to pj and is found in the list
of edges from the previous step. All edges of Gt are assigned a state attribute locked
and marked true for those identified in this step.

5. The edge costs of Gt are calculated as the weight attribute as follows:

• If the value of the block attribute is false, the value corresponding to the mapping
traffic→weight is assigned as the value of the weight attribute:

– 1 1 → 1 × l;
– 1 2 → 2 × l;
– 1 3 → 4 × l;
– 1 4 → 6.7 × l.

where l is the length of the edge and the coefficient is the inverse of the speed,
expressed as the distance.

• On the other hand, if the lock attribute is true, the maximum weight is 1 × 109.
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6. Candidate bases that satisfy any of the following conditions will be identified:

• It has no successors in the graph Gt (this can occur at the boundaries of the zone).
• Some of the grouped edges are found in one of the lists in step 3, i.e., there is a

demand point or a hospital on one of the streets it represents.
• They have a traffic value greater than 2.

These bases are discarded for use in the optimization problem, so they are not included
in the calculation of the cost matrix.

7. The graph Gt is updated with the new edge attributes.

3.4.3. Computation of the Cost Matrix

The resulting set I is used to calculate the origin–destination matrix (matrix C). To de-
fine the targets (set J), we take the two endpoints of the nearest edge to each demand point
and use the vertex with the highest cost to consider the worst-case scenario. If the most
expensive vertex to reach requires traveling through the blocked path, the lowest-cost point
is considered. The result is the set J, where each element represents the closest vertex of the
graph Gt to the true location of each demand point with the estimated number of casualties.

Assuming |J| < |I|, it is more efficient to compute G−1
t and run Dijkstra’s algorithm

|J| times than to use Gt and run the algorithm |I| times. The result is the cost of traveling
from each vertex of Gt to pj, which is stored in a Pandas dataframe that relates the id of
each vertex and its distance to j. In addition, another dataframe is stored that relates each
vertex to its predecessor. Finally, the dataframes define the cost matrix, where each row
represents a base i ∈ I and each column represents a demand point j ∈ J. The relationship
between position (row or column number) and base identifier (node attribute) or demand
point (num attribute) is stored to know which indices i and j correspond to each base and
demand point, respectively. The implementation of Dijkstra’s algorithm is based on the
cuGraph library.

Demand estimation. Since each bi has limited capacity and the total number of
ambulances must be distributed to cover all the demand points, the value of dj, ∀pj ∈ J is
estimated with the ratio between the number of victims at that demand point and the total
number of victims. After identifying the closest activated bases, the number of ambulances
assigned to each group can be adjusted, provided that there is a tolerance in the total
capacity of each base. To have a tolerance in the capacity of each base, half of the total
capacity is taken as a value. Equation (11) describes the calculation of demand (dj) for a
given demand point (pj).

dj = round
( nvictimsj

∑j∈J nvictimsj

× (k − |J|)
)
+ 1 (11)

where nvictimsj is the number of victims in pj and k is the number of ambulances that are
available to meet the total demand. The number of ambulances in Mexico City varies,
although most of the sources consulted agree that there are more than 290 ambulances.
Considering that not all of them will be available at the time of a disaster, it is proposed to
use the number of 250 ambulances.

Instance storage. When all the data used to describe the problem are available, the data
are stored as Python objects. This process is performed for each of the 10 hypothetical
scenarios proposed. Each scenario has its own set of demand points and random traffic
data for one week in November at different times.

3.5. Algorithm Selection

In multi-objective optimization problems, one of the most widely used algorithms
is the NSGA-II algorithm, both in computational engineering problems and in other ar-
eas [42–44]. For this reason, the NSGA-II Genetic Algorithm was used and in order to
improve the performance of this algorithm; its parameters were modified by using the
following procedure.
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3.5.1. Design and Implementation

The implementation of the NSGA-II algorithm is carried out using the Python library
pymoo. The algorithm works with solutions using a feasible first selection method, as de-
scribed in the [45] library documentation. To solve the optimization problem, several
objects should be defined.

Problem and solution representation. This is an object that describes the mathematical
model of the problem.

Algorithm. It is the object through which the proposed algorithm is carried out. It
receives as input the parameters of the algorithm and three additional parameters:

1. Remove duplicates: A boolean parameter that indicates whether or not solutions that
are the same in the current population should be removed. There is no guarantee
that there will be no repetition of solutions from previous generations that have been
removed. In this paper, this value is set to true.

2. Stop criteria: This is an object that contains the criteria that determine when the
algorithm stops, which remain fixed for all configurations with the values described
in Table 2. These values were chosen after a tuning stage, defining test scenarios with
a high maximum number of generations, n_max_gen = 10, 000, 000, and analyzing the
behavior of both xtol and ytol. The smallest values found were higher than 0.0001 and
the best point was reached in fewer than 500 generations; therefore, this limit was used
for n_max_gen as well as 0.0001 for xtol and ytol. The number of evaluations of the
objective function was determined considering the worst case, assuming 200 subjects
in the population, and supposing the limit of 500 generations is reached, the result is
100, 000. The 100 value used in period and n_skip prevents evaluating the stop criteria
in each generation, but different values can be assigned. Tolerance values are used
to compare the Pareto fronts of the current generation Pn and a generation from a
previous period Pn−period, each n_skip generations. This comparison depends on the
space in which it is performed:

• In the decision space (xtol), two Pareto fronts Pn and Pn−period are compared
using Equation (12):

xtol =
1
|X| ∑

b∈X

max|Y|i=1

(
∑
|b|
j=1(bj ̸= Yij)

)
|b|

 (12)

where Pn = [ f1(X), f2(X)] and Pn−period = [ f1(Y), f2(Y)].
• In the target space (ftol), the Inverse Generation Distance (IGD) is calculated

between the normalized fronts to be compared, that is: f tol = IGD(Pn, Pn−period).

3. Repair function: Depending on the allocation method, the different solution vectors b
can change and be reduced to the same solution vector, because activated bases that
do not correspond to any demand point are discarded. There are two ways to repair:

• Normal repair: The assignment process is performed and the modified solution
vector b that satisfies the required constraints is returned to the algorithm to
remove duplicates in the current population.

• Repair with mutation: The assignment process is performed and the modified
solution vector b is checked; if this vector has already been obtained after the
assignment process, regardless of the number of generations, the solution vector
is mutated and the assignment process is performed iteratively until a valid
modified vector that has not been evaluated before is obtained, that is, an unex-
plored solution.

Since the assignment process is performed during repair and then before evaluation
(for new solutions), it is important that the assignment is the same at both times,
that is, the same b always produces the same a. In the case of the urgency-based
and demand–urgency–based allocation methods, this is not a problem, since they
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are deterministic methods; but in the case of the classic allocation method, the first
assignment must be recorded for future processing, since it has a stochastic component.
For this purpose, a dictionary is used for storing the pairs (b,a), where b is encoded
with the hash method sha256.

Table 2. Values used in the tuning phase for the values of the stop criteria.

Parameter Name Values Selected
Value

Tolerance in the decision space xtol [0.01, 0.0075, 0.005, 0.0025, 0.0001, 0.000075, 0.00005] 0.0001

Tolerance in the target space ftol [0.01, 0.0075, 0.005, 0.0025, 0.0001, 0.000075, 0.00005] 0.0001

Criteria evaluation period period 100 100

Ignore generations for criteria evaluation n_skip 100 100

Maximum number of generations n_max_gen ≤10,000 500

Maximum number of evaluations of items n_max_evals ≤10,000,000 100,000

3.5.2. Parameter Selection

Since each algorithm requires a specific set of parameters, the correspondence between
the required parameters and the information described in the Geospatial Model, categoric
or numeric variables, is determined. Categoric variables can be different methods of per-
forming an internal procedure of the algorithm, such as the assignment process, crossover
and mutation operators, and the metric used to measure performance, among others. Nu-
meric variables are the hyperparameters of an algorithm that can take different integer or
real values, such as the number of individuals, the percentage of crossover and mutation,
and the number of offspring, among others. For numeric variables, it is important to define
a finite set of options to limit the search space. Table 3 shows the parameters proposed to
find a configuration that solves the problem in a reasonable time.

Table 3. Proposed values for algorithm parameters.

Parameter Name Key Type Values

Crossover operator crossover –cr categoric un—cross uniform
hun—cross half uniform

Mutation operator mutation –mu categoric bf—bit flip mutation
bfo—active bit flip mutation

Allocation method allocation –a categoric
cl—classic
ur—urgency-based
urc—demand–urgency-based

Repair method repair –rep categoric rn—normal repair
rm—repair with mutation

Population size population –pop categoric 1 (20, 50, 100, 200)

Percentage of offspring offsprings –dec categoric 1 (25, 50, 75)

Crossing percentage prob_crossover –prob_cr categoric 1 (0.5, 0.75, 0.9, 0.99)

Mutation percentage prob_mutation –prob_mu categoric 1 (0.5, 0.25, 0.1, 0.01)

Start probability prob_initial –prob_ini categoric 1 (0.25, 0.1, 0.01)
1 Numeric attributes that, according to the documentation, should be converted to categoric attributes [46].

The biased bit flip mutation operator uses a probability of 0.5 for active bits (value 1)
and zero for inactive bits (value 0). In addition, for each inverted bit, another bit is inverted
that is different from all the bits that were originally inverted, so that the number of
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active bits remains intact after the mutation. Note that the probability of mutation refers
to the probability of a chromosome mutating, and each bit within the chromosome has
a fixed probability of mutation of 1

|I| . Similarly, the probability of crossover represents
the probability that two chromosomes will recombine, and each bit has a probability of
inheriting children of 0.5.

Furthermore, the parameter α is kept fixed for all instances and the ideal value of
9000 m is proposed, that is, 9 min of response from the candidate base to the demand point,
under the assumption that the ambulance travels at a constant speed of 60 km/h. The value
of 9 min is a standard recommended by [47] and is used in the models described in [7,48].
However, this is an ideal case, so they propose the range [9–13] min. Our assumption
is that there is at least one ambulance on standby in each location, which is dispatched
the moment a victim is confirmed, and another unit is immediately requested from the
corresponding base, even if no other victim is confirmed. Therefore, a response time in this
range would only be necessary in the worst case.

3.5.3. Parameter Tuning

The parameter tuning technique irace was used through its official library in R. Since
this technique is designed for single-objective algorithms, it must be adapted to a multi-
objective problem by representing the Pareto front by a scalar value [46]. There are several
ways to scalarize the Pareto front. Some require knowledge of the ideal Pareto front
to quantify their similarity. Since no ideal front is known, these alternatives are not an
option. On the other hand, in the implementation guide irace [46] suggests the use of the
hypervolume indicator, which requires a reference point to scalarize a Pareto front that can
be used as a comparison metric between different algorithms or configurations.

The reference point for this metric should be chosen to ensure that every solution on
the Pareto front contributes to the hypervolume. For this reason, it must be greater than
the maximum value of each objective. To guarantee this, the point (1, 1) is defined as the
reference point and both objectives are normalized from 0 to 1 by dividing the value of
each by the maximum possible value, i.e.,

fOnormalized =
fOi

fOimax

, ∀i ∈ P, O ∈ [1, 2] (13)

where P is the Pareto front obtained by the algorithm, and the maximum fOmax for each
objective O is calculated using Equations (14) and (15):

f1_max = α × |J| (14)

f2_max =
|J|
2

+ 1 (15)

Regarding the implementation of irace, the parameter files are defined together
with the scenario and target-runner.py, which is a Python script that provides the in-
terface between R and the program that receives the parameters and implements the
algorithm. In the scenario, a budget of 5000 iterations is defined and the execution method
is “execute_threaded_timeout” with a maximum of two attempts per configuration and a
maximum time of 420 s (7 min), after which the operation of irace is aborted. To avoid inter-
rupting the execution of the target-runner.py script, a maximum time of 6 min is defined for
the internal operation of the algorithm. This is based on the assumption that a reasonable
time to obtain a solution is 5 min plus the time it may take to load the data or generate
the instance data. This means that the target-runner time limit will always be reached,
because the optimizer itself stops the execution when the 6 min limit is exceeded and
returns a value. If it finishes in time, it returns the value of the inverse of the hypervolume
of the Pareto front obtained, and if it exceeds the time, it saves the configuration parameters
and returns a value of 1 to indicate poor performance and discard it. Note that irace is
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a minimization algorithm by default, so the inverse of the hypervolume is used as the
evaluation metric.

3.5.4. Performance Evaluation

This enables the evaluation of the result of different configurations in different cases
of the problem. The result is a set of elite configurations. Their performance can be
compared to determine how to implement them in future problems. For this purpose,
the five elite configurations with the best performance are taken as a reference, along
with the three instances that describe the lowest, median, and highest number of demand
points. To observe convergence to the Pareto front of elite configurations, the algorithm
is executed 20 times with different random seeds for each elite configuration, obtaining
the minimum, maximum, average, and standard deviation values of the hypervolume
indicator to compare with the information obtained in the parameter adjustment stage.
According to the performance of the configurations and the requirements in case of an
emergency, different paths are chosen to find the solutions to present, for example, to the
decision manager:

• Run the algorithm with the best performance multiple times using different random
seeds until the maximum time is reached.

• Run the algorithm with the different elite configurations obtained as many times as
possible without exceeding the maximum time.

For this purpose, the time required for the execution of the algorithm, as a function of
its parameters, must be recorded, weighting the importance of the solution quality and the
speed with which it is generated. Additionally, the execution times of the last 20 iterations
per configuration are recorded. To make comparisons between configurations, the median
value (50th percentile) of the inverse of the hypervolume is used as a reference, which
represents the maximum value that 50% of the executions will have.

3.6. Optimization Process

This stage performs the algorithm using the parameters with the best performance
obtained in previous stages. For new cases, steps 1, 2, 3, 4, and 6 should be executed
using the algorithm with the best combination of parameters. After the result is obtained,
the decision-maker must choose one of the available options on the Pareto front to decide
how the temporary bases are allocated. By performing multiple executions, the mul-
tiple Pareto fronts obtained are merged, and the non-dominated solutions separated,
among which the final decision for subsequent implementation will be made. To avoid
the fact that multiple executions do not represent a disadvantage in terms of sequential
execution time, parallelization of the executions is proposed using the joblib library. In the
process of determining final solutions, if there are activated bases that cover a single de-
mand point, the actual assignment of ambulances will be made directly to the waiting area
of that point, rather than using the closest temporary base determined by the algorithm,
since it is not relevant to assign ambulances to a neighboring base.

3.7. Solution Visualization

Once the Pareto front with the candidate solutions is computed, it is possible to plot it
to facilitate decision-making. For this purpose, the following elements will be displayed on
a map of Mexico City:

• The locations of the attention centers, showing the number of resources required;
• The locations of the activated bases, displaying the number of ambulances;
• The routes from each enabled base to each assigned demand point. They are identified

by using a different color for each base and their cost;
• Boundaries of townships;
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• The attention regions defined in the earthquake emergency plan serve as a reference
to assign a person directly responsible for the administration of each base, depending
on where they are located;

• The location of the hospitals and, if available, the number of beds available;
• The location of collection centers and refuges.

Visualization is performed using the geopandas library, which contains functions
that allow other functions of the folium library to be implemented indirectly, providing
visualization parameters without having to develop an implementation from scratch.
The product of using this library for visualization is an HTML file that can be included in a
web page for visualization.

3.8. Implementation Plan

Once the decision-maker selects a solution, the implementation plan must be defined
to coordinate response activities with different emergency services. Although this stage is
not part of the objectives of this research, a proposal is presented to relate the solution to
the current earthquake action plan. Initially, more information is obtained from the selected
solution, as follows:

• Voronoi diagram with activated bases: The Voronoi diagram of the graph Gt can be
obtained using activated bases bi = 1 as control points. In the case of the external
Voronoi diagram, the routes for each vertex of the graph are obtained as the destination
and the closest activated base as the origin, which can be useful for addressing other
incidents that occurred after the current solution was chosen. In the case of the internal
Voronoi diagram, the route can be obtained from any vertex of the graph Gt to its
closest activated base, allowing one to identify the shortest route that ambulances can
take to the assigned base from any point they encounter.

• Voronoi Diagram with hospitals: Obtaining the internal Voronoi diagram of Gt using
the vertices closest to each hospital as control points, we obtain the shortest path from
any other vertex in Gt to the nearest hospital. This can be useful in determining which
hospital to take patients to, depending on the location of the victims and whether it
is an isolated victim transported in a private vehicle or a victim from a care center
transported in an ambulance.

• Attention flow: Once the available ambulances have been assigned to activated bases
as preparation points, a person in charge of each is designated and the commander
in charge of the attention centers is notified that they will be served by that base.
The sequence they must follow to distribute the workload is as follows:

– At least one ambulance must remain in the waiting area near the attention center.
– Once a victim is confirmed, he is assigned to the ambulance in the staging area

and the appropriate staging area is notified to dispatch another unit.
– The victim is transported to the nearest hospital and the ambulance returns to the

same staging area from which it originated, taking the last spot in line. On the
way back to the staging area, the operator of the ambulance has the choice of
fuel loading.

– If one of the bases runs out of ambulances and still has demand, ambulances
from other bases with lower demand can be arbitrarily reassigned, omitting
the formula for estimating demand and adapting the solution to the new emer-
gency conditions.

• Changes in the Emergency Situation: Although a static model is considered at the
time the optimization algorithm is performed, some actions are required to adjust
the solution to the new conditions. First, when a significant number of headlights
are introduced, the algorithm is repeated, reassigning the ambulances from the old
solution to the closest bases from the new solution. If the changes are primarily traffic-
related and there is an Internet connection, it is possible to perform the traffic query to
generate the new weights of the edges with these data, and then compute the routes
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from the bases to the ambulances. However, since the bases are already activated,
instead of performing the entire optimization process from scratch, it is sufficient to
obtain the external Voronoi diagram with the bases as control points to find the new
paths. In this case, the Voronoi algorithm would update the assignment vector a based
on the previous solution vector b, but it cannot ensure that the constraints defined in
the model are satisfied.

4. Results

The computing equipment used to implement the methodology has an Intel Core
i9-9900K processor and NVidia GeForce RTX 2080 graphics card; consequently, all execution
time measurements of the procedures are relative to these characteristics.

4.1. Generated Data: Candidate Base Locations

In order to solve the proposed problem, a data set must be generated that describes
the candidate base locations that can be used as temporary ambulance bases. Table 4
describes the number of resulting elements after each step described in the previous section.
Furthermore, the steps to obtain candidate locations in a specific area are sketched in
Figure 6.

Table 4. Reducing transport network.

Step Result Size

Transport network {Vt, Et} 128,825

Selection by characteristics {Vf , E f } 15,560

Selection by capacity {Vf , E f } 8,184

Elimination of redundancy Vs 5,784

Proximity grouping V 1,846

(a)

(b)

Figure 6. Cont.
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(c)

(d)

(e)

Figure 6. Process for obtaining candidate bases. (a) Selection by features, vertices, and resulting edges.
(b) Selection by capacity, vertices, and resulting edges. (c) Redundancy elimination, representative
vertices, and their associated edges. (d) Proximity grouping, representative vertices, and their
associated edge groups. (e) Candidate bases colored by capacity.

To perform coverage analysis, we applied the weights corresponding to the aver-
age traffic at each edge according to the defined hours, considering the traffic speeds of
20, 30, 40, 40, 50, and 60 km/h. Applying the Voronoi diagram algorithm, the data in Table 5
were obtained. This table presents the percentage of graph vertices that are less than 9 min
and the response time at which 95% of the vertices are located (95th percentile). This table
reveals that the difference between coverage at different times does not vary substantially.
In particular, at 7 and 8 p.m. and 3 p.m., the percentage of vertices covered by the nearest
base is smaller for the speed 20 km/h. Note that higher speeds increase the percentage of
vertices that can be reached from a candidate base in less than 9 min. Starting at 50 km/h,
all vertices satisfy this property, which is essential to justify the maximum cost constraint
used in the problem model.
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Table 5. Response time to Vt vertices from the closest candidate base, % = percentage of vertices
covered in less than 9 min, p95 = maximum response time for 95% of vertices (95th percentile), and
X = number of candidate bases that are discarded by level traffic > 2.

Daytime X 20 km/h 30 km/h 40 km/h 50 km/h 60 km/h

% p95 % p95 % p95 % p95 % p95

7:00 a.m. 47 0.96 8.15 0.99 5.44 0.99 4.08 1.0 3.26 1.0 2.72

8:00 a.m. 69 0.96 8.25 0.99 5.5 0.99 4.13 1.0 3.3 1.0 2.75

9:00 a.m. 66 0.96 8.17 0.99 5.45 1.0 4.09 1.0 3.27 1.0 2.72

11:00 a.m. 52 0.96 8.09 0.99 5.39 1.0 4.04 1.0 3.24 1.0 2.7

1:00 p.m. 74 0.96 8.39 0.99 5.59 1.0 4.19 1.0 3.36 1.0 2.8

3:00 p.m. 122 0.95 8.75 0.99 5.84 0.99 4.38 1.0 3.5 1.0 2.92

5:00 p.m. 57 0.96 8.47 0.99 5.65 0.99 4.23 1.0 3.39 1.0 2.82

7:00 p.m. 139 0.95 9.0 0.98 6.0 0.99 4.5 1.0 3.6 1.0 3.0

8:00 p.m. 55 0.95 8.71 0.99 5.81 0.99 4.36 1.0 3.49 1.0 2.9

9:00 p.m. 21 0.96 8.45 0.99 5.64 0.99 4.23 1.0 3.38 1.0 2.82

4.2. Generated Data: Demand Points

The Kernel Density Estimation (KDE) used to generate the hypothetical scenarios is
shown in Figure 7, where the best bandwidth value found (1365) was used. The projection
of the KDE on the x (longitude) and y (latitude) axes is also observed with the projection of
the original data used to generate the KDE (black lines). In total, 10 hypothetical problem
scenarios were generated, each associated with a random date and time from which traffic
data can be obtained to define a problem instance. Figure 8 shows the scenarios with the
lowest and highest number of demand points. To generate an instance of the problem, each
hypothetical scenario is associated with a time and date from which traffic data can be
obtained. The characteristics of these instances are described in Table 6.

Table 6. Characteristics of the instances created to describe demand points, θ: instance, X : number of
candidate bases that are discarded, nv: number of victims, d: demand.

θ Date/Hour X |I| |J| Total
nv

Min
nv

Max
nv

Min
d

Max
d

0 27 October–09:00 a.m. 319 1,527 43 334 2 45 2 26

1 27 October–03:00 p.m. 482 1364 45 463 2 45 2 19

2 28 October–11:00 a.m. 265 1581 44 381 2 45 3 17

3 29 October–07:00 p.m. 227 1619 38 515 2 45 2 67

4 30 October–1:00 p.m. 240 1606 19 193 2 45 5 44

5 30 October–05:00 p.m. 235 1611 53 570 2 45 2 16

6 31 October–07:00 a.m. 306 1540 23 192 2 45 5 29

7 1 November–08:00 a.m. 267 1579 37 275 2 45 3 16

8 1 November–08:00 p.m. 280 1566 35 376 2 45 3 28

9 2 November–09:00 p.m. 139 1707 26 302 2 45 2 34
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Figure 7. Kernel Density Estimation of buildings damaged by the 19 September 2017 earthquake.

Figure 8. Instances with the lowest and highest number of demand points described in Figure 7.
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4.3. Data Obtained: City Traffic

Table 7 describes the parameters used to capture traffic information for most CDMX
streets by applying the procedure described in the methodology section. Furthermore,
Figure 9 shows the tiles required to map the city; additionally, on the right a zoomed-in
region on the Cuauhtémoc district is displayed. Finally, to obtain the traffic for each edge
of the graph, Figure 10 shows the different stages required.

Table 7. List of parameters used in TomTom API.

Parameter Value

Zoom level 16

Total number of tiles (to cover the bounding box) 79 × 106 = 8374

Tiles occupied (intersecting the polygon of the CDMX) 4789

Meters per tile 611.4962

Meters per pixel 1.1943

Figure 9. Tiles used to determine the amount of traffic in Mexico City. Example of data obtained on
14 November 2023 at 13:45 h.
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(a) (b)

(c) (d)
Figure 10. Stages for obtaining traffic data using the TomTom API and the OSMNX network. (a) RGBA
raster obtained through the TomTom API. (b) Conversion to single-band raster. (c) Sampling windows
of the single-band raster. (d) Road network graph with traffic as attribute.

4.4. Parameter Tuning

Once the instance generation process is finished, execution of irace is carried out with
the implementation of the NSGA-II algorithm [43,49,50]. The execution of the algorithm is
characterized by the features listed in Table 8.

Table 8. Values used for parameter tuning.

Parameter Value

Number of iterations 10

Performed experiments 4982

Remaining budget 18

Number of elites 5

Number of settings used 679

Total user time on CPU 880,930.4 (10.19 days)

The five elite configurations with the highest average performance are listed in per-
formance order in Table 9. There are parameter values that are repeated in most cases,
including the uniform crossover operator (4/5), the emergency assignment method (5/5),
the repair with mutation (5/5), the population of 200 with 50% offspring (5/5), the crossover
percentage of 0.5 (4/5), and the mutation percentage of 0.5 (4/5). The experiments carried
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out are shown in Figure 11, which were obtained using the Python code provided in [51].
This figure shows that in the first iterations, parameters are sampled that produce regular
configurations. These configurations do not converge near the minimum value found
(marked with ×); however, as iterations progress, the elite configurations start to appear
in the graph (♢,⋆), and most of the time they are found at values closest to the known
minimum. In addition, instances that were aborted because they exceeded the execution
times of 6 min (they return the value 1) are shown at the top, and these instances have been
registered in a nonfeasible configuration file. In total, 164 iterations were interrupted.

Table 9. Elite configurations.

top id -cr -mu -a -rep -pop -dec -prob_cr -prob_mu -prob_ini

1 625 un bf ur rm 200 50 0.5 0.25 0.1

2 499 un bf ur rm 200 50 0.75 0.5 0.25

3 432 hun bfo ur rm 200 50 0.5 0.5 0.25

4 655 un bf ur rm 200 50 0.5 0.5 0.1

5 617 un bfo ur rm 200 50 0.5 0.5 0.1

Figure 11. Experiments performed during parameter tuning. Each color represents a specific instance.

4.5. Solution Visualization

The result of the optimization process for each instance is a preview visualization of
all Pareto front solutions. Considering the 2017 earthquake post-disaster scenario solutions
described in Figure 12, and the relevant data for each solution of this scenario in Table 10,
Figure 13 contains the preview of three solutions: 1, 8 and 14. Figure 14 shows the HTML
file generated when processing solution number 8 (the knee point of the Pareto front in the
Figure 12). It is possible to interact with this generated map to visualize more information
about the elements found.
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Figure 12. Pareto front of 2017 earthquake post-disaster scenario.

Table 10. Statistics of the Pareto front solutions of the 2017 scenario.

Solution f1 f2 rmax rprom * bmin bmax

1 12,4065.2 6 7904.6 3264.9 1 2 16

2 10,5696.9 7 7800.3 2781.5 1 2 13

3 91,577.8 8 6107.8 2409.9 1 2 8

4 82,685.1 9 6258.1 2175.9 1 2 7

5 77,329.4 10 6258.1 2035.0 2 2 7

6 72,245.0 11 5013.1 1901.2 4 3 7

7 68,039.6 12 4907.8 1790.5 5 3 7

8 64,555.3 13 4907.8 1698.8 6 2 7

9 61,456.4 14 4907.8 1617.3 7 2 7

10 58,493.7 15 4907.8 1539.3 7 2 7

11 56,013.6 16 4907.8 1474.0 8 2 7

12 53,807.9 17 4907.8 1416.0 8 2 5

13 51,680.9 18 4907.8 1360.0 9 2 5

14 49,675.7 19 4907.8 1307.3 10 2 5
* Number of activated bases that are assigned to only one demand point.

Figure 13. Preview of the solutions 1, 8, and 14 for the 2017 scenario.
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Figure 14. Interactive visualization of the solution, displaying the available layers and the default
map view.

4.6. Implementation Plan

An example of the Attention Flow described in Section 3.8 is presented. Clicking
on the marker of an activated base will display the group number, the locations where
ambulances should be assigned, the number of locations to be serviced, the most distant
focus of attention, the number of ambulances to be deployed, and the total capacity of the
activated base. Similarly, clicking on a route produces geometry information and a message
indicating the group to which the route belongs, the focus of attention associated with the
base, and the base’s ID in the transport network. These elements are shown in Figure 15.

Figure 15. Elements of an activated base and a route. Only two specific groups are shown.

An X symbol of the color assigned to the group is displayed next to the demand points.
Clicking on one of these points displays the number of the demand point, the number of
victims, the estimated demand, the group to which it belongs, the address, the coordinates,
and the average number of residents in the block, as shown in the Figure 16. Finally, other
points of interest can be shown, such as the publication of hospitals, gathering centers, and
temporary shelters that can be installed, related to geographic information obtained from
official data.
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Figure 16. Elements of a demand point. Possible regions of attention are displayed.

4.7. Runtime Results

The creation of an instance from the location of the demand points and the traffic
information requires an execution time that needs to be analyzed; therefore, 15 executions
of the complete procedure were carried out, obtaining the data described in Table 11.

Table 11. Runtime (in seconds) of the three main stages of data integration, θ: instance, avg: mean,
std: standard deviation.

Reading Processing Dijkstra
θ |I| |J| Avg Std Avg Std Avg Std Total

0 1527 43 23.935 1.039 32.511 1.689 30.361 1.461 86.806
1 1364 45 24.452 1.208 32.973 1.449 30.775 1.199 88.2
2 1581 44 24.225 0.988 32.070 1.204 26.961 0.965 83.256
3 1619 38 23.358 0.235 31.373 0.569 22.408 0.137 77.139
4 1606 19 23.268 0.235 31.126 0.288 10.737 0.040 65.131
5 1611 53 22.983 0.178 30.961 0.361 30.305 0.165 84.249
6 1540 23 23.120 0.185 30.616 0.430 14.456 0.075 68.192
7 1579 37 22.946 0.200 30.621 0.434 22.071 0.110 75.638
8 1566 35 22.880 0.134 30.754 0.454 21.503 0.072 75.137
9 1707 26 22.869 0.182 30.295 0.438 14.182 0.053 67.345

Figure 17 depicts the comparison between the computation of the routes by Dijkstra’s
algorithm with the implementation of NetworkX and the implementation of cuGraph.
In this figure, the processing time is proportional to the number of demand points, and the
performance with NetworkX is almost three times slower compared to cuGraph for all
instances. Therefore, the final implementation uses the cuGraph library.

The rest of the execution time to create the instances corresponds to the reading of data
and the execution of procedures without taking into account the path calculation. Figure 18
shows the percentage of time required for each stage in the total runtime, where the reading
is between 20 and 25 s and the processing takes about 30 and 33 s, which does not represent
a significant difference between the different instances, as in the case of routes.
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Figure 17. Comparison of the execution time of Dijkstra’s algorithm with NetworkX and Cugraph,
ratio tNetworkX/tCuGraph.

Figure 18. Ratio of runtime to generate the instances between data reading, computation of the routes,
and the remaining procedure.

5. Conclusions and Future Work

Relevant data can be obtained from official data sources in the study area to solve the
location-allocation problem of ambulances in Mass Casualty Incidents with multiple demand
points, integrating historical data of disaster incidents; the location of complementary
resources, such as hospitals, temporary shelters, and collection centers; and the geographical
delimitation of regions of care designated by the authorities of emergency services.

The proposed methodology to determine candidate emergency response areas (candi-
date bases) allows us to find a subset of 1846 representative vertices on the graph that model
the road transport network, from which at least 99% of the remaining vertices are expected
to reach within 9 min at 40 km/h, considering different daytime values. In contrast to the
alternative of using the complete road transport network in the problem model, the result-
ing search space contains only 1.43% of the original graph. Although the identification
of candidate bases is performed statically, it is possible to discard more bases considering
complementary event data, such as traffic data.

By obtaining the set of roads that can be used as temporary ambulance bases with their
respective capacities, the location of the demand points with their respective estimated
number of victims, and the graph that models the road transport network, it is possible to
analyze the location-allocation problem as a multi-objective optimization problem. This
model requires the identification of the candidate bases to be activated (location) and the
demand point served by each one (allocation), subject to eight constraints that ensure
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the congruence of the solution and limit the solutions to viable regions, considering the
maximum response time or the maximum number of candidate bases to be activated.

By using the Kernel Density Estimation of the historical data of buildings damaged
by the 19 September 2017 earthquake, it is possible to generate hypothetical scenarios
of the problem. For each scenario (hypothetical or real), a specific instance of the same
problem was generated. To generate such an instance, the read time of the data and
the procedure have approximately the same duration, but the time needed to compute
the cost matrix is proportional to the number of demand points. The Dijkstra algorithm
was used to obtain the cost matrix by inverting the graph and running it twice for each
demand point, using as the origin the end points of the edge that is closest to the demand
points. Implementing this algorithm using graphs from the cuGraph library accelerated
this calculation by approximately 300% compared to the implementation of the NetworkX
library. The NSGA-II algorithm, implemented with the proposed parameters, allows us to
find solutions that adapt to the two objectives considered and to the multiple constraints
established. The elite configurations found in the parameter tuning stage for the NSGA-II
algorithm have a better evaluation with the hypervolume indicator and have a tendency
to converge on Pareto fronts that are close to the best known optimal zone compared to
other regular configurations. The obtained parameters of the elite configurations suggest
that it is preferable to have large population sizes (200 individuals), to use the urgency-
based allocation method, to perform mutation repair, and to have a small initialization
probability (0.1–0.25). Regarding time-interrupted configurations, it can be observed that
increasing the percentage of descendants significantly increases execution time, so it is
preferable to keep it in the middle (0.5) to avoid bottlenecks. However, the best option to
compare these configurations would be to implement the time-based termination criterion
instead of aborting when the execution time is exceeded. The urgency-based allocation
method was considered one of the best configurations compared to the classic and the
demand–urgency-based methods, suggesting that the relationship between base capacity
and urgency at the demand point in this problem is not significant enough to benefit from
a method that considers demand first and urgency afterward.

The possible parameter values included populations of small size (20, 50) and a
percentage of descendants. On the other hand, the mutation repair method outperformed
the normal repair method, indicating that the procedure used to discard already explored
solutions tends to improve the performance of the algorithm. A more rigorous analysis is
needed to verify the relationship between these parameters and the algorithm performance,
but these results provide a baseline for designing the required experiments.

The evaluation of the elite configurations on three representative instances with
20 random seeds suggests that although these configurations stand out from other reg-
ular configurations evaluated in parameter tuning, better techniques and configurations
still need to be evaluated to obtain more accurate results with less variability, exploring
solutions on the Pareto front with a smaller number of activated bases. However, the quality
of the solutions is improved by merging the Pareto fronts of multiple runs of the same
configuration, with the disadvantage of requiring more time. Furthermore, by parallelizing
the multiple runs to generate the unified Pareto front, the result was obtained in half the
time of a sequential execution.

The different solutions of the Pareto front suggest different ways of assigning the
ambulances to the focus locations, and the pre-visualizations allow for the intuitive identi-
fication of which points remain isolated and which bases should be activated. The final
visualization, generated in HTML format, can be used for further implementation in a
context that allows the emergency medical services involved in the care plan to visu-
alize the information interactively, to show or hide elements of interest depending on
the circumstances.

The comparison of the results with other algorithms is important in future work.
However, in this paper, the main objective focuses on the mathematical modeling of
the problem and the integration of real data that could be obtained during a large-scale
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emergency scenario, from which the quality of solutions can be described. Thus, this work
represents a useful starting point for future studies.
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