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Abstract: This paper considers a resource allocation problem involving servers and mobile users
(MUs) operating in a serverless edge computing (SEC)-enabled Internet of Things (IoT) network.
Each MU has a fixed budget, and each server is powered by the grid and has energy harvesting (EH)
capability. Our objective is to maximize the revenue of the operator that operates the said servers and
the number of resources purchased by the MUs. We propose a Stackelberg game approach, where
servers and MUs act as leaders and followers, respectively. We prove the existence of a Stackelberg
game equilibrium and develop an iterative algorithm to determine the final game equilibrium price.
Simulation results show that the proposed scheme is efficient in terms of the SEC’s profit and MU’s
demand. Moreover, both MUs and SECs gain benefits from renewable energy.

Keywords: edge computing; resource allocation; energy management; game theory

1. Introduction

The emergence of cloud computing has overcome the resource limitations of small-
scale smart devices, thereby allowing devices with insufficient computing resources to
offload complex tasks to central clouds through wireless networks and leveraging the
nearly unlimited computing resources of cloud servers for processing [1]. However, with
the rapid proliferation and development of Internet of Things (IoT) technology, emerging
applications such as autonomous driving and artificial intelligence continue to emerge.
These tasks typically require significant computing resources and are highly sensitive to
task execution latency [2]. A large number of computationally intensive, latency-sensitive
tasks will lead to congestion in cloud computing communication channels, thus affecting
system performance [3]. Additionally, since cloud servers are often far from the user end,
this further increases the latency of data transmission.

To address the latency issues associated with task offloading, mobile edge computing
(MEC) has garnered extensive attention from researchers and has become one of the most
popular paradigms [4]. MEC extends the services provided by the cloud to the edge of
a network, where servers are deployed near end users. Consequently, tasks from mobile
users (MUs) can be computed at a nearby server. Advantageously, MUs do not necessarily
have to offload their tasks to the cloud, which may be located far away. Instead, edge
servers provide MUs with a quick response and help conserve the energy of MUs [5].
Hence, MEC plays a critical role in providing latency-sensitive services and forms a key
part of future 5G/6G networks [6].

A key concern when operating servers is their energy consumption. In particular,
the energy consumption of the information and communication technology (ICT) sector
has continued to rise in recent years [7] in accordance with increasing traffic. As reported
in [8], the energy attributed to the production and operation of devices and infrastructure
amounted to 14% of the global greenhouse emission in 2016. To this end, many works
have considered different ways to minimize the carbon footprint of network equipment [9].
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For example, in [10], the authors survey works that consider base stations powered by
renewable energy. Another example is [11], where the authors reviewed energy-aware
hardware and software for edge computing. Further, for MEC, works such as [12] have
considered powering servers with a renewable energy source. Further, in [13], the authors
studied distributed servers powered by solar and power grid.

Many works assume that servers have all the functions required by tasks offloaded by
MUs. This, however, becomes an issue, as servers have limited storage. This means it be-
comes impractical to store all the possible functions required by various tasks/applications.
Further, resources, e.g., processing and memory, may not be used efficiently if applications
or functions run infrequently. These facts motivate the serverless computing paradigm [14]
or function-as-a-service (FaaS). A provider, e.g., Amazon, manages the infrastructure for
FaaS and orchestrates the resources required to run functions/tasks. Furthermore, it charges
users based on the amount of resources, e.g., CPU and memory, used by their functions.
On the other hand, a developer only needs to specify the necessary functions and services.
Advantageously, the developer does not have to be concerned with the management of re-
sources or servers. These responsibilities are handled by a provider who will automatically
scale computing resources according to the resource requirements of functions [15]. The
serverless computing paradigm has also been extended to the edge or so-called serverless
edge computing (SEC) [16]. This feature is particularly attractive to Internet of things (IoT)
applications, where devices may operate infrequently. This means a server does not have
to preload all possible functions in order to support IoT devices [14]. It helps facilitate
applications, such as auto driving [17], that require quick responses. Furthermore, it helps
overcome issues with the current cloud computing paradigm, including its inability to meet
requirements such as low latency, location awareness, and mobility support. This avoids
transmitting tasks to the cloud that may lead to congestion or incur large delays [18].

In this paper, we continued the research from our previous work [19] and delved
deeper into the pricing issues of serverless edge computing. We consider an SEC system
whereby an operator manages one or more servers. These servers execute offloaded tasks
from one or more MUs. Furthermore, they are powered by both the grid and a renewable
energy source. A request from an MU is regarded as an event. When an MU sends a request
to a server, it will trigger one or more specific functions or containers on the server. If the
required functions are not available, the server must download them from the cloud. This
incurs an additional cost for the server. Finally, it returns the result to the MU that made
the request.

Figure 1 shows an example SEC system. The server is equipped with solar panels and
batteries to collect and store solar energy to provide energy for the server. There are three
different functions, f1, f2, and f3, which correspond to three different function modules.
Specifically, MU 1 and MU 5 require f1, MU 2 and MU 4 require f2, and MU 3 requires
f3. The tasks of MU 1 can be completed by using function f1, which is stored by server 1.
For tasks of MU 2, MU 3, and MU 4, functions f2 and f3 stored by servers 2 and server 3
are used. However, for task requests of MU 5, the required function f1 is not available on
server 3. Therefore, server 3 downloads function f1 from the cloud to complete the task
request of MU 5.

This paper focuses on resource allocation and pricing in an SEC system with multiple
MUs that compete for server resources. It considers server resources that vary over time due
to their spatiotemporal workload and energy arrivals. Hence, there needs to be an incentive
mechanism to allocate resources on servers so that an MU with a limited budget can buy the
resources it needs, and at the same time, appropriate incentives need to be given to the server
to provide services to the MUs. Henceforth, we make the following contributions:

1. We consider a pricing problem between multiple servers and MUs. We model the
interaction between servers and MUs as a Stackelberg game where MUs are followers.
These MUs determine their own demand strategy, which represents the number of
resources required by the MUs for each server. Servers are leaders that set their price
according to the response of the MUs in order to maximize their profit.
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2. We decompose the resource allocation and pricing problem between multiple servers
and MUs into a group of subproblems, in which leaders can determine the price of
their resources, and followers can choose appropriate demand strategies according to
the leader’s price. We have proved the existence of game equilibrium. In addition,
we have developed an iterative algorithm to find the equilibrium price of the server.
The equilibrium solution of all the above subproblems constitutes the equilibrium
solution of the original problem.

3. We evaluate the Stackelberg equilibrium price under various energy consumption
costs and study the impact of SEC prices on MU’s demand strategy.

In the next section, we review prior works. Then, Section 3 formalizes our system.
After that, Section 4 models our problem as a Stackelberg game. In Section 5, we introduce
an iterative algorithm. Section 6 shows our evaluation, which is followed by the conclusions
in Section 7.

Cloud

M-1 M-2
M-3 M-4

M-5

S-1
S-2

Cloud

Servers

Application

f-1
f-2 f-3

f-2

f-1

S-3

Figure 1. An example serverless edge system with multiple energy harvesting servers and MUs.

2. Related Works

Our research overlaps with (i) MEC works with energy harvesting (EH) servers,
(ii) task scheduling in an SEC system, and (iii) pricing strategies in MEC or SEC systems. As
it will become clear in our discussion, prior works either do not consider EH servers, SEC
or function-as-a-service (FaaS), or/and pricing between MU, EH servers, and the cloud.

To date, many works have considered edge computing with EH servers, see [20–22]
and the references therein. In general, their research aims are to develop algorithms/strategies
to collaboratively make use of renewable energy. For example, the work in [23] considered
the collaboration between EH servers when executing tasks. Their goal was to minimize
the cost of using the cloud and energy purchased from the grid. The work in [24] devel-
oped an algorithm to predict energy and task arrivals to optimize the number of virtual
machines instantiated at an EH server. The authors of [25] developed an algorithm to
dispatch requests from end devices to EH servers operating in a fog computing system.
Reference [12] considered optimizing the amount of offloaded workload by end users and
the number of active servers. Similarly, in [21], the authors considered task assignments to
EH servers and the migration of tasks to better exploit the different energy levels of servers.
The main distinctions to our work are as follows. First, works such as [23,24] are focused
on minimizing grid usage to supplement the energy of servers. Furthermore, these works
do not consider SEC. The work in [26] considered SEC, where a controller orchestrates task
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assignments and execution of functions at EH devices. In contrast, we consider a pricing
problem concerning MUs, EH servers, and the cloud.

A number of works have considered task scheduling in SEC systems. The authors
of [27] considered dispatching requests from IoT devices to a pool of servers instead of
having devices assigned to a specific server. Similarly, the work in [28] considered the
decentralized routing of requests to edge servers, where an access router is responsible for
determining the best executioner or edge server of a request. In [29], the authors considered
the routing of requests to minimize the number of function cold starts. On the other
hand, in [30], servers used an auction algorithm to determine whether to store and run
functions and also to decide whether to run a request. In [31,32], the authors considered
embedding a directed acyclic graph (DAG), where functions represent nodes, and links
denote dependencies. They also considered the routing of traffic between functions. In [32],
the authors considered servers with random processing times and time-varying channel
conditions from a user to a server. Many works have considered allocating resources for
containers that run tasks. For example, the work in [33] used reinforcement learning (RL)
to adapt resources over time. Similarly, in [34], a multiagent RL approach was used by edge
servers, with each managed by a different owner and having different computing resources,
to compete for tasks from IoT devices. On the other hand, the work in [35] determined
functions that should be kept warm and their resources.

Different from the aforementioned works, in [26], the authors considered a scheduler
that orchestrates the placement of functions, allocates required resources, and routes
requests to EH edge nodes. All of the aforementioned works do not consider EH servers.
Furthermore, except for [32,34], all the works do not consider the energy consumption of
devices or/and servers. Lastly, they do not consider a pricing problem.

There are very limited works on pricing in SEC systems. Note that providers such as
Amazon employ a pay-per-use model where users are charged based on function usage
and allocated resources. In [36], Gupta et al. introduced a pricing scheme that helps a
provider schedule jobs according to a user utility that relates to delay. In [37], an SEC
provider may rent edge servers to help deliver better quality of service to its clients. We
note that there are some works that consider MEC systems. For example, in [38–40], the
problem is to determine a pricing strategy for servers that sell their resources to end users
who then determine how much server resources to purchase. These works, however, do
not consider EH servers or FaaS.

3. System Model

We consider an SEC system consisting of multiple servers and MUs. Define K as the
set of servers indexed by k ∈ {1, . . . , |K|}. These servers have EH capability and are also
connected to mains electricity. The set of MUs is M, which is indexed by i ∈ {1, . . . , |M|}.
Let F denote the set of all functions. The nth function is denoted as fn; its size is αn. The
cloud has all functions in F . We divide time into T time slots, with each indexed by t.
The server and MUs are connected through a wireless channel; we assume uplinks and
downlinks are allocated an orthogonal channel. Table 1 summarizes our notations.

Each MU i requires a set of functions denoted as Di, where Di ⊆ F , and we have
Di = { f1, . . . , f|Di |}. Furthermore, MU i has a budget of Bi. Define Γk as the subset of
functions maintained on server k, where Γk ⊂ F . Moreover, we have Γk = { f1, . . . , f|Γk |}.
We use γk = |Γk| to denote the number of functions at server k. When server k requires one
or more functions that are not in Γk, it downloads them from the cloud. Note, there is no
collaboration between servers.

Server k advertises price pk for its services. This price is a function of the cost associated
with the energy, the computation, and the budget of MUs. More specifically, servers are
charged at a cost of pt to purchase energy from the grid when it experiences an energy
outage. The computation cost of a server corresponds to the cost to download functions from
the cloud. Specifically, for any server k, if MU i demands a function that is not included in
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Γk, i.e., Γk ∩Di ̸= ∅, then server k downloads functions Di\Γk from the cloud. The per unit
price of a function charged by the cloud is pc.

Table 1. List of notations.

1. Set

M The set of users
K The set of servers
F The set of all functions
Γk The set of functions maintained on server k
Di The set of functions needed by MU i
T The set of time slot
W Area of server’s solar panels

2. Variables

ωk CPU frequency of server k
Bi The budget of MU i
pk The unit price of one function on server k
pc The unit price of one function on cloud
pt Electricity price at time slot t
Ei,k Energy consumed by server k to execute MU i demands
ri,k Transmission rate from server k to MU i
ρ̂ Transmission power of server k
Er

i,k Energy for transmitting results from server k to MU i
tr
i The size of output of the task from MU i

3.1. Energy Harvesting

Each server is equipped with a solar panel that has size W cm2 and a rechargeable
battery. We use bmax

k to denote the maximum energy at the server k, while bt
k represents the

energy stored by server k at the beginning of each time slot t. We use bmax
k to denote the

maximum energy at the server k. Then the energy level at the server k in time slot t is [26]

bt
k = min(bmax

k , max(0, bt−1
k + gt

k − ∑
i∈M

Eo
i,k)). (1)

where ∑i∈M Eo
i,k, and gt

k denote the consumed and harvested energy and harvesting of
server k at time slot t, respectively. In Section 3.2, we detail the energy consumption
∑i∈M Eo

i,k.

3.2. Energy Consumption

The energy consumption of a server consists of three parts: (i) tasks computation, (ii)
communication of results to a MU, and (iii) download the required function modules from
the cloud. Let ωi,k indicate the computing resources allocated by server k to MU i, and the
maximum computing resource on server k is ωk. The energy incurred by server k to process
functions requirement from MU i is [26]

Ei,k = κ
ωi,k

ωk
, (2)

where κ is the constant power consumption of a function module calculated by the server k.
Let Er

i,k be the energy required by server k to send results to MU i, and tr
i is the size of the

result. We assume all servers have consistent transmission power ρ̂. Then, we can write
Er

i,k as

Er
i,k = ρ̂

tr
i

ri,k
, (3)
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where ri,k is the data transmission rate. We use Ek, fi
to denote the energy required by the

server k to download function fi from the cloud. Therefore, the total energy consumption
of server k to execute tasks from MU i is

Eo
i,k = Ei,k + Er

i,k + Ek, fi
. (4)

In practice, the servers usually communicate with the cloud via fiber links with fast
transmission rates and low transmission power. Hence, in this paper, we ignore the energy
consumption for downloading functions and assume Ek, fi

= 0 in Equation (4).

4. Problem Formulation

Our aim is to set the price advertised by servers to maximize the overall revenue of
servers and ensure that the MUs execute their tasks. Briefly, servers seek to maximize their
revenue by setting a suitable price, while the MUs determine their own demands based on
the price of the server and their budgets.

To this end, we model this pricing problem as a Stackelberg game [41]. A Stackelberg
game is a strategic interaction between two players: a leader and a follower. The leader
first makes decisions that consider the potential reactions of the follower. Then the follower
makes their decisions based on the leader’s decision. In our case, servers are leaders, where
they determine the price of each function and advertise the price to MUs. On the other
hand, the MUs are followers that determine their own demands based on the price of servers.

In this section, we establish a mathematical model to analyze the details of the Stackel-
berg game. By solving this Stackelberg game, we can obtain the optimal price for the server,
as well as the optimal demands decisions for the MUs. These help maximize the benefits of
the entire system.

4.1. Follower Strategy

Let xi,k denote the number of functions that MU i requires from server k. Initially, we have
xi,k = |Di|. We apply the utility function introduced in [42] for a fair resource allocation, where

Ui = Bi ∑
k∈K

log(σi + xi,k), ∀k ∈ K. (5)

Here, σi is a constant, and σi = 1 [42]. The aim of each MU i is to maximize Ui by
adjusting the number of function modules xi,k required from the server k. We thus have the
following model

max Ui (6)

s.t. ∑
k∈K

xi,k pk ≤ Bi

xi,k ≥ 0, ∀k ∈ K.
(7)

The constraint (7) ensures that the total cost incurred by MU i does not exceed its
budget Bi and that the number of function modules required by MU i is non-negative.
Recall that the demands of MUs are independent and not in conflict with each other. We
first discuss a scenario with N MUs and two servers. We then release this to a general
scenario with |K| servers.

4.1.1. Two Servers

When there are N MUs and two servers, we have the following subproblem and
rewrite problem (6) as

max
{xi,1,xi,2}

Ui (8)
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s.t.
2

∑
k=1

xi,k pk ≤ Bi

xi,1, xi,2 ≥ 0.
(9)

In this subproblem, xi,1 and xi,2 represent the number of function modules required by
MU i on two serverless edge servers. The objective is to maximize MU i’s utility function
Ui in Equation (8) while ensuring that the total cost incurred by MU i does not exceed its
budget Bi. The constraints also include that the number of function modules required by
MU i is non-negative; see constraint (9).

In order to find the optimal solution to the problem defined by Equations (8) and (9),
we adopt the Karush–Kuhn–Tucker (KKT) conditions. KKT conditions are a method for
assessing optimality in constrained optimization problems, thus employing Lagrange
multipliers to handle constraints. Using Lagrange’s multipliers λ1, λ2, and λ3 for constraint
Equation (9), we have

LM = Bi ∑
f∈F

log(σi + xi,k) + λ1(Bi −
2

∑
k=1

xi,k pk) + λ2xi,1 + λ3xi,2. (10)

The KKT conditions of the problem in Equations (8) and (9) are presented as follows:

∂LM
∂xi,1

=
Bi

σi + xi,1
− λ1 p1 + λ2 = 0 (11)

∂LM
∂xi,2

=
Bi

σi + xi,2
− λ1 p2 + λ3 = 0 (12)

λ1(Bi −
2

∑
k=1

xi,k pk) = 0 (13)

λ2xi,1 = 0 (14)

λ3xi,2 = 0 (15)

λ1 > 0, λ2, λ3, xi,1, xi,2 ≥ 0. (16)

The optimal solution of Equations (8) and (9) can be categorized into four cases, with
each corresponding to a specific set of variable values. Specifically, we have the following:

(1) Case 1: xi,1 > 0, and xi,2 > 0. In this case, MU i requires functions from both
servers. Therefore, we have λ2 = λ3 = 0 and, substituting into (11) and (12), we obtain

xi,k =
Bi

λ1 pk
− σi, ∀i ∈ M, k = 1, 2, (17)

By substituting (17) into (13), we have the final demand from both servers as

xi,k =
Bi + σi ∑2

k=1 pk

2pk
− σi, k = 1, 2. (18)

(2) Case 2: xi,1 > 0, and xi,2 = 0. In this case, MU i requires functions from server 1.
Therefore, we have λ2 = 0 and, substituting into (11) and (12), we have

xi,1 =
Bi

λ1 p1
− σi, (19)

Substituting xi,1 into (13), we obtain

1
λ1

=
Bi + p1σi

Bi
, (20)
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Using (20) in (19), we have the number of required functions from server 1 as

xi,1 =
Bi + σi(p1 + p2)

2p1
− σi. (21)

(3) Case 3: xi,1 = 0, and xi,2 > 0. Similar to case 2, in this case, MU i requires functions
from server 2. We have its demand as

xi,2 =
Bi + σi(p1 + p2)

2p2
− σi. (22)

(4) Case 4: xi,1 = 0, and xi,2 = 0. In this case, MU i does not require functions from any
server. However, if Bi > 0, then λ1 = 0, which does not satisfy Equation (16). Therefore,
when xi,1 = xi,2 = 0, we have Bi = 0.

4.1.2. |K| Servers

Thus, using (18), (21), and (22), we can formulate the demand of N MUs and K servers as

xi,k =
Bi + σi ∑k∈K pk

Kpk
− σi. (23)

4.2. Leader Strategy

The previous section analyzed how MUs formulate their demand strategies based on
the given price pk by the server. This subsection considers how to maximize the utility of
serverless edge servers. As the leader in the Stackelberg game, servers profit by providing
services to MUs. To maximize utility, servers need to set appropriate prices for the services
they provide. Since MUs tend to acquire resources from servers with lower prices, servers
operate in a noncooperative and competitive relationship with each other. The utility
function of server K can be expressed as

Uk(pk, p−k) = pk ∑
i∈M

xi,k. (24)

where p−k is the price matrix of the other SEC server except server k. Server k aims to select
a proper price vector pk to maximize its utility. Therefore, server k’s utility maximization
problem can be expressed as

max Uk(pk, p−k). (25)

s.t. ∑
k∈K

xi,k ≤ γk

pk ≥ 0, ∀k ∈ K.
(26)

The constraints in (26) ensure that the number of functions that server k can provide
to all MUs does not exceed γk. They also ensure that the price of server k, i.e., pk, must be
non-negative. Because the price must be a non-negative, then by substituting Equation (23)
into the problem defined by Equation (25), this yields

max Uk(pk, p−k) = pk ∑
i∈M

xi,k (27)

s.t ∑k∈K
Bi+σi ∑k∈K pk

Kpk
− σi ≤ γk

pk ≥ 0, k ∈ K,
(28)

The objective function Equation (27) can be expressed as

Uk(pj, p− j) = pk ∑i∈M
Bi+σi ∑k∈K pk

Kpk
− σi, (29)
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If the MUs do not require any function, i.e., xi,k = 0, Equation (23) implies that

Bi + σi ∑
g∈K,g ̸=k

pg ≥ σi(K − 1)pk, (30)

Therefore, in order to achieve xi,k > 0 for server k, its price must satisfy

pk ≤
(

Bi + σi(∑g∈K,g ̸=k pg)

σi(K − 1)

)
. (31)

Equation (31) ensures that the server’s pricing strategy considers the influence of other
servers while meeting the demand of the MUs.

4.3. The Existence of Stackelberg Equilibrium

We now prove that the Nash equilibrium of the price optimization game between
servers and MUs always exists and is unique. By letting Υk be the set of all values that
satisfy Equation (31), we have the following theorem.

Theorem 1. In the Stackelberg game between servers and MUs, there is a unique Nash equilibrium.

Proof. (1) In the Stackelberg game, the strategy space of all players is product space
Υ = Υ1 × Υ2 . . . Υk, where pk ∈ Υk, and k ∈ K. Thus, Υ is a convex function and is a
nonempty subset of a Euclidean space RK.

(2) Uk is continuous in pk. The second derivative of Uk to pk is expressed as

∂2UK
∂pk

= 0, ∀k ∈ K. (32)

Therefore, Uk is concave in pk. Thus, Nash equilibrium exists in our Stackelberg
game.

5. Iterative Price Update Algorithm

To achieve the equilibrium state of the game outlined above, we propose an iterative
pricing algorithm. Initially, each server randomly selects a price from the range computed
by using Equation (31). The server’s revenue is derived from the total price paid by the
MUs minus its cost. The cost encompasses the energy expense and purchasing function
modules from the cloud. In particular, the energy consumption expenses correspond to
current energy usage, energy acquired from natural sources, and grid electricity tariffs.

If the server selects a price that falls below its cost, it suffers profit losses. Conversely,
if the chosen price is excessively high, it may struggle to attract MU consumption. The
pseudocode of the iterative price update algorithm is shown in Algorithm 1. Each server
updates the unit price in each iteration according to its own energy level and resource pool.

Initially, each server calculates its price p′k based on the energy stored in its own storage
bt

k at the current time slot t. Let ϑ be a given threshold; if a server whose energy bt
k surpasses

threshold ϑ, the server opts to provide services to MUs using its own stored energy rather
than purchasing from the grid. This decision helps in reducing costs. Therefore, the pricing
of server k is updated as follows:

p′k = pk − Eo
i,k pt. (33)

After the server updates its price, the MUs also need to update demand using
Equation (23). If the resulting xi,k < |Di|, then MU i discards the last few functions
|Di| − xi,k, because it does not have enough budget to afford them; otherwise, it remains
xi,k = |Di|.
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Algorithm 1 Iterative price update algorithm

Require: bt
k, pk, Di, pc

Ensure: p∗k , x′i,k
1: xi,k = |Di|
2: if bt

k ≥ ϑ then
3: Reduce the price of server k using Equation (33), obtain p′k
4: Calculate demands x′i,k using Equation (23)
5: Update demands D′

i
6: end if
7: if Di ⊆ Γk then
8: Retain the price p∗k = p′k of server k
9: else

10: Increase the price of server k using Equation (34), obtain p∗k
11: Calculate demands x′i,k using Equation (23)
12: Update the demands of D′

i
13: end if
14: Return p∗k

Next, server k checks demands from MUs, i.e., Di, and its resource pool Γk. If Di ⊆ Γk,
this means server k already has all the required function modules within its resource pool
to fulfill the MU’s requirements. Then, the server retains the price p′k and advertises to
MUs. Otherwise, the server needs to download functions from the cloud, and thus the
price p′k increases. In particular, the updated price p∗k is calculated by

p∗k = p′k + (|Di/Γk|)pc (34)

Finally, all MUs determine their demand strategies {xi,k} based on the prices {pk}
provided by servers, as per Equation (23). These strategies encompass each MU’s resource
purchasing decisions regarding all servers. In subsequent time slots, all servers continually
update their prices iteratively based on the MUs’ demands and their own energy.

We conclude this section with the runtime complexity of the iterative price update
algorithm. To calculate the initialization price p′k and MU demand strategy x′i,k based on
the energy level of each server, i.e., lines 3–5, the time complexity is O(K). In lines 7–12,
the algorithm updates the price of the server p∗k and calculates the demand strategy x′i, k
for the MUs. Recall that the size of the resource pool of each server is |Γk|, and the time
complexity of each iteration is O(K|Γk|). The convergence of the algorithm is related to the
number of iterations. In this paper, we denote the number of iterations as N. Therefore, the
total running time complexity of the iterative price update algorithm is O(K|Γk|N).

6. Simulations

In this section, we evaluate how MUs choose the best demand strategy according
to the given price and how the serverless edge server determines a price that maximizes
its revenue according to the MU’s budget and its own cost. As far as we know, there are
few studies on the resource allocation and pricing of serverless edge computing [37,43].
However, due to differences in background information and optimization objectives, it
would be inappropriate to directly compare the method proposed in this paper with
previous work. Our simulations were conducted using MATLAB 2021 on an AMD Ryzen
7 CPU @ 2.30 GHz with an 8 GB RAM laptop.

In the experiments, we assumed that there were three servers and five MUs. Firstly, we
considered five different MUs, each with a different budget and required functions. This was
to simulate the differences between different MUs and also to evaluate the scenarios where
the server needs to handle different demands. Similar with the works in [43–45], where
they predefine the budget of MUs, we also fixed the budget of each MU as B1 = 5, B2 = 10,
B3 = 14, B4 = 18, and B5 = 22. On the other hand, we assumed that there were three
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servers, each with different computing resources and capabilities. The computing resources
were represented by γ1 = 10, γ2 = 15, and γ3 = 20. Additionally, the servers’ computing
capabilities were denoted by ω1 = 0.5 GHz, ω2 = 2 GHz, and ω3 = 1.5 GHz. Furthermore,
we set the transmission power of the three servers to be ρ̂ = 5 W and the transmission rate
from server to MU to be ri,k = 5 Kbps. Additionally, we set parameters κ = 0.8, ϑ = 15, and
ht = 2 per Wh. Note that, as shown in [46–48], in practice, the servers are usually statically
deployed. The parameters of the server are fixed and can be predetermined.

In this section, we first demonstrate the impact of server prices on MU utility and the
countereffect of MU budgets on server prices. Next, we assume that servers are equipped
with natural energy harvesting devices such as solar panels, and the energy collection from
solar panels is from real solar radiation data [49].

6.1. Stackelberg Game

In Figures 2–5, we demonstrate the impact of an MU’s budget on the entire system by
simply changing the budget B1 for MU 1. Figure 2 shows the optimal prices set by servers
when the budget of MU 1 changed from 5 to 40. We see from Figure 2 that the pricing of a
server is closely related to the number of resources in its own resource pool. A server with
more cached function modules incurs lower fees, and vice versa. For example, S1 charged
higher than S2, and S2 charged higher than S3.
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Figure 2. Server’s price at equilibrium.

Figure 3 shows the demand of each MU when Nash equilibrium has been achieved.
The demand of MU1 was increased because the budget B1 increased. On the contrary,
the other MU’s demand decreased because the prices set by the server increased. This
reflects the sensitivity of MUs to resource purchase decisions and their behavior of adjusting
demand strategies based on server pricing. Figure 4 depicts the MU’s utilities at Nash
equilibrium and is related to Figure 3.
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Figure 3. MUs’ demands at equilibrium.

Figure 5 shows the revenue of each server at Nash equilibrium. It is worth noting that
although S3 set the lowest price, its revenue was the highest, which was 95% higher than
S1. This is because it cached the most number of function modules.
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Figure 4. MUs’ utilities at equilibrium.
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Figure 5. Servers’ revenues at equilibrium.

6.2. Impact of Energy Harvesting on Price

Figure 6 shows the harvested energy of the three servers in 24 h according to the solar
radiation [49]. The server obtains energy through solar panels during the day and stores
the remaining energy in the battery.

Figure 7 shows the residual energy at each server and their price. We see that the
harvested energy at server S1 was not sufficient for its operation, i.e., its battery capacity
was near zero for all day. In addition, server S1 cached the minimum number of function
modules. Therefore, the price of S1 was higher than both S2 and S3. On the other hand,
during the daytime when solar radiation intensity is high, server S3 had a lower price than
S2. This is because when the energy was sufficient, i.e., both servers S2 and S3 did not need
to purchase from the grid, the server that cached a lower number of function modules set a
higher price for purchasing from the function from the cloud. We also see that the prices of
S2 and S3 fluctuated during the daytime. This is because the server has a lower price in the
daytime; hence, there are more demands from MUs, which in turn increases the number of
function modules purchased from the cloud.

In conclusion, while our experiments comprehensively unveil the influence of the
Stackelberg games on resource allocation and pricing within serverless edge computing,
there are limitations. For instance, our model assumed fixed parameters for the transmission
power and rate, as well as constant power consumption, which may not fully capture the
dynamic nature of real-world scenarios influenced by environmental conditions, hardware
constraints, and communication protocols. Furthermore, the instantaneous steady state
assumption simplifies the model but may oversimplify actual system behavior.
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Figure 6. Energy collected by server in 24 h.
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7. Conclusions

In this paper, we studied the resource allocation and pricing between MUs and energy
harvesting servers. We formulated the problem as a Stackelberg game and presented the
pricing tradeoff strategy. In addition, we considered exploiting renewable energy on servers
and calculated the optimal pricing via a proposed iterative algorithm. The experimental
results show that the proposed mechanism is effective.
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In future work, we will prioritize the refinement of adaptive models that can dy-
namically adjust to the ever-changing conditions of real-world scenarios. This involves
conducting thorough and comprehensive comparisons with existing methods to discern
the relative strengths and weaknesses of our proposed approach. Moreover, we recognize
the significance of conducting sensitivity analyses to gauge the reliability and robustness of
our algorithm under a spectrum of varying conditions. In forthcoming research, we plan to
delve deeper into assessing the impact of various factors, including server capacity, server
load, MU demand, energy supply stability, and MU density, on the performance of our algo-
rithm. By scrutinizing these factors, we aim to ascertain the extent to which our algorithm
can maintain its reliability and robustness across diverse operational environments.
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