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Abstract: Recent technological developments have enabled computers to identify and categorize
facial expressions to determine a person’s emotional state in an image or a video. This process,
called “Facial Expression Recognition (FER)”, has become one of the most popular research areas
in computer vision. In recent times, deep FER systems have primarily concentrated on addressing
two significant challenges: the problem of overfitting due to limited training data availability, and
the presence of expression-unrelated variations, including illumination, head pose, image resolution,
and identity bias. In this paper, a comprehensive survey is provided on deep FER, encompassing
algorithms and datasets that offer insights into these intrinsic problems. Initially, this paper presents
a detailed timeline showcasing the evolution of methods and datasets in deep facial expression
recognition (FER). This timeline illustrates the progression and development of the techniques and
data resources used in FER. Then, a comprehensive review of FER methods is introduced, including
the basic principles of FER (components such as preprocessing, feature extraction and classification,
and methods, etc.) from the pro-deep learning era (traditional methods using handcrafted features,
i.e., SVM and HOG, etc.) to the deep learning era. Moreover, a brief introduction is provided
related to the benchmark datasets (there are two categories: controlled environments (lab) and
uncontrolled environments (in the wild)) used to evaluate different FER methods and a comparison
of different FER models. Existing deep neural networks and related training strategies designed for
FER, based on static images and dynamic image sequences, are discussed. The remaining challenges
and corresponding opportunities in FER and the future directions for designing robust deep FER
systems are also pinpointed.

Keywords: facial expression recognition; facial feature extraction; expression classification; deep
learning; convolutional neural network; deep belief network; taxonomy; survey; database

1. Introduction

Various communication elements, such as facial expressions, body movements, and
voice, can be employed to identify human emotions. Among these, facial expressions
are particularly informative, as they convey information about a person’s emotional state
and provide insight into their mood, interest, boredom, confusion, stress levels, and con-
versational signals, such as speech emphasis and syntax. The FER system has generated
much interest, leading to its adoption in the computer vision literature for automatic
facial expression recognition. For decades, researchers have been studying facial expres-
sion recognition. Significant work has been undertaken for comprehensive surveys of
past efforts in the field [1–21]. FER is critical in computer vision and machine learning
because it investigates ways to analyze and recognize facial muscle movements. The rea-
sons for this renewed interest in facial expressions are numerous in many fields, such as
neuroscience [22], biomedical engineering, healthcare, crime detection [23], public safety,
education, employment, customer behavior analysis and advertising, sociable robotics,
medical treatment, driver fatigue surveillance, and fraud, among others. However, the
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advances in related research areas such as face detection, face tracking, and face recognition,
the current availability of relatively inexpensive processing power, and the rise in deep
learning [24] methodologies are of great importance. Furthermore, facial expression recog-
nition is well researched, particularly in the fields of computer vision (CV) and artificial
intelligence (AI), with applications in human–computer interaction (HCI) [25,26], virtual
reality (VR) [27] and augmented reality technologies [28], advanced driver assistant systems
(ADASs) [29], and entertainment [30]. According to a report by Allied Market Research [31],
the global emotion recognition market is rapidly growing, valued at $21.7 billion in 2021
and projected to reach $136.2 billion by 2031, with a CAGR of 20.5% from 2022 to 2031, as
reported by Allied Market Research.

Facial expression recognition (FER) is a method of detecting human emotions from
static images or videos to disclose information about humans’ facial expressions or emo-
tional states. In [18], Ekman, and in [32,33], Friesen postulated six primary emotions and
discussed their distinct characteristics. People of all races and civilizations share these
prototypical emotional displays, often referred to as basic emotions. Thus, to identify
human emotions, the key lies in facial expression. In reality, not all facial expressions have
significance and can be mapped to emotions, but there are six fundamental emotions (in
Figure 1) that are universal [34] and can be represented in the same manner.
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Figure 1. Six basic emotions.

Anger, fear, happiness, disgust, surprise, and sadness are the basic emotions, and
one more emotion was added [35], the universal expression of contempt. So, in total,
there are seven emotional states. There is evidence for universality in the following seven
emotions [36].

Moreover, in facial expression recognition, we can also measure valence and arousal
circumplex with the horizontal and vertical axes (Figure 2) describing valence and arousal,
respectively (arousal is defined as how inclined this individual is to behave based on their
emotional state, whereas valence is how pleasant or terrible a sensation is [37]). We can see
that neutral is in the middle of the axes, as one would assume, because this emotional state
has zero arousal and valence.
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Figure 2. The arousal and valence factors vary from positive to negative. Also, the positive states are
in the right hemisphere, and the negative ones are in the left. Emotional states can be easily defined in
4 different quadrants (Q1–Q4), including high arousal–high valence (Q1), high arousal–low valence
(Q2), low arousal–low valence (Q3), and low arousal–high valence (Q4), respectively [38].

Our paper’s notable contributions are summarized as follows:

• Taxonomy: A brand new classification of FER is proposed, as well as for datasets.
This taxonomy not only references traditional methodologies, but also incorporates
recent advancements in deep learning. Specifically, it integrates techniques such as
Generative Adversarial Networks (GANs), graph-based methods, and transformers in
the context of FER. Additionally, there is a distinct taxonomy for datasets: the datasets
are categorized into images and sequences. These are further divided into controlled
and uncontrolled groups. The controlled group includes categories such as movies
and lab settings, while the uncontrolled group pertains to the “in the wild” category.
To the best of our knowledge, no existing research has addressed this comprehensive
classification.

• Comprehensive review: This paper contains cutting-edge results from newcomers’
research that have not been examined in earlier survey publications [37,39–70].

• Highlighting top models: Evaluation results from the most significant methods across
different datasets are presented, covering approximately 60 methods.

• Overview of popular datasets: A total of 21 of the most commonly used datasets are
introduced [71–103].

• Suggestions and future directions: Apart from the conclusion, possible future research
directions for FER are suggested.

Survey papers will be listed below, detailing both their coverage and their limitations.
The papers by Pantic et al. [1,3], Azizan et al. [10], Mehta et al. [11], and Revina et al. [15]
provide foundational insights into Facial Expression Recognition (FER), focusing on state-of-
the-art techniques but lacking in-depth analyses of advanced deep learning methodologies
and dataset evolution. Fasel et al. [2], Tian et al. [4], and Shan et al. [5] discuss facial
expression and action recognition from static images, emphasizing the challenges of their
time but missing integration with contemporary models and datasets. The studies by Wei
et al. [12], Mellouk et al. [13], and Bettadapura et al. [6] review deep learning in FER, notably
in industrial electronics, yet overlook a range of deep learning models and comprehensive
dataset analyses.

Further, Konar et al. [7], Zhao et al. [8], and Patel et al. [14] offer insights into emotion
recognition and feature extraction, providing comprehensive overviews but lacking broad
methodological scope and future trend discussions. The surveys by Dang et al. [16],
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Jampour et al. [17], and Khan et al. [19] address general facial expression recognition and
its applications but fall short in analyzing FER evolution and integrating AI techniques
comprehensively. Lastly, the works by Canal et al. [18] and Cai et al. [21] cover FER’s
modality and methodologies, offering a broad view on multimodal aspects but lacking
focused discussions on tailored AI techniques for FER, detailed model comparisons, and
extensive FER evolution timelines.

In Figure 3, the taxonomy of the paper methods is illustrated. Initially, the evolution
timeline is presented; after that, the traditional methods, the deep learning methods, the
state-of-the-art core of this paper, and a detailed analysis of datasets in FER are shown.
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Organization of survey: The rest of the paper is organized as follows. Section 2 focuses
on the evolution of facial recognition techniques and the most used datasets. Section 3,
discussing the pro-deep learning era, elaborates on the facial expression recognition system,
describing its components, including preprocessing, feature extraction, and classification. It
also presents relevant background information, supported by examples, to comprehensively
understand the topic. Section 4, the deep learning era section, includes a brief history of
deep learning methods such as CNN, RNN, and DBN, etc., with some indicative works on
each method. Also, the state-of-the-art is mentioned by many newcomers and novel papers.
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In Section 5, an introduction to the most used emotions datasets is provided. Moreover, the
nomenclature is provided in this section. Section 6 provides suggestions for future research
and concludes this survey.

2. Evolution Timeline

This evolution timeline was made to illustrate the evolution of FER methods and the
evolution of the datasets. This timeline encompasses traditional machine learning methods
and deep learning methods. Regarding the datasets, they are categorized into four main
types. First, the datasets are classified based on their content, distinguishing between im-
ages and videos (sequences). Second, they are categorized based on the environment, with
distinctions made between controlled environments (lab) and uncontrolled environments
(in the wild). So, the categories are IC (image controlled), IU (image uncontrolled), SC
(sequence controlled), and SU (sequence uncontrolled). By understanding the timeline
of developments in facial expression recognition and the development of datasets, it is
possible to provide the reader with valuable insights into the progress and challenges facing
this field (FER). This background information lays the foundation for a comprehensive
understanding of the FER system.

Facial emotion recognition was initially presented in work proposed by Bassili [104]
in 1978. Bassili et al. investigated the influence of facial motion on perceiving faces and
emotional expressions. They explored how dynamic changes in facial features, like eye
and mouth movements, impact the recognition and interpretation of emotions. The study
offers insights into the role of motion in understanding human emotions (six fundamental
emotions: happiness, sadness, fear, surprise, anger, and disgust). In Figure 4, the evolution
timeline of facial expression recognition methods is illustrated. Numerous FER algorithms
have been developed, encompassing both traditional methods and deep learning (DL)
algorithms, with many state-of-the-art methods in both categories. Moreover, in Figure 5,
a brief overview of the evolution timeline for the datasets is given, in which the terms IC
(image controlled), IU (image uncontrolled), SC (sequence controlled), and SU (sequence
uncontrolled) refer to different types of datasets commonly used in the context of FER. To
clarify each dataset, we will label them as IC, IU, SC, and SU.

Several datasets have been created to train and evaluate FER models. At first,
laboratory-controlled environment (lab) datasets were created, i.e., Multi-PIE [96], in-
cluding facial images from various angles and lighting conditions. However, laboratory-
controlled datasets have two issues: the fact that there is a lot of repetition and the dataset
size. The first issue is that there is much repetition. A basic FER model can perform
well in testing in a lab-controlled setting. Still, it cannot deliver a satisfactory result in
actual application scenarios, which have noise in many different ways, i.e., variability in
input data, background noise, uncertain or ambiguous inputs, and adaptation to dynamic
environments. With real-world data, variations arise from distribution, quality, format, and
representation differences. Background noise or environmental factors cannot be controlled
in the lab. The model must handle incomplete or conflicting data, requiring reasoning and
contextual understanding. Real-world scenarios involve dynamic situations, necessitating
real-time adaptation to changing conditions, contexts, or user behaviors.

Overall, these “many different ways” of noise and challenges in real-world scenarios
demand robustness, adaptability, and the ability to handle uncertainty from AI models,
which may not be adequately addressed during lab-controlled testing phases.

The second issue is the dataset size, which cannot reach the prerequisites for deep
learning techniques in a laboratory-controlled setting, preventing the successful application
of deep learning’s strong feature learning capabilities to FER systems, and, of course, the
size of the laboratory datasets is small. To address the two problems outlined above, large
FER datasets of hundreds of thousands of diverse images had to be created by gathering
and labeling them from the Internet (in the wild). Examples of FER datasets in the wild are
AffectNet [83], RAF-DB [94], FER2013 [86], and FER+ [71], etc. As mentioned before, based
on content, FER datasets are also categorized into images and sequences (movie). Sequences
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(or movie) are collections of video clips or frames extracted from movies, TV shows, or
other media sources used to train and test deep-learning-based FER models. These datasets
typically contain many examples of facial expressions and cover many emotions, making
them ideal for training and evaluating FER models. Two well-known examples of this
category are AFEW 7.0 [80–82] and SFEW 2.0 [84,85]. The timeline (Figure 5) displays a list
of datasets sorted by their year of creation. Next to each dataset name is an acronym (IC,
UC, IS, and US) indicating the category to which the dataset belongs.
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3. FER: Facial Expression Recognition

In this section, in the first part, there will be an analysis of the pro-deep learning
era in facial expression recognition, describing its components extensively, including pre-
processing, feature extraction, and classification. It also presents relevant background
information supported by examples to comprehensively understand the topic. Moreover,
this is followed by a detailed report on the deep-learning era (data augmentation, a brief
history of deep learning, analysis of models [CNN, RNN LSTM, DBN, Autoencoder, GAN,
Hybrid, Graphs, and Transformer] with a lot of theory, models, examples, and applications).
The next part of this section is the cornerstone of this paper, discussing the state-of-the-art
methods with the categorization of static and sequence datasets; then, for each category,
there are many more subcategories.

3.1. Pro-Deep Learning Era

In general, FER systems before the advent of deep learning consisted of three com-
ponents: preprocessing for endeavors such as face detection [123,124], feature extrac-
tion [8,125], and expression classification [8]. In the FER approach, the process begins by
segmenting an image into two classes: regions containing faces and regions containing
non-face elements. Additionally, facial components such as eyes and nose or landmarks
are detected within the identified face regions to refine the analysis further. During feature
extraction, various temporal and spatial features are extracted from the facial components.
Essentially, feature extraction aims to capture facial features related to expressions. After
the feature extraction stage, the extracted features are passed to the classification step. In
this step, various facial expression classifiers, such as Support Vector Machines (SVM),
AdaBoost, Random Forest (RF), or the SoftMax loss layer [126], are utilized. These classi-
fiers leverage the extracted features to predict the facial expression category to which the
analyzed face belongs.

FER algorithms are classified into two types based on their input: static images
and dynamic sequences. On the one hand, static FER involves the face point position
information from a single image’s feature representation. On the other hand, dynamic
image FER or sequence FER include temporal information with continuous frames [127].
The sole difference between the single static and dynamic sequence facial expression
detection tasks is that several face photos must be considered during the feature extraction
step in the second phase. In the following paragraphs, we will examine and discuss the
three phases of data preprocessing.

3.1.1. Preprocessing

Preprocessing [128] is usually used in the FER system before the feature extraction
stage and after the image input. Detecting the face is usually the initial step in preprocessing.
Preprocessing is used for face detection and face alignment. It should be noted that the
preprocessing stage is divided into two main processes:

Face Detection

Face detection (or face localization) is fundamental in computer vision and pattern
recognition. It involves automatically locating human faces in images or video frames.
Essentially, the face detection technique returns the bounding box coordinates over the face.
Face detection algorithms are crucial in various applications, such as facial recognition,
emotion analysis, and biometrics. These algorithms utilize many techniques, such as Haar-
like features, deep learning architectures like convolutional neural networks (CNNs), and
cascaded classifiers to accurately detect faces in diverse settings and handle variations in
pose, illumination, occlusions, and facial expressions. Ongoing research in face detection
continues to improve these algorithms’ accuracy, robustness, and efficiency, advancing the
field and enabling the development of innovative face-related applications.
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L = lab). List of papers in the image [Lyons1998] [72], [Lundqvist1998] [90,91], [Kanade2000, Tian2001,
Lucey2010] [76–78], [Pantic2005] [97], [Yin2006] [74,75], [Gross2008] [96], [Susskind2010] [87],
[Langner2010] [89], [Aifanti2010] [99,100], [Zhao2011] [88], Dhall2011,2012,2017] [80–82], [Good-
fellow2013] [86], [Dhall2011,2015] [84,85], [Barsoum2016] [71], [Benitez2017] [93], [Yale2017] [79],
[Mollahoseini2017] [83], [Li2017] [94], [Zhang2018] [95], [kollias2019] [103], [Kosti2019] [101,102],
[Ulrich2024] [129].

The challenges that face detection has to solve are:
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• Occlusion [130,131]. Occlusion is when an object or part of it is blocked from view by
another object, creating challenges in computer vision tasks like object detection and
tracking.

• Illumination [132,133]. Illumination refers to lighting conditions affecting object ap-
pearance in computer vision. Handling illumination variations is crucial for accurately
performing object recognition and image segmentation tasks.

• Image resolution [134,135]. Image resolution refers to the level of detail in a digital
image. A higher resolution means more pixels, resulting in sharper images, while a
lower resolution leads to less detail and potential blurring.

• Facial expression changes [136,137]. Facial expression changes refer to variations in
facial features that convey different emotions. Analyzing these changes is crucial for
understanding human emotions, involving detecting and interpreting facial landmarks
and texture patterns.

Face detection is the necessary first step for all facial analysis algorithms (especially
the traditional ones), including face alignment, face recognition, face verification, and
face parsing. Also, face detection is used in multiple areas, such as content-based image
retrieval, video coding, video conferencing, crowd video surveillance, and intelligent
human–computer interfaces.

The landscape of face detection brims with a plethora of techniques, each special-
ized for distinct facets of the process, from initial processing to precise recognition [138].
Feature-based approaches are fundamental, with the Viola–Jones [139] algorithm being a
cornerstone for real-time detection due to its speed and efficiency. While it is a staple in
preliminary steps, its precision can wane in diverse facial conditions.

Another category is Active Shape Models, which includes Snakes [140], Deformable
Template Matching [141], and Point Distribution Models that are also pivotal, providing
adaptability against variations in pose and expressions. They are detailed in capturing the
structural nuances of faces, adjusting to different shapes within images. Also, Low-Level
Analysis, which includes assessing motion, color, grayscale information, and edges, plays
a critical role in differentiating facial features from backgrounds, enabling face detection
across varied scenarios.

Finally, Feature Analysis techniques, which involve Feature Searching, utilize both
texture and relational data. The Gabor Feature [142] and Local Binary Patterns (LBP) [143],
supported by AdaBoost [109], are particularly effective for their textural and pattern
recognition capabilities, crucial for both detecting and recognizing facial features.

In the critical phase of preprocessing, the role of methods like Viola–Jones is indispens-
able. They efficiently locate faces, laying the groundwork for subsequent stages such as
feature extraction, normalization, or recognition. The choice of a preprocessing method is
dictated by specific application needs, balancing speed, accuracy, and robustness against
various conditions. Viola–Jones, with its harmonious blend of speed and effectiveness, is
often the preferred choice in many real-time applications.

Each brings unique strengths to the table, collectively advancing capabilities in face
detection. Notably, Viola–Jones is celebrated as the most utilized method for preprocessing,
marking its prominence in the domain of face detection methodologies.

Below will be an analysis of face detection methods for preprocessing. The most used
method for preprocessing is Viola–Jones.

Viola–Jones

The Viola–Jones algorithm [139] was proposed by Paul Viola and Michael Jones and
is one of the most extensively used face detection algorithms, even used by Apple in an
improved version on their phone [144]. It is based on using Haar-like features and AdaBoost.
Haar-like features are simple rectangular patterns used in the Viola–Jones algorithm for
object detection, such as face detection. They capture local contrast variations and are
evaluated to distinguish between positive (object) and negative (non-object) examples
during training [145]. The Viola–Jones algorithm aims to detect faces from pictures by
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examining grayscale subregions for specific attributes. It requires a full-frontal view of the
face and checks multiple positions and scales to detect faces of various sizes. Although the
training period is long, the time required to run the facial detection process is small. The
Viola–Jones algorithm has four main steps:

1. Selection of Haar-like features [145].
2. Creation of an integral image (an integral image is computed to enable the fast

calculation of Haar-like features over different image regions.)
3. AdaBoost (AdaBoost is a machine learning algorithm that combines multiple weak

classifiers to form a strong classifier) [109] training.
4. Creation of classifier cascades.

Face Geometric Alignment

Face alignment [146] is a common preprocessing step in various face detection ap-
plications. It minimizes pose, scale, and rotation variations, enabling accurate analysis.
This step is essential because it mitigates the variation in face scale and in-plane rotation.
Several types of face alignment methods exist, including holistic approaches like Active
Appearance Model (AAM) [147], Part-based like mixtures of trees (MoT), Discriminative
response map fitting (DRMF) [148], Cascaded regression such as the Supervised Descent
Method (SDM) [149], Local binary features [150], and incremental [148] and deep learning
such as MTCN [151], etc. Due to its high speed and accuracy, the face alignment method in
cascaded regression has become the most common among machine learning methods and
cutting-edge approaches for face alignment [152]. Some methods have to combine multiple
detectors for better landmark estimation and perhaps for better performance [153].

3.1.2. Feature Extraction

Feature Extraction [8,78,125] is the process of taking an input image, quantifying it
according to some algorithm (called a feature extractor or image descriptor), and returning
a vector (i.e., a list of numbers) that quantifies the contents of the image. It contains two
different components: feature extraction and dimensionality reduction.

Feature Extraction

Feature extraction aims to identify and capture relevant facial features for expression
recognition. It is crucial in various applications such as diagnosis, classification, and
clustering. According to different types of input images (static or dynamic), there are,
respectively, also two types of feature extraction.

For static images, there are two types:

• geometric-feature-based methods
• appearance-based methods

The forms and placements of face components, such as the brows, eyes, nose, mouth,
and chin, are described by geometric facial characteristics. Geometric-feature-based ap-
proaches seek to extract face characteristics by utilizing the geometric correlations between
facial feature locations. On the other hand, appearance-based methods use the whole face
or specific regions in a face image to reflect the information in a face image. Some tech-
niques of geometric-feature-based methods are Active Shape Models (ASM) [154], Active
appearance Models (AAM) [147], and Scale-Invariant Feature Transform (SIFT) [155,156].
For appearance-based methods, most well-known techniques are LBP (Local Binary Pat-
tern) [143], Weighted Projection-based LBP (WPLBP) [157], Gabor wavelet [143], Histogram
of Oriented Gradients (HOG) [158,159], Principal Component Analysis (PCA) [160–162],
Facial Action Code (FAC) [163], Linear Discriminant Analysis (LDA) [164], Independent
Component Analysis (ICA) [165,166], Supervised Descent Method (SDM) [149], Three Or-
thogonal Planes (LBP-TOP) [167], and Pyramid Histogram of Visual Words (PHOW) [168],
etc. For feature extraction, the Gabor filter, WPLBP, SDM, WLD, and HOG are the
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most commonly used, but most traditional methods are based on LBP, which gives
improved results.

For dynamic images, sequences are represented by deformation and facial muscle
movements. There are also two types:

• Optical flow [169]
• Feature point tracking [170]

Optical flow

Optical flow [171] is a technique that characterizes changes in geometry and radiome-
try within dynamic images. In facial expression recognition (FER), optical flow is utilized
to extract expression-related features and calculate pixel-level motion between two frames,
typically from a neutral to a peak expression. By tracking features across frames, the optical
flow returns a vector describing the movement of pixels from the first to the second frame.

However, this approach is sensitive to noise and occlusions, and its effectiveness relies
on the initial selection and tracking of features.

Feature point tracking

Feature point tracking algorithms [170] select specific feature points, often at the
corners of the eyes and mouth, to capture deformation information [170]. The objective is
to monitor the movement of these chosen feature points among the 15 features based on
the well-established facial action coding system [172]. As illustrated in Figure 6, some of
the most widely used feature extraction methods are depicted.
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Dimensionality Reduction

Dimensionality reduction is a machine learning (ML) or statistical technique for re-
ducing the number of random variables in a problem by taking a set of principal variables
(or reducing the dimensionality of features). These techniques aim to represent the images
in a lower-dimensional space while preserving the important information. An example
of a dimension reduction method used in image analysis includes Principal Component
Analysis (PCA). This technique can help in reducing computational complexity, extracting
meaningful features, and improving the efficiency and performance of deep learning mod-
els. Certainly, when the features of an image are transformed from an m-dimensional space
to a lower-dimensional space with k dimensions: m > k, it does not necessarily suggest a
deterioration in the image quality. The transformation of image features helps to maintain
or even enhance the overall quality of the image. There are pros and cons to applying
dimensionality reduction. Some benefits of applying the dimensionality [174] reduction
technique to the given dataset are given below:
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• The space that is required to store the dataset is reduced.
• Less computation training time is required for reduced dimensions of features.
• Reduced dimensions of features also help to faster visualize the data.
• It removes the redundant features by taking care of multicollinearity.

Below will be an analysis of the Principal Component Analysis, a well-known dimen-
sionality reduction method.

Principal Component Analysis (PCA)

Principal Component Analysis [175] is a well-known facial detection and recognition
technique. One widespread implementation of PCA is eigenfaces, which was introduced
by Turk and Pentland [176]. Vretos et al. [177] mapped vertices to a new coordinate
system using eigenvectors and barycenter, then used SVMs for facial expression recognition
with satisfactory results. These methods improve facial detection, recognition accuracy,
and robustness.

3.1.3. Classification

The classification stage [8] is a crucial component in the FER system, where the
classifier is trained on known datasets to recognize facial expressions in unknown datasets
during testing. Although classical approaches for FER have been successful in achieving a
high accuracy, they come with high processing costs and are still widely used. The goal of
the classifier is to accurately categorize expressions such as happy, sad, surprised, angry,
fearful, disgusted, and neutral into their respective labels. There are many classical methods
employed in the classification stage, including Linear Discriminant Analysis (LDA) [178],
Decision Trees (DT) [179], K-Nearest Neighbor (KNN) [180], Fuzzy [181], Adaboost [109],
Hidden Markov Model (HMM) [182], Bayesian Network (BN) [108], Sparse Representation-
based Classification (SRC) [113], and Support Vector Machines (SVM) [183,184], among
others. An overview of the traditional facial expression recognition stages is depicted in
Figure 7.
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3.2. Deep Learning Era

Nowadays, deep learning (DL) [185] has become one of the hottest research topics
in the fields of machine learning (ML) and artificial intelligence (AI), and is considered
to be the core technology of the Fourth Industrial Revolution. Also, deep learning’s use
finds applications primarily in image recognition, natural language processing (NLP) [186],
speech recognition software [187], genome engineering, and systems biology [188]. The
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reasons that more and more people tend to use deep learning models instead of traditional
ones are:

(1) Hardware advancements, primarily GPUs, accelerate deep learning. (2) Deep
learning can learn from raw data and eliminate the need for manual feature engineering;
thus, the models are faster and can capture complex patterns effectively. (3) Moreover, deep
learning models learn hierarchical representations of data, capturing intricate relationships
and improving performance in tasks like image recognition, natural language processing,
and speech recognition. Traditional methods often need help to capture high-level features
in these domains. (4) Due to their inherent scalability, deep learning models can handle
large-scale datasets and complex problems. Deep learning models can be trained efficiently
on massive amounts of data, improving performance. (5) Also, deep learning models
are capable of end-to-end learning, meaning they can learn directly from input to output
without relying on intermediate steps. This simplifies the overall pipeline. (6) Deep learning
models have shown remarkable adaptability across various domains. They have achieved
state-of-the-art results in many fields, such as computer vision. (7) Finally, deep learning
has witnessed significant advancements over the years, with continuous research and
development. New architectures, algorithms, and optimization techniques are constantly
being introduced, improving performance and pushing the boundaries of what is possible
in different applications.

In addition to end-to-end learning, another alternative is to utilize a CNN or other deep
neural network as a feature extraction technique before employing additional independent
classifiers, such as a support vector machine (SVM) [189] or decision tree. To enhance the
performance of deep learning models, it is crucial to apply data augmentation techniques
in comparison to conventional methods.

Data Augmentation [190]
Generally, most publicly accessible FER datasets lack sufficient photos for training. As

a result, data augmentation is a critical stage in deep FER, and the primary task is to increase
the size of a training dataset. Data augmentation artificially increases the amount of data
by generating new data points from the existing data. Furthermore, data augmentation is
another significant preprocessing aspect used too much in deep learning.

There are two types of data augmentation techniques: online data augmentation
and offline data augmentation. Online augmentation in the training data loader is an
excellent way to enlarge the variation in the dataset. However, the augmented data are
randomly generated in different ways, i.e., with the GAN model, and the data loader
follows when sampling the data. A model may need to be trained for a long time to
achieve a high accuracy. Offline augmentation can prevent this and generate a dataset
with the required augmentations. Offline augmentation can expand the dataset size when
collecting and labeling data is costly or impossible. The most common augmentation (offline
augmentation) methods are rotation, flipping, saturation, translation, scaling, cropping,
brightness, color augmentation, and contrast, etc. For deep learning using CNNs to
produce accurate classification results, many training data are always required. Overfitting
(overfitting represents an undesirable behavior in machine learning where a model achieves
accurate predictions on its training data but falters when faced with new, unseen data. The
model becomes prone to overfitting when the training process spans numerous epochs,
and the network’s capacity is substantial. This translates to the model performing well
on the training set while failing to generalize effectively, leading to a small training error
but an extensive validation or test error) becomes a significant issue since our database is
so limited. Expanding the database with artificial label-preserving modifications reduces
overfitting most frequently. Therefore, we add to the database using various modifications
to produce numerous modest changes in appearance and orientation before training the
CNN model. The network is more resilient to various scenarios using straightforward
data augmentation techniques. It has been observed that DL has attained cutting-edge
performances in a range of applications [191]. This section is a brief introduction to some
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problems in the application of FER, also, this is followed by a brief history on the deep
learning methods that have been applied in FER and then the deep learning techniques.

3.2.1. A Brief History

While the deep learning era is often associated with the McCulloch–Pitts (MCP)
model [192] as the initial artificial neural model, it is essential to note that the term “deep
learning” itself emerged much later to refer to the training of neural networks with multiple
layers. The origins of deep learning can be traced back to the early development of artificial
neural networks, including the perceptron in the 1950s and the backpropagation algorithm
in the 1980s. Regarding their application in Facial Expression Recognition (FER), deep
learning techniques began to garner attention in the late 2000s and early 2010s. While
the first application of FER [14] with artificial neural networks (ANN) by Padgett and
Cottrell [193] in 1996 laid some groundwork, it was not until subsequent years when deep
learning methods displayed substantial enhancements in FER performance. Deep learning
models, such as convolutional neural networks (CNNs) and recurrent neural networks
(RNNs), have demonstrated impressive feature learning abilities in FER tasks. These
models can automatically learn hierarchical representations from raw image or video data,
enabling them to capture intricate facial features and patterns associated with different
expressions. Despite the remarkable feature learning ability of deep learning, there are
several challenges in applying it to Facial Expression Recognition (FER). Firstly, crafting
FER systems based on deep neural networks (DNNs (deep neural networks are artificial
neural networks with multiple hidden layers between the input and output layers. They
learn hierarchical representations of the input data by progressively extracting higher-
level features through interconnected artificial neurons. The weights between neurons
are adjusted during training to minimize the difference between predicted and desired
outputs)) encounters significant constraints due to their high data dependence. This is
exacerbated by the fact that FER datasets are often small and tailored to specific tasks [152].
Given this, overfitting in results frequently occurs when applying training deep models on
FER datasets. Before 2010, Facial Expression Recognition (FER) datasets were relatively
small. Over time, these datasets gradually increased in scale

To put it simply, earlier research indicated that achieving end-to-end training in
Facial Expression Recognition (FER) posed challenges when employing deep architectures
on minimally preprocessed images. However, previous studies have showcased that
incorporating task-specific data for pre-training or fine-tuning existing models can notably
enhance the development of more sophisticated FER models. The second challenge was the
requirement for facial expression datasets at that juncture. This posed difficulties in training
neural networks with deep architectures, which are known for their prowess in achieving
exceptional results in recognition tasks. A third explanation for substantial inter-subject
variance is due to personal characteristics such as age, gender, ethnic origin, and level
of expressiveness. Variations in position, lighting, and occlusions typical in unrestrained
facial expressions may also create issues, so we trained models on corresponding datasets
that encompassed these variations. Below, we will refer to the solutions to these problems.

(a) Data augmentation is an option for preventing overfitting in DL models.
(b) As time progressed, larger and more diverse datasets collected from real-world scenar-

ios emerged. Notable examples include AffectNet [83], ExpW [95], EmotionNet [92,93],
and RAF-DB [94,194,195]. These datasets enabled the development of Facial Ex-
pression Recognition (FER) methods with enhanced performances and promising
outcomes in recognition tasks.

(c) To enhance facial expression recognition, an ideal dataset with diverse images of
expressions, age, gender, and ethnicity can be utilized, along with multitasking deep
networks and transfer learning techniques.

(d) Preprocessing [196] is pivotal in managing diverse data variations. Here are some
reasons why preprocessing is advantageous: (i) Standardization: Preprocessing tech-
niques like normalization or standardization ensure that features with different scales
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or units are brought to a typical range, preventing certain features from dominating
the learning process. (ii) Noise reduction: Filtering or denoising techniques applied
during preprocessing minimize the impact of noisy data, improving the model’s
ability to extract meaningful features. (iii) Feature extraction (referred to above).
(iv) Dimensionality reduction (referred to above). (v) Handling missing values:
Preprocessing techniques, such as imputation or exclusion, address missing data, en-
suring that the model is trained on complete and consistent data, resulting in reduced
bias and improved accuracy and reliability of predictions.

As we mentioned, the era of deep learning era in Facial Expression Recognition (FER)
began in 1996 with the introduction of the Artificial Neural Network (ANN) by Padgett
and Cottrell [193]. In 2003, Matsugu [107] employed the Convolutional Neural Network
(CNN) in FER, while the architecture for LeNet-5 was proposed in 1998 by LeCun [197].
Furthermore, in 2011, Ranzato [112] introduced the Deep Belief Network (DBN) to the field
of FER, although DBN was initially presented in 2006 by Hinton [198]. In 2014, a variant of
DBN, the Boosted Deep Belief Network (Boosted DBN), was introduced by Liu [199].

In 2015, a Recurrent Neural Network (RNN), originally created by Ruhelmart [200] in
1986, was utilized in FER by Kahou [117]. Moreover, in 2017, Zhang [120] in 2017 combined
Part-Based Hierarchical Bidirectional RNN (PHRNN) and Multi-Signal CNN (MSCNN).
It is worth noting that many recent models in FER are hybrids, combining different models.
It has been observed that more and more models are combinations or a hybrid network,
i.e., CNN-RNN and 3D convolutional networks (C3D), which was introduced in 2016 by
Fan [119].

Additionally, the Deep Autoencoder (DAE), consisting of two DBNs, was introduced
in 2006 by Hinton et al. [201], and in FER, the Sparse Autoencoder Network (DSAE) was
introduced in 2018 by Zeng [202]. Lastly, Generative Adversarial Networks (GAN) were
first introduced by Goodfellow et al. [203] in 2014 and have been widely used in the FER
domain, including by Zhang in 2018 [95].

Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNN) [197,204–206] are specialized neural networks
designed for processing data with a grid-like topology, such as time-series data arranged in
a 1D grid, image data in a 2D grid of pixels, and volumetric data in a 3D grid [207].

CNNs have emerged as the mainstream approach in deep learning techniques for
various tasks. CNNs are potent tools for image recognition tasks as they learn hierarchical
representations of images. They have been successfully applied in a multitude of computer
vision applications, including face detection, facial expression recognition, object detection,
self-driving or autonomous cars, auto-translation, text prediction, handwritten charac-
ter recognition, climate analysis, X-ray image analysis, cancer detection, visual question
answering, image captioning, biometric authentication, document classification, and 3D
medical image segmentation [204]. These applications demonstrate the versatility and
effectiveness of CNNs in solving various visual recognition problems.

Their robustness to various changes like face location and scale variations makes
them exceptionally effective [208]. They outperform multilayer perceptron (MLP) models
in handling these variations due to their shift-invariance, convolutional operations, and
pooling layers. This robustness allows CNNs to capture and extract features regardless of
facial location or scale changes.

A typical CNN architecture consists of three main types of layers: (1.) Convolutional
Layer, (2.) Pooling Layer, and (3.) Fully Connected Layer. The first layer of a CNN is
typically a convolutional layer, which applies a set of learnable filters to the input image,
generating activation maps that highlight certain features. As the data progress through
the layers of the CNN, the network identifies increasingly complex patterns, such as facial
features, shapes, and, ultimately, the full object.

CNNs can have multiple convolutional layers, allowing the network to build hierarchi-
cal representations of the input image. The depth hyperparameter determines the number
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of neurons in a layer connected to the same input area, with deeper networks being more
complex. The stride hyperparameter specifies the number of pixels that shift across the
input matrix in each convolution step. At the same time, zero-padding is used to add zeros
around the edges of the input to control the size of the output volumes. In Figure 8, there is
an example of a CNN architecture.
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After the convolutional layers, also known as down-sampling, a pooling layer is
often added to reduce the size of the convolved features, thereby decreasing the network’s
computational burden [209]. Pooling reduces complexity, improves efficiency, and limits
the risk of overfitting.

The final layer of a CNN is typically a fully connected layer, which performs the
classification task based on the features extracted by the preceding layers. The fully
connected layer (FC) [210] comprises the weights and biases together with the neurons, and
each node in the output layer connects directly to a node in the previous layer. This layer
enables the 2D feature maps to perform the classification task, enabling the 2D feature maps
to be based on the features extracted through the previous layers and their different filters.

Pretrained CNN models, such as AlexNet [211], VGG [212], VGG-face [213],
GoogleNet [214], Inception [215], and ResNet [216], can be particularly useful for tasks like
facial expression recognition. These models are trained on large-scale image datasets such
as ImageNet [217], and have shown their effectiveness in extracting meaningful features
from images.

Figure 9 illustrates that AlexNet and VGG have many parameters, primarily con-
tributed by their fully connected layers. On the other hand, GoogLeNet and ResNet have
fewer parameters while achieving an accuracy rate of approximately 70%.

The latest incarnations of Inception and ResNet flatten the steep straight line of other
architectures, indicating an approaching inflection point where costs start to outweigh
accuracy gains. Inception V4, a hybrid of ResNet and Inception, offers an impressive 80%
accuracy and may be the best choice according to the plot.

https://github.com/somillko/Facial-Expression-Recognition
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Figure 9. Accuracy vs. Operations, Size Parameters. This figure depicts the relationship between
accuracy and the number of operations required for a single forward pass through the network. The
size of each blob is proportional to the number of network parameters. A legend is provided in the
bottom-right corner, indicating the range of parameters, which spans from 5 × 106 to 155 × 106. Both
axes are shared across these figures, and grey dots are used to highlight the centers of the blobs [218].

Kahou et al. [115] proposed augmenting the dataset to build high-capacity models
without overfitting, thereby enhancing facial expression recognition (FER) performance.
Xception [219] is another promising model for FER that has shown slight improvements
over Inception V3 on the ImageNet dataset. Xception uses depthwise separable convo-
lutions to capture spatial features efficiently. DenseNet [220] is also recommended, as it
enhances feature propagation, encourages feature reuse, reduces the number of parameters,
and mitigates the vanishing gradient problem.

Furthermore, EfficientNet [221] has emerged as one of the top-performing models for
image recognition. Its model variants range from EfficientNet-B0 to EfficientNet-B7. These
models aim to achieve state-of-the-art accuracy while minimizing computational resources.
However, it is important to note that training a Convolutional Neural Network, especially
on large datasets, can be time-consuming and may require specialized hardware like GPUs.

While conventional CNNs excel in extracting spatial features from input images,
they struggle to capture the temporal interactions in video sequences. This limitation
highlights the need for specialized architectures, such as recurrent neural networks (RNNs)
or spatiotemporal models, to model video temporal dynamics effectively.

In summary, strategies like data augmentation, leveraging advanced models like Xcep-
tion, DenseNet, and EfficientNet, and exploring specialized architectures can significantly
advance FER and other image recognition tasks. Tran et al. [222] proposed 3D-CNNs
to capture the spatial and temporal properties in video clips. The main drawback is the
increase in the number of training parameters.

As we mentioned before, preprocessing plays a crucial role in the performance of deep
learning models. Data augmentation, cropping, down-sampling, and normalization are
standard techniques for improving model robustness and accuracy. Data augmentation
involves generating additional training samples by applying various transformations to the
original data. Lopes et al. [203] demonstrated that combining these preprocessing methods
can significantly improve the accuracy of CNNs.

Konda et al. [223] proposed a zero-bias model for the fully connected layer in CNNs,
providing another avenue for optimization.

Researchers have suggested that more advanced and deeper CNN architectures can
improve the accuracy and performance of computer vision algorithms. Ding et al. [224]
proposed a novel architecture, FaceNet2ExpNet. The author initially suggested a prob-
abilistic distribution function to characterize the high-level neuron response based on a
previously modified face net. This leads to feature-level regularization, which uses the face
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net’s rich face knowledge. Label supervision was also advocated in the second phase to
increase the final discriminative capability.

Deep Belief Network (DBN)

Deep belief networks [198] are multi-layer generative models in machine learning that
feature a deep, feedforward architecture composed of multiple hidden layers (see Figure 10).
Unlike conventional neural networks, DBNs are built using unsupervised networks like
Restricted Boltzmann Machines (RBMs) or autoencoders (AE). DBNs are versatile and
can be employed for supervised and unsupervised learning tasks. One of their primary
applications is in dimensionality reduction in the feature space. The learning process for
DBNs is twofold: it involves layer-by-layer pre-training followed by fine-tuning [225].
Each RBM layer is trained sequentially from the bottom up in the pre-training phase. The
fine-tuning phase utilizes back-propagation algorithms to adjust the network parameters.
The introduction of layer-wise pre-training has been a significant factor in the success
of DBNs.
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Recurrent Neural Network (RNN)

Originally developed in the 1980s, Recurrent Neural Networks (RNNs) have recently
gained renewed attention due to advances in computational power, the availability of
vast datasets, and the introduction of Long Short-Term Memory (LSTM) in the 1990s [200].
Unique in their ability to maintain an internal memory, RNNs have emerged as one of
the most promising neural network architectures currently in use. RNNs are particularly
adept at processing sequential data, capturing and modeling temporal dependencies
effectively. This makes them well-suited for various tasks, including natural language
processing, speech recognition, and time series analysis. Their internal memory allows
them to retain crucial information about the input sequences they process, enabling the
accurate forecasting of future events. The architecture of a simple RNN is depicted in
Figure 11.
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Compared to other neural network architectures, RNNs can develop a deeper under-
standing of sequences and their contexts. Typically, RNNs are trained using the Backpropa-
gation Through Time (BPTT) algorithm [227].

Recurrent Neural Networks have four main types:

• One-to-one (or Vanilla NN): Handles one input to one output, typical in regular
ML problems.

• One too many: Generates a sequence of outputs from one input, such as in image
captioning.

• Many to one: Takes a sequence of inputs to produce one output, useful in senti-
ment analysis.

• Many to many: Takes a sequence of inputs and produces a sequence of outputs, as in
machine translation.

To analyze sequential data, deep learning researchers have introduced several special-
ized tools, including Recurrent Neural Networks (RNNs) [200], Long Short-Term Memory
networks (LSTMs) [228], and 3D Convolutional Neural Networks (3DCNNs) [222]. Among
these, RNNs have successfully handled various types of sequential data. Their applications
range from speech recognition and time series prediction—such as stock price forecasting—
to natural language processing tasks like text mining and sentiment analysis. RNNs are
also used in machine translation, where an input in one language is translated into an
output in another language and action recognition tasks. RNNs have advantages over
CNNs regarding learning the relationships in sequential or temporal data. They are adept
at capturing dependencies and identifying temporal patterns. However, the choice between
using RNNs or CNNs often depends on the specific characteristics of the data and the
requirements of the task at hand. There are different RNN Architectures:

Bidirectional Recurrent Neural Networks (BRNN)

One issue of RNNs is that the network does not consider future inputs to make
decisions. This problem is solved with BRNN [229], where inputs from future time steps
are used to make decisions and improve the network’s accuracy.

Gated Recurrent Units (GRU)

Introduced in 2014, Gated recurrent units (GRUs) aim to solve the vanishing gradient
problem common in RNNs [230]. They utilize reset and update gates to control the flow of
information and have fewer parameters than LSTMs.

Long Short-Term Memory (LSTM)

LSTMs [228] can learn long-term dependencies and are designed to address the van-
ishing gradient problem [228]. They use input, output, and forget gates to control the
information flow. Similar to GRUs, these gates determine which information to retain.

The differences between GRUs and LSTM are illustrated in Figure 12.
Yu et al. [231] proposed an end-to-end architecture, Spatio-Temporal Convolutional

LSTM (STC-NLSTM), that combined 3DCNN with Nested LSTM for robust facial expres-
sion recognition. Their model achieved impressive performances on multiple datasets. In
particular, each convolutional layer’s spatiotemporal characteristics were modeled using a
T-LSTM, and the network’s intermediate layers’ multi-level features were encoded using
a C-LSTM that integrated the outputs of all T-LSTMs. Yu et al. [231] tested their model
on MMI [97,98], CK+ [76–78], Oulu-CASIA [88], and BP4D with a performance for each
dataset of 84.53%, 99.8%, 93.45%, and 58%, respectively.

In [232], the authors suggested two methods: a double-channel Weighted Mixture
Convolutional Neural Network (WMCNN) and a double-channel WMCNN–Long Short-
Term Memory (WMCNN-LSTM). In brief, the WMCNN-LSTM network can swiftly identify
facial emotions from the static picture characteristics provided by the WMDCNN network
(WMDNN was first proposed by Yang et al. [233]). The WMCNN-LSTM network uses
static picture features to acquire the temporal components of an image sequence, allowing
for the exact identification of face expressions.
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Dresvyanskiy et al. [234] introduced a multimodal system using CNN + LSTM archi-
tecture on non-lab-controlled data (AffWild2).

Deep-learning-based generative models have made significant strides in recent years,
capitalizing on large datasets, innovative network designs, and advanced training tech-
niques. These models can generate realistic content in various forms, including images,
text, and audio. Two prominent generative models are Autoencoders (AEs) and Generative
Adversarial Networks (GANs).

Autoencoder (AE)

An autoencoder is a specialized neural network designed to encode input data into a
lower-dimensional form and then decode them back into their original state. The primary
objective is to learn a compact representation of the input data and is useful for data
compression, dimensionality reduction, and feature extraction. For instance, autoencoders
often outperform traditional techniques like Principal Component Analysis (PCA) in
dimensionality reduction.

The architecture of an autoencoder comprises two main components: (1) an encoder
that compresses the input into a lower-dimensional representation and (2) a decoder that
reconstructs the original input from this compressed form.

Autoencoders operate unsupervised, as they do not require explicit labels for training.
They can compress various data types, offering an approximate but degraded (lossy)
reconstruction of the original input.

GAN

GANs [235] employ the concept of adversarial learning, which involves two neural
networks: the Generator and the Discriminator (see Figure 13). The Generator creates
new instances, while the Discriminator evaluates whether the generated examples are
authentic. The generator model is used for creating new instances, and the discriminator
model determines whether produced examples are genuine examples from the domain or
fraudulent ones created by the generator model.

As we can see, GANs have a range of applications in many areas, such as [236]:
Generating Examples for Image Datasets, Generating Photographs of Human Faces,

Generating Realistic Photographs, Image-to-Image Translation, Text-to-Image Translation,
Semantic-Image-to-Photo Translation, Generating New Human Poses, Photograph Editing,
Face Aging, Super Resolution, Photo In painting, Clothing Translation, Video Prediction,
3D Object Generation, and many more.

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
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Regarding the types of GAN, there are Vanilla GAN, Conditional GAN (cGAN), Deep
Convolutional GAN (DCGAN), CycleGAN, Generative Adversarial, Style GAN, and Super
Resolution GAN (SRGAN).

In recent years, there has been a significant proliferation of innovative frameworks
based on Generative Adversarial Networks (GANs) due to their rapid development. So,
some good works that are worth mentioning about GAN are: Shen et al. [237], who intro-
duced FaceFeat-GAN, a two-stage framework. The first stage involved competing in the
feature domain to synthesize facial traits. In contrast, the second stage involved compet-
ing in the image domain to generate photo-realistic images that exhibited a wide range
of variations while maintaining the subject’s identity. Also, Shiri et al. [238] introduced
Identity-Preserving Face Recovery from Portraits (IFRP) to restore a latent photorealistic
face while maintaining the subject’s identity. This approach involved utilizing a Style
Removal network (SRN) and a Discriminative Network (DN).

Hybrid Model

Hybrid models are formed by integrating distinct, heterogeneous machine learning
methodologies, such as features from deep learning and traditional machine learning (also
known as handcrafted features). The most well-known hybrid models are CNN + DBN,
CNN + RNN, and CNN + GAN, etc.

While deep learning has gained popularity due to the availability of large datasets and
affordable GPU-based processing power, it often faces limitations in specific contexts like
facial expression recognition, where datasets might be constrained. Traditional handcrafted
algorithms, although generally less accurate than CNNs [239], do not require extensive
datasets for generalization. However, these traditional methods are limited by their fixed
transformations or filters that remain constant across different data sources.

Another reason a hybrid model must be used is that handcrafted feature representa-
tions are low-level to discriminate dynamic facial expressions, so deep-neural-network-
driven feature learning representations may achieve a better performance, i.e., a nice
approach in [240] with spatial and temporal CNNs + DBN. Some applications of hybrid
models might be autonomous driving to find the positions of other cars [241].

A hybrid model that combined traditional machine learning approaches and deep
learning approaches was conducted by Pan et al. [242] focusing on the field of video-
based facial expression recognition (VFER). Their study employed convolutional neural
networks (CNN) and a histogram of an oriented gradient (HOG) to extract a wide range of
information from video frames effectively.

Also, Jain et al. [58] developed another hybrid model that combined CNN and RNN
architectures. This model demonstrated a superior performance, achieving an overall
accuracy of 94%. Particularly, this model exhibited an excellent performance on the CK+
database, achieving an accuracy rate of 94.91% [76–78].

https://developers.google.com/machine-learning/gan/gan_structure


Information 2024, 15, 135 22 of 61

Similarly, Sun et al. [243] proposed a novel hybrid model that combined CNN and
SIFT features with an SVM classifier. When compared to five state-of-the-art methods, their
approach yielded the best results on the CK+ database, achieving an accuracy of 94.13%.
Furthermore, a recent study by Abdulsattar et al. [244] explored the combination of CNN
with Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP). It appears
that the hybrid model involving CNN and HOG yielded the best accuracy.

In Figure 14, examples of two hybrid model frameworks for facial expression recogni-
tion are illustrated, as proposed in [119,240].
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Figure 14. Examples of two hybrid model frameworks (from top to bottom [240,241]) (a) the outlined
approach, which encompasses two distinct streams: the temporal stream and the spatial stream. The
purpose of the temporal stream is to handle temporal signals, while the spatial stream focuses on pro-
cessing spatial signals. These two streams are then combined to create a comprehensive video feature.
Subsequently, a Support Vector Machine (SVM) is employed for the recognition of facial expressions.
The method is structured into four key stages: (i) preprocessing of the video, (ii) extraction of features,
(iii) fusion of features, and (iv) recognition of emotions [241]. (b) The suggested framework is divided
into three main components: (a) the input section; (b) the recommended model, termed VGG-GRU;
and (c) the mechanism for controlling both the steering angle and the vehicle’s speed [240].

Graphs

Graphs are used as modeling tools to capture intricate relationships among facial
features and expressions, providing a nuanced and detailed analysis of facial affect. By rep-
resenting facial data as a graph, it becomes possible to incorporate contextual information
and capture the dependencies between different facial components. Using graph-based
approaches has significantly improved facial expression recognition models’ performances
and generalization capabilities. Unlike traditional methods that rely solely on appearance
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and geometry features, graph-based techniques offer a more comprehensive understanding
of the underlying connections and interactions among facial attributes.

In recent advancements, deep learning models—specifically, Graph Neural Networks
(GNNs)—have been at the forefront of graph-based facial affect analysis. These models
leverage their capability for relational reasoning based on graph-based representations,
allowing for a deeper exploration of the relationships within the facial graph. By integrating
GNNs into their research, scientists can effectively capture the complex dependencies and
patterns between facial features and expressions, leading to more accurate and robust facial
affect analysis systems.

In summary, the adoption of graph-based methodologies and the integration of deep
learning models are revolutionizing the field of facial expression recognition. These ad-
vanced techniques enable a more holistic understanding of facial affect, paving the way for
improvements in emotion detection, human–computer interaction, and affective comput-
ing applications.

Transformers

A Transformer [245] is a deep learning architecture extensively used in various natural
language processing (NLP) tasks, including language translation, text summarization, and
language modelling. A Transformer is a type of deep learning model architecture that was
introduced in the paper titled “Attention Is All You Need” by Vaswani et al. in 2017 [245].
This architecture utilizes a self-attention mechanism to weigh the importance of differ-
ent words within an input sequence. This enables it to capture long-range dependencies
effectively, thereby enhancing its performance on tasks requiring a comprehensive under-
standing of the input text. The Transformer model consists of an encoder and a decoder,
each comprising multiple layers that feature self-attention mechanisms and feed-forward
neural networks. The encoder processes the input sequence to generate a fixed-length
vector representation, which is then used by the decoder to produce the output sequence,
one word at a time.

3.2.2. State-of-the-Art

This section reviews cutting-edge deep neural networks designed for Facial Expression
Recognition (FER).

3.2.3. Static Images Deep FER Networks
Loss Layer

In practical circumstances, FER often grapples with considerable intraclass variance
and high interclass similarity. The standard softmax loss layer in CNNs mainly aims to
separate features from different classes. To address these challenges, various researchers
have proposed alternative loss layers.

Wen et al. first proposed the concept of center loss in 2016 for enhancing feature
discriminability in face recognition tasks [246]. Center loss is utilized in face recognition
tasks to enhance the discriminative power of learned features. This loss function addresses
two fundamental yet challenging objectives: reducing intra-class dispersion and increasing
inter-class differences. Specifically, center loss functions by computing a center vector
for each class in the feature space. During the network’s training phase, the algorithm
minimizes the Euclidean distance between the features and their corresponding class
center vectors. The dual effect of this minimization process is twofold: first, it contracts
the feature vectors corresponding to the same class toward their shared center, thereby
reducing intra-class variations. Second, it maximizes the distance between different class
centers, thus increasing inter-class separability. Notably, when used with softmax loss,
center loss empowers the network to learn highly discriminative features. This combined
loss strategy has proven particularly effective in scenarios characterized by pronounced
intra-class variability and subtle inter-class differences, enhancing face recognition models’
accuracy and robustness.
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To strengthen the discriminative capacity of feature representations in deep neural
networks, Li et al. introduced a seminal architecture known as Deep Locality-Preserving
Convolutional Neural Network (DLP-CNN) [94]. This architecture is meticulously designed
to accentuate the importance of the local structure within each class by minimizing the
distance to the K-nearest neighbors in the high-dimensional feature space. The focus
on local structure enhances the model’s efficacy in applications that require robust intra-
class compactness.

Simultaneously, a novel loss function known as ‘Island Loss’ has emerged as a pow-
erful mechanism for augmenting the discriminative quality of deep features. Unlike
conventional loss functions, Island Loss adopts a dual-objective optimization strategy.
It not only aims to minimize intra-class variances, but also to maximize inter-class sep-
arability. This is achieved by creating distinct clusters or ‘islands’ in the feature space,
where each island corresponds to a specific class. Notably, Island Loss can be integrated
seamlessly with other loss functions, such as softmax or center loss, offering a multi-faceted
optimization landscape.

In a parallel research endeavor, a unique variant of the island loss layer was proposed
in the IL-CNN architecture [247]. This architecture comprises three convolutional layers,
each succeeded by batch normalization (BN) and PReLU (Parametric Rectified Linear Unit)
activation layers. Preliminary results have suggested that IL-CNN demonstrates a compa-
rable performance to existing state-of-the-art algorithms in facial expression recognition.

The salient distinction between these methods lies in their approach to feature opti-
mization. While center loss concentrates on collapsing intra-class samples towards a central
cluster, DLP-CNN emphasizes a distributed yet locally coherent representation by pushing
feature vectors toward their K-nearest intra-class neighbors.

A seminal contribution to loss function is Triplet Loss, introduced by Schroff et al. [248].
This mechanism mandates that an anchor example be closer to a positive than a negative
one in the embedded feature space. An extension to this paradigm is Exponential Triplet
Loss [249], which adopts a sample-importance-driven strategy to refine the model, thereby
yielding a more adaptable and resilient architecture. To address the intricacies associated
with anchor selection and threshold tuning in identity-invariant FER, Liu et al. [250] pro-
posed an (N + M)-tuplet clusters loss function. This loss function is designed to streamline
the complexities inherent in handling a multitude of face identities and expressions.

Li et al., in 2019 [251], introduced a bifurcated loss mechanism, termed ‘Separate Loss’.
The architecture uses one term to amplify intra-class similarity while deploying a second
term to attenuate inter-class similarity, thus achieving a balanced class separability. Also,
Li et al. [252] proposed a novel method in FER, adaptive supervised AdaReg Loss, useful
for observing CNNs as they learn expression representations with class imbalances. A
novel loss function competitive with triplet loss is the Adaptive Correlation (Ad-Corre)
Loss function by Fard et al. [60], and, as the backbone used Xception network, this ar-
chitecture essentially consists of three parts (Feature Discriminator, Mean Discriminator,
and Embedding Discriminator). A Future Discriminator directs the network to build the
embedded feature. If two vectors are in the same class, they will be highly correlated; if they
are in separate classes, they will be less correlated. The Mean Discriminator component
causes the mean embedded feature vectors of distinct classes to be less similar to each other.
The network is penalized by the Embedding Discriminator component for producing the
different embedded feature vectors.

In Figure 15, we present a schematic representation of three state-of-the-art loss archi-
tectures that have been instrumental in shaping the current landscape of Facial Expression
Recognition (FER), (a) island loss, (b) triplet loss (the distance between an anchor and a
positive with the same identity minimized, while the distance between the anchor and
a negative with a different identity is maximized), and (c) correlation-based loss, which
considers all of the data in a mini-batch and directs the network to generate embedded
feature vectors that are substantially connected for comparable classes and uncorrelated
for different classes. H stands for strongly correlated, whereas L stands for less correlated.



Information 2024, 15, 135 25 of 61

Adding to this body of work, Farzaneh et al. [54] recently proposed a novel loss function
termed Deep Attentive Center Loss (DACL). In this architecture, the attention mechanism
is ingeniously incorporated by using the intermediate spatial feature maps extracted from
the Convolutional Neural Network (CNN). This enables the network to calculate attention
weights that are directly associated with feature significance, thereby enhancing the model’s
ability to focus on more discriminative aspects of the data.
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Ensemble Network

While traditional Convolutional Neural Networks (CNNs) have made notable strides
in the domain of Facial Expression Recognition (FER), they are not without limitations. The
following challenges have been particularly salient:

1. Hyperparameter tuning in CNNs often requires significant domain expertise and
computational effort.
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2. The stochastic gradient descent algorithm has shown limitations in training deep
architectures, particularly when handling large datasets. This is exacerbated by issues
like vanishing gradients.

3. CNNs designed for FER are sensitive to a plethora of real-world variables, including
age, gender, facial morphology, and ethnic background. Thus, face emotions have
overlapping aspects, making them less robust and complicating implementation.

To mitigate these issues, ensemble methods have gained prominence. So, ensemble
networks are primarily used for classification tasks rather than data augmentation. Contrary
to common belief, ensemble networks are not merely a tool for data augmentation; rather,
their primary function is to enhance classification accuracy by integrating the strengths of
individual base classifiers. Two crucial factors must be considered when constructing an
ensemble: (1) diversity among the base models to ensure complementary strengths, and
(2) an effective strategy for aggregating the predictions of these models.

A seminal work by Jung et al. [253] introduced the Deep Temporal Appearance-
Geometry Network (DTAGN), which unifies two specialized neural networks. The first,
termed Deep Temporal Appearance Network (DTAN), uses a CNN to analyze information
about the appearance of the face, while the second deep network, the Deep Temporal
Geometry Network (DTGN), utilizes a fully connected Deep Neural Network (DNN) to
capture facial landmark movements over time. These two networks are then combined to
create the Deep Temporal Appearance-Geometry Network (DTAGN).

For preprocessing, a normalization process is used to make the input a fixed length,
namely, detecting and cropping the faces of the image sequence, and then rescaling them to
a size of 64 × 64 pixels. IntraFace is applied, which detects accurate facial landmark points
such as two eyes, a nose, a mouth, and two eyebrows, which are all labeled as 49 facial
landmark points.

The author tested the effectiveness of his network on three different datasets of facial
images (CK+, MMI, and Oulu-CASIA) and found that it surpassed existing methods
(97.25%, 81.46%, 70.24%, respectively).

Another commendable work integrated ensemble models, specifically VGG13,
VGG16 [212], and ResNet, to achieve promising results in FER [254].

Mollahosseini et al. [255] proposed a deep CNN architecture, incorporating incep-
tion layers and adhering to the Network-in-Network paradigm [256]. This architecture
(network-in-network) not only boosts a localized performance, but also mitigates overfit-
ting issues. Their preprocessing pipeline involves Active Appearance Models (AAM) and
Supervised Descent Models (SDM), followed by data augmentation. The architecture is
made up of two convolutional layers (max pooling) and four inception layers. It seems that
it is innovative work due to the inception layer for FER tasks across numerous datasets.

Fan et al. [257] proposed a Multi-Region Ensemble CNN (MRE-CNN) framework,
combining three sub-networks (AlexNet, VGG-16, and VGG-Face) to enhance the learning
power of CNN models. Also, in this network face detection, alignment, cropping, and
resizing occurred. Then, data augmentation followed. Then, this method was tested
with AFEW 7.0 80-82] and RAF-DB [94] with a good performance (47.43% and 76.73%,
respectively).

Georgescu et al. [258] pioneered an approach that amalgamates handcrafted features
derived from a bag-of-visual-words model with features automatically learned through
Convolutional Neural Networks (CNNs). They employed a Support Vector Machine
(SVM) classifier to integrate these features, offering a robust and versatile classification
framework. In another groundbreaking work, a paper by Zhang et al. [240] introduced
the STRNN model, a complex deep learning architecture adept at capturing both spatial
and temporal information. The model utilizes multi-directional Recurrent Neural Network
(RNN) layers for spatial variations and bi-directional temporal RNN layers for sequential
data. This sophisticated architecture is further enhanced by sparse projection techniques,
and empirical results have corroborated its superiority over existing methods.
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Rajan et al. [259] proposed a novel deep learning framework that combines a con-
volutional neural network (CNN) with a long short-term memory (LSTM). The model
incorporates two distinct preprocessing techniques aimed at compensating for illumina-
tion variations and retaining delicate edge features. The generated spatial feature maps
are subsequently fused and processed through an LSTM layer, capturing the temporal
dependencies between successive frames.

Khaireddin et al. [260] extended the well-known VGGNet architecture, incorporat-
ing additional refinements like Cosine Annealing. Their rigorous preprocessing steps,
including data augmentation and image normalization, were instrumental in achieving a
commendable 73.28% accuracy on the FER2013 dataset.

Moreover, Pham et al. [61] achieved a noteworthy milestone by proposing the Residual
Masking Network (RMN), an ensemble of seven CNNs fortified with residual masking
blocks. This architecture currently represents the state-of-the-art in FER, boasting the
highest performance on the FER2013 dataset [89].

Wang et al. [261] took the innovative step of fusing ensemble networks with multi-
tasking approaches, giving rise to the OAENet (Oriented Attention Ensemble) architecture.
This model consists of two branches: one focused on capturing local highlights through
oriented attention ensemble techniques and the other designed to extract high-level seman-
tic features through multiple convolutional blocks. These branches are ultimately fused to
produce the final classification outcome. In Figure 16, the NNs and BOVW network [258]
are displayed.
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Figure 16. Ensemble network. NNs and BOVW network [258]. This network integrates automatically
extracted features from convolutional neural networks (such as VGG-13, VGG-f, and VGG-face)
with manually designed features derived using the bag-of-visual-words approach. Following the
combination and L2 normalization of the feature vectors, a local learning strategy is applied [258].

Multitask Networks

Multitask learning has been increasingly recognized as a robust framework for ad-
dressing the complexities inherent in facial expression recognition (FER). In real-world
applications, FER is influenced by many factors, including but not limited to subject identity,
lighting conditions, and head orientation. Traditional FER models, which typically focus on
single-task learning, cannot capture these intricate interactions among various latent com-
ponents. However, multitask learning paradigms offer a more comprehensive approach by
integrating additional relevant tasks, thereby enhancing feature sensitivity to expression-
specific cues and mitigating the impact of confounding variables [262]. Moreover, multitask
networks can serve dual purposes: classification and data augmentation.
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While multitask learning has shown promise in various applications, one critical chal-
lenge is determining the optimal weighting of individual tasks. These weights significantly
influence the efficacy of the multitask learning model [263].

Zhang et al. [120] presented a multisignal CNN (MSCNN) trained under dual
supervision—recognition and verification tasks. Each task has its loss function designed to
increase the discriminative ability between distinct facial expressions while minimizing the
intra-class variance. This approach effectively directs the model’s focus toward the nuances
of facial expressions.

Noteworthy is the work of Ming et al. [263], who introduced a dynamic multitask
learning framework capable of adaptively updating task weights based on their relevance
throughout the training process. Impressively, this dynamic approach achieved remarkable
performance metrics—a 99.5% accuracy on the CK+ dataset [76–78] and 89.6% on the
Oulu-CASIA dataset [88]—demonstrating its practical utility in real-world scenarios.

Serengil et al. [264] proposed an innovative approach by integrating the famous
LightFace face recognition library with a multifaceted facial feature analysis. This hybrid
framework leverages state-of-the-art face recognition architectures, including VGG-Face,
Google FaceNet, OpenFace, Facebook DeepFace, DeepID, ArcFace, Dlib, and SFace, to
achieve a top performance in face recognition. Notably, the framework adopts the same
preprocessing techniques—namely, face detection and alignment—that are common to the
aforementioned recognition models. To broaden its applicability, the system also performs
analyses based on age, gender, sentiment, and race. Given robustness and simplicity, a
basic VGG-Face model is created with pre-trained weights, which serve as the cornerstones
for the complete solution.

Savchenko has made substantial contributions to multi-task learning networks, with
some of his work achieving unparalleled accuracy metrics [39,40]. In one significant
study, Savchenko introduced a multi-task learning model that concurrently addresses
face identification, gender, ethnicity, and age classification on the UTKface dataset [265]
and emotion recognition using the AffectNet dataset. The model leverages lightweight
backbone architectures, such as MobileNet, EfficientNet, and ResNet, for computational
efficiency. Preprocessing steps include using the MTCNN algorithm for face detection and
subsequent cropping [40].

In subsequent work, Savchenko and his team presented Multi-task EfficientNet-B2
and its variant, Multi-task EfficientNet-B0 [39]. These architectures are designed to perform
an array of tasks, including face detection, face identification, and facial expression recog-
nition. Initially, face sequences for each subject are extracted using a combination of face
detection, tracking, and clustering techniques. A single neural network, pre-trained on face
recognition tasks, is then fine-tuned to identify emotional attributes in each frame. This is
achieved through a robust optimization strategy tailored specifically for static images from
the AffectNet dataset.

Notably, the extracted facial features can be used to swiftly infer collective emotional
states, individual emotional expressions (e.g., happiness and sadness), and varying levels
of student engagement, ranging from disengagement to high involvement. It is worth
highlighting that this model has set the state-of-the-art benchmark for recognizing eight
distinct emotions, with a 63.03% accuracy rate on the large-scale AffectNet dataset. More-
over, it has secured the third position for the seven-emotion classification with an accuracy
of 66.29%.

Zheng et al. [45] suggested a sophisticated multi-task learning framework, Discrimi-
native Deep Multi-Tasking Learning (DDMTL), using a Siamese-based loss function. This
innovative approach incorporates data distribution information and expression labels to
enhance facial expression recognition capabilities.

Antoniadis et al. [37] advanced the field by proposing a multi-task learning system
that excels at recognizing facial expressions “in the wild”. Their approach leverages Graph
Convolutional Networks (GCN) to exploit the intricate correlations between categorical
and dimensional emotions.
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In a landmark study published in 2021, Huang et al. [42] reported a model that
achieved remarkable performance metrics—100% accuracy on the CK+ dataset and 90.04%
on the FER+ dataset. The architecture comprises three critical components: a primary deep
learning model, which can be instantiated as either AlexNet or Inception; dual attention
mechanisms, specifically, Grid Wise attention for low-level feature extraction and Visual
Transformer Attention for high-level feature discernment; and an FER module capable of
differentiating between simple and complex facial expressions, utilizing the C-F labelling
technique as a reference point. Furthermore, they introduced a large-scale model variant
that amalgamates the first two components to deliver a superior performance. Additionally,
they conceptualized a novel Emotional Education Mechanism (EEM) to enable the efficient
deployment and optimization of lightweight FER models.

Foggia et al. [46], in 2023, recently unveiled a 12-task CNN model that offers a unique
approach to multi-task learning by integrating three distinct paradigms of parameter shar-
ing across tasks. This model employs diverse backbone architectures—MobileNet, ResNet,
and SENet [266]—to perform a range of tasks, including gender, age, facial expression
recognition, and ethnicity classification [46].

In Figure 17, different Mutli-tasking Networks, (a) EmotionGCN [37] and (b) Multi-
task EfficientNet-B0 [40], are displayed.
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Figure 17. Multi-tasking Networks. Emotion GCN [37] The Emotion-GCN model is designed for
Facial Expression Recognition (FER) in natural environments, incorporating a graph that links seven
expression labels with two valence-arousal dimensions via an adjacency matrix. It utilizes Graph
Convolutional Networks (GCNs) to process word embeddings into classifiers and regressors for
mapping facial expressions. Image representations are extracted using a DenseNet-based CNN and
refined by global max-pooling, enabling the model to perform both expression classification and
valence-arousal regression through end-to-end training [37].

In [267], the Affective Behavior Analysis in-the-wild (ABAW) Competition has a Multi-
Task Learning challenge. Participants are tasked with designing a unified algorithm capable
of concurrently performing multiple affective analysis tasks, encompassing valence–arousal
estimation, expression classification, and action unit detection. This initiative serves to
stimulate advancements in affective computing, thereby facilitating the development of
highly efficient algorithms for emotion analysis in ecologically valid settings.

Cascaded Networks

Cascade-forward neural networks resemble their feed-forward counterparts but fea-
ture connections from both the input and preceding layers. In a typical three-layer config-
uration, the output layer is directly linked to the hidden layer and the input layer. This
cascaded architecture allows for the incremental integration of various modules to construct
deeper networks that can perform tasks ranging from classification to data augmentation.

Yan et al. [48] proposed a real-time hybrid model for user profiling, encompassing
gender, age, ethnicity, and emotion recognition from facial images. This model employs a
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Sparse Autoencoder (SAE) and a Shallow Convolutional Neural Network (SCNN). The
initial preprocessing steps involve face detection via the Dlib library, which utilizes the
HOG-SVM algorithm, followed by image cropping, normalization, and data augmenta-
tion. The processed data are then subjected to SAE for image reconstruction and abstract
feature extraction, which are subsequently integrated with a CNN for feature refinement.
Classification is accomplished via a softmax layer. The model’s experimental validation
underscores its broad generalizability across various datasets and its suitability for real-time
applications, owing to its shallow architecture.

In a recent contribution, a paper [47] introduced a cascaded attention-based network
that synergistically combines attention mechanisms with pyramid features to exploit local
spatial, multi-scale stereoscopic spatial context and temporal features.

In 2022, Li et al. [69] proposed an innovative approach to pre-train a general-purpose
encoder for facial expression analysis through self-supervised contrastive learning. Uti-
lizing the CRS-CONT method, the encoder attracts the features of positive pairs while
repelling those of negative pairs. The resulting architecture demonstrates a remarkable
adaptability to varied facial expressions, outperforming existing state-of-the-art methods.
It also shows potential for reducing computational overhead in fully supervised feature
learning scenarios.

GAN

Generative Adversarial Networks (GANs) have primarily been employed to synthe-
size realistic images, such as faces and numbers, thereby enriching data augmentation
strategies for various machine learning tasks. While GANs are inherently generative mod-
els that create new data samples that mimic a given dataset, their utility extends beyond
mere data generation. They consist of a generator and a discriminator network, which
engage in a game-theoretic contest to improve each other’s performances. Notably, the
synthetic data produced by GANs can be harnessed as supplementary training data or for
data augmentation to enhance classification tasks.

Hyang et al. [268] introduced a specialized GAN architecture designed to produce
contextually valid facial expressions in dyadic human interactions [268]. Distinct from
prior research that primarily focused on the facial attributes of generated identities, Hyang
et al. leveraged the concept of dyads to model the reciprocal influence of facial expressions
between interacting individuals.

Furthermore, the authors introduced a two-tiered GAN architecture tailored for
interviewer–interviewee dynamics. The first tier generated dynamic sketches of the inter-
viewer’s facial expressions based on the expressions exhibited by the interviewee. Sub-
sequently, the second tier synthesized realistic face images from these sketches. Through
extensive quantitative evaluations, the authors established that their model was adept at
generating visually convincing facial expressions that were contextually appropriate within
dyadic interactions. Moreover, they demonstrated that the synthesized expressions on the
interviewer’s face were accurate emotional responses to the interviewee’s behavior.

Zhang et al. [121] presented an end-to-end deep learning model based on a generative
adversarial network (GAN) for simultaneously exploiting diverse postures and expressions
for pose-invariant facial expression identification. The architecture employs an encoder–
decoder scheme to craft both generative and discriminative identity representations for
facial images. Remarkably, the identity representations are decoupled from variations
in both expression and pose through the utilization of specialized expression and pose
codes. This allows the model to automatically synthesize facial images across a spectrum of
emotions and poses, thereby enriching the training dataset for facial expression recognition
(FER). Both quantitative and qualitative evaluations across controlled and uncontrolled
datasets substantiate the model’s superiority over existing state-of-the-art methods.

Yang et al. [269] undertook a novel approach called De-expression Residue Learning
(DeRL) for facial expression recognition. The method leverages a generative model, trained
via a conditional GAN, to create a corresponding neutral face image for any given input
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facial image. While the generative model ostensibly filters out expressive information, these
data are retained within the intermediate layers of the architecture. DeRL capitalizes on this
by extracting the residual expressive information embedded within these layers, thereby
generating highly informative features for FER. The efficacy of this approach was rigorously
validated across seven public facial expression datasets. Pre-training was conducted on
the BU-4DFE and BP4D-spontaneous datasets, while evaluations were performed on the
CK+, Oulu-CASIA, MMI, BU-3DFE, and BP4D+ datasets. The comprehensive experimental
results point to a marked improvement over previous methodologies. Wu et al. presented
a groundbreaking architecture known as Cascade Expression Focal GAN (Cascade EF-
GAN) to address the inherent limitations observed in current facial expression editing
methodologies [270]. Existing techniques often suffer from the introduction of artifacts
and blur, particularly around areas of the face with intense expressions. Moreover, they
frequently generate undesirable overlapping artifacts when tasked with handling large-gap
expression conversions, such as transforming an angry expression into a laughing one. The
Cascade EF-GAN ingeniously uses localized expression and focuses on preserving identity-
related features while minimizing the occurrence of artifacts and blur in the generated facial
images. Furthermore, the architecture utilizes a cascade transformation strategy specifically
designed to manage large-gap expression transformations, thereby alleviating overlapping
artifacts and enhancing the realism of the edited facial expressions. Rigorous evaluations of
multiple publicly available facial expression datasets substantiate the model’s superiority
over existing approaches in the realm of facial expression editing.

Sun et al. [70] introduced an innovative Discriminatively Deep Fusion (DDF) tech-
nique that addresses the ubiquitous challenge of limited labeled data in facial expression
recognition [70]. The approach leverages an improved Conditional Generative Adversarial
Network (im-cGAN) to generate a richer set of labeled expression samples. Additionally,
DDF captures both global and local features from facial images and fuses them to generate
a robust, composite feature representation. A specialized discriminative loss function
(D-loss) is also introduced to further refine the discrimination capability of the fused fea-
tures. Extensive experimental validation across multiple datasets revealed that the DDF
approach outperforms existing state-of-the-art methods and excels in learning abstract
representations of facial expressions, even when constrained by limited labeled data.

Graphs

Graph-based methodologies have emerged as a compelling framework for capturing
the complex relationships among various facial features and expressions, thereby enabling
a nuanced and comprehensive affective analysis [271,272]. These techniques have exhibited
marked improvements in both the performance and generalizability of facial expression
recognition models when compared to traditional methods that predominantly focus on
appearance and geometric features. Recent advancements in this domain have particularly
leveraged deep learning paradigms, such as graph neural networks, to conduct relational
reasoning on graph-based representations of facial expressions.

Liao et al. [273] proposed a deep neural network called Facial Expression Recognition
based on Graph Convolution Network (FERGCN). The proposed FERGCN framework
comprises three pivotal modules: a feature extraction component to capture both global
and local facial features, a graph convolutional network that refines expression information
grounded on the topological graph of key facial points, and a graph-matching module
aimed at enhancing the network’s discriminative capability across varying expressions.
The efficacy of FERGCN has been empirically validated on public datasets, achieving com-
mendable accuracy rates of 88.23% on RAF-DB, 56.15% on SFEW, and 62.0% on AffectNet.

Wu et al. [274] proposed a new method for facial expression recognition using a Graph
Convolutional Network (GCN) which is capable of processing non-Euclidean structured
data. The methodology entails the construction of an undirected graph from facial images,
which is achieved by amalgamating both fixed and random points. This constructed
graph serves as the input to a specialized GCN, composed of six graph convolution layers,



Information 2024, 15, 135 32 of 61

a fully connected layer, and a SoftMax layer. Each graph convolution layer is further
equipped with a signal-filtering and a graph-coarsening layer. Experimental validation
on two benchmark datasets, CK+ and JAFFE, reveals that the proposed model surpasses
traditional methods that rely solely on fixed points, and even outperforms conventional
convolutional neural network approaches in facial expression recognition tasks. This work
substantiates the transformative potential of GCN-based methodologies in advancing the
field of facial expression recognition.

Transformer

The Transformer architecture has had a profound impact on the field of natural
language processing (NLP) and has been widely adopted in various applications, including
machine translation, text generation, question–answering, and more.

In 2021, Aouayeb [43] proposed a vision Transformer jointly with a Squeeze and
Excitation (SE) block for the FER task. Evaluated on the CK+ dataset, the architecture
achieved an almost flawless performance with an accuracy rate of 99.8%.

Huang et al. [42] proposed a new framework for Facial Expression Recognition using
two attention mechanisms in CNN-based models. The first attention mechanism employs
a grid-wise strategy for low-level feature extraction, capturing the intricate dependencies
between facial regions and facilitating effective parameter updates. The second mechanism
incorporates a visual transformer approach for high-level semantic representation, enabling
the capturing of long-range dependencies between facial regions. The framework was
rigorously evaluated on three public datasets—CK+, FER+, and RAF-DB—and exhibited a
superior performance, reaching a remarkable 100% accuracy on the CK+ dataset without
necessitating additional training data. These findings underscore the efficacy of attention
mechanisms in enhancing the FER performance in CNN-based architectures.

The article by Xue et al. [64] introduced the TransFER model, which proposes a novel
approach to enhancing the performance of facial expression recognition (FER). The model
comprises three fundamental components, namely Multi-Attention Dropping (MAD),
ViT-FER, and Multi-head Self-Attention Dropping (MSAD). These components operate
synergistically to enable the model to adaptively explore diverse local patches and learn rich,
relation-aware local representations. Despite its effectiveness, the model was outperformed
by one specific approach [62] across multiple benchmark datasets, although it surpassed
other state-of-the-art methods.

In 2023, Li et al. [62] introduced FER-former, a novel multifarious supervision-steering
Transformer approach for Facial Expression Recognition (FER) in the wild. The architecture
incorporates multi-granularity embedding integration, a hybrid self-attention scheme,
and heterogeneous domain-steering supervision. The model seamlessly fuses features
from both CNNs and Transformers through a hybrid stem and employs an FER-specific
transformer mechanism. Experimental results confirmed the model’s superior performance
over existing state-of-the-art methods across various benchmarks.

Moreover, Wasi et al. [275] proposed ARBEx as a framework and introduced it for
facial expression learning (FEL) tasks. The framework leverages the Vision Transformer
and incorporates a range of techniques to address challenges such as class imbalance, bias,
and uncertainty in FEL tasks.

In Table 1, it is evident that FER-former outperforms other state-of-the-art methods,
not just for one, but for three different datasets. Specifically, FER-former achieves the
highest accuracy rates of 90.96%, 91.30%, and 62.1% for FER+, RAF-DB, and SFEW 2.0,
respectively. These results demonstrate the effectiveness of FER-former in recognizing
facial expressions across diverse datasets, thereby establishing its superiority over existing
FER methods. In Figure 18, different Transformer methods in FER, a) FER-former [62] and
(b) TransFER [64], are displayed.
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Figure 18. Transformers. (a) FER-former [62] and (b) TransFER [64]. (a) presents model’s architecture
FER-former, incorporating Multi-Granularity Embedding Integration (MGEI), hybrid self-attention,
and Heterogeneous Domains-Steering Supervision (HDSS). It captures wide-ranging receptive fields
and multi-modal semantics by embedding text into Multi-Head Self-Attention (MHSA), excluding
convolutional position encodings for simplicity [62]. (b) TransFER model structure. Initially, facial
images undergo processing by a foundational CNN to generate feature maps. These maps are further
refined by local CNNs to identify various important feature regions. Subsequently, a 1 × 1 convolution
and reshaping operations transform these maps into a sequence of feature vectors, suitable for input
into the MSAD (a modified self-attention design within a Transformer encoder), which examines the
interconnections among local patches. An MLP Head is then used to produce the final classification
outcome. MAD directs the identification of diverse local patches, while MSAD leverages multi-head
self-attention to uncover complex relationships between these patches [64].

3.2.4. Deep Sequence FER Networks
Frame Aggregation

Frame aggregation serves as a vital computational strategy in deep learning archi-
tectures, aimed at synthesizing information across multiple frames or images to enhance
model performance. Traditional approaches for facial expression recognition have pre-
dominantly concentrated on static images; however, the incorporation of sequential video
frames has shown potential for significant performance gains. Various methodologies have
been developed to aggregate frame outputs in sequential data, with Decision-Level Frame
Aggregation and Feature-Level Frame Aggregation emerging as two salient paradigms. In
the interest of providing a comprehensive overview, a table summarizing the current state-
of-the-art methodologies for facial expression recognition benchmarked on widely accepted
datasets is presented in accordance with a person-independent evaluation protocol [152].



Information 2024, 15, 135 34 of 61

Decision-level frame aggregation is a technique for improving facial expression detec-
tion accuracy by combining the frames’ output in a series [12,115]. In this approach, the
k-class probability vectors from each frame in a sequence are amalgamated to render a
consolidated output.

A noteworthy limitation of this methodology lies in the variability in the number
of frames across different sequences, which precludes the direct concatenation of frame
outputs. To address this challenge, two distinct aggregation procedures have been con-
templated: Frame Averaging and Frame Expansion. These techniques aim to generate
fixed-length feature vectors for each sequence, thereby ameliorating the issues stemming
from sequence length variability.

Statistical coding, which does not require a fixed number of frames, can also be used.
Each sequence’s per-frame probability can be summed using vectors such as average, max,
average of the square, average of maximum suppression, and others [276].

In contrast, feature-level frame aggregation involves aggregating the learned features
of the frames inside the sequence.

Various statistical encoding techniques have been employed to this end, including
the aggregation of the statistical moments—mean, variance, minimum, and maximum—of
feature vectors across the temporal sequence. Moreover, matrix-based models such as
eigenvectors, covariance matrices, and multi-dimensional Gaussian distributions offer
alternative, yet sophisticated, avenues for feature aggregation. Recent advancements in
the field have also explored the application of multi-instance learning to create video-level
representations. In this context, cluster centers are calculated from auxiliary data, leading
to a bag-of-words representation for each subset of video frames.

Kahou et al. made a notable contribution by concatenating nn-class probability vectors
across ten predefined segments, thereby synthesizing a fixed-length video representa-
tion [115]. Although frame aggregation methods offer promising avenues for FER, they
are not without limitations. For instance, the significance of individual frames in FER has
often been overlooked. It is paramount to distinguish frames that contribute meaningful
information for a particular expression from those that do not.

More specifically, they proposed a method called Frame Attention Networks (FAN)
for video-based facial expression recognition. FAN consists of two modules: feature em-
bedding and frame attention. The feature embedding module uses a deep CNN to convert
face images into feature vectors. The frame attention module learns self-attention and
relation-attention weights to aggregate the feature vectors into a discriminative video
representation. Self-attention weights highlight important frames, while relation-attention
weights model the relation between frame features and a global representation. FAN
automatically identifies discriminative frames, improving performance in facial expression
recognition. It is an end-to-end framework with a variable input and fixed-dimension out-
put, enhancing video-based FER. FAN is an end-to-end framework that takes a facial video
with a variable number of face images as an input and produces a fixed-dimension feature
representation for FER. FAN consists of two modules: the feature embedding module and
the frame attention module. Addressing this gap, Meng et al. [277] introduced the concept
of Frame Attention Networks (FAN), a groundbreaking advancement in video-based FER.
The architecture is bifurcated into two integral modules: the feature embedding module,
which employs deep convolutional neural networks (CNNs) to transform facial images
into robust feature vectors, and the frame attention module. The latter innovatively utilizes
self-attention and relation-attention mechanisms to amalgamate these feature vectors into a
singular, highly discriminative video-level representation. Self-attention mechanisms prior-
itize frames that are salient for expression recognition, while relation-attention models the
interdependencies between individual frame features and a global representation. Remark-
ably, FAN operates as an end-to-end framework capable of processing a variable number of
input frames to produce a fixed-dimension feature representation, thereby representing a
significant leap forward in the adaptability and effectiveness of video-based FER solutions.
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Spatiotemporal FER Network

The spatiotemporal FER network accepts a sequence of frames in a temporal window
as an independent input without prior knowledge of the expression intensity and encodes
more subtle expressions using both textural and temporal information.

First of all, Fan et al. [119] proposed a CNN-RNN network combined with a 3D convo-
lutional network (C3D). This composite architecture demonstrated a superior performance
compared to its individual components, thereby establishing a seminal contribution to the
FER literature.

FER cannot identify facial expressions in general and can only distinguish the ex-
pressions of pre-trained human faces. Handling this difficulty necessitates the use of a
dependable classifier or large datasets including many faces with varying natural dis-
similarities, and several efforts have been made to offer individual-independent FER
systems. To overcome this issue, Zhang et al. [120] took a different route and proposed
a spatial–temporal network-based FER framework that combines a Multi-Signal Con-
volutional Neural Network (MSCNN) with a Part-based Hierarchical Recurrent Neural
Network (PHRNN). While the MSCNN specializes in capturing the spatial features of
the face, the PHRNN is designed to model the temporal variations in facial expressions.
The model employs specialized loss functions to optimize the nuances of facial emotions,
thereby achieving impressive accuracies of 98.5% on the CK+ dataset and 81.18% on the
MMI dataset.

Hasani et al. [278] suggested a novel approach by integrating a 3D Inception-ResNet
layer with an LSTM unit in a 3D Convolutional Neural Network. This architecture is
particularly adept at capturing both the spatial and temporal relationships among facial
images across frames, an achievement that has broad implications for the field.

A parallel innovation was brought forth by Liang et al. [41], who designed a deep
convolutional BiLSTM architecture that bifurcates feature extraction into a Deep Spatial
Network (DSN) and a Deep Temporal Network (DTN). These networks are specialized
for spatial and temporal feature extraction, respectively, and converge into a Bidirectional
LSTM (BiLSTM) for classification. Notably, their preprocessing pipeline employs a Multi-
Task Cascaded Convolutional Network (MTCNN) for face detection and data augmentation,
enhancing the system’s robustness.

Ryumina et al. [59] introduced EmoAffectNet, a holistic framework for emotion iden-
tification that leverages a two-pronged architecture. The first component utilizes the
backbone of the VGGFace2 ResNet50 model, trained in a balanced fashion to predict
emotions from raw images. A temporal block is stacked atop the backbone to extend its
capabilities and trained using dynamic Visual Emotion Datasets (VEDs) in a cross-corpus
setting. This framework has proven its efficacy, securing a top-tier accuracy of 64% on the
AffectNet dataset and ranking second in its category.

In [47], Zhu et al. proposed a cascade attention network fusion with multi-scale
spatiotemporal features for facial expression recognition. The architecture leverages the
ResNeXt network [279] to initially extract localized spatial features from a batch of facial
images. These high-level spatial features are then meticulously stored and subsequently
amalgamated with multi-scale stereoscopic features derived from an auxiliary process,
thereby constructing a comprehensive geographical context for the facial expressions.
This geographical context serves as the substrate for the cascade attention module, where
attention aggregation features are generated. These features, in turn, are fed into a temporal
sequential feature module, which is adept at isolating temporal patterns and ultimately
classifying a range of facial emotions, including but not limited to anger and contempt.

In Table 1, a comprehensive performance evaluation is presented, encompassing
methodologies from 60 papers across diverse datasets. The highest-performing results are
denoted in boldface for ease of reference and to underscore their significance within the
broader landscape of Facial Expression Recognition research. It seems that the datasets
of the controlled category (especially lab group) achieved better performances than the in
the wild datasets (for the controlled group, i.e., CK+ 97.25–100%, in contrast to in the wild
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group, i.e., AffectNet 61.07–66.46%). Also, managing controlled movie datasets presents a
formidable challenge for researchers (i.e., SFW 2.0 55.15–62.18%).

Table 1. FER Methods: performance comparison.

A/A Datasets Method Descriptor Year Performance (%)

1 [253] DTAGN 2015 7 classes: 97.25
2 [224] DCNN 2016 6 classes: 98.6
3 [58] STRNN 2018 7 classes: 95.4
4 [277] DCNN 2019 7 classes: 97
5 CK+ [41] CNNs + BiLSTM 2020 7 classes: 99.6
6 [42] FER-VT 2021 7 classes: 100!
7 [43] ViT and SE 2021 7 classes: 99.8
8 [44] SL + SSL 2021 7 classes: 98.2
9 [63] PAU-Net 2022 7 classes: 99.5

10 [280] CAKE 2018 7 classes: 61.07

11 [281] DSNN with a Supervised
Loss function 2019 7 classes: 64

12 [37] Emotion-GCN 2021 7 classes: 66.46
13 AffectNet [60] Ad-Corre 2021 7 classes: 63.36
14 [54] DACL 2021 7 classes: 65.20
15 [56] DAN 2022 7 classes: 65.69
16 [39] Multi-task EfficientNet-B2 2022 7 classes: 66.29
17 [59] EmoAffectNet 2022 7 classes: 66.4

18 [58] STRNN 2018 7 classes: 95.4
19 JAFFE [282] Hybrid CRNN 2018 7 classes: 94.9
20 [283] NN 2018 7 classes: 93.8

21 [49] Attentional Convolutional
Network 2021 7 classes: 92.8

22 [275] ARBEx 2023 7 classes: 96.67

22 [258] CNN + Handcrafted
features model BOVW 2019 7 classes: 75.42

23 [284] Multi-Level 2019 7 classes: 74.09
Convolutional Neural
Networks

25 FER2013 [285] CNN hypeparemeters
optim. 2021 7 classes: 72.16

26 [260] VGGNet 2021 7 classes: 73.28
27 [286] LHC 2021 7 classes: 74.42

28 [61] Ensemble ResMaskingNet
with 6 other CNNs 2021 7 classes: 76.82

29 [287] CNN 2015 7 classes: 93.33

30 [255] 2 CNN + 4 Inception
layers 2016 7 classes: 77.9

31 MMI [288] CNN + CRF 2017 7 classes: 78.68
32 [259] MBCNN-LSTM 2020 7 classes: 81.60
33 [50] 3D CNN 2021 7 classes: 96.69

34 [224] DCNN 2017 7 classes: 55.15
35 [247] IL-CNN 2018 7 classes: 52.52
36 SFEW 2.0 [57] RAN 2020 7 classes: 56.4
37 [66] IPD-FER 2022 7 classes: 58.43
38 [69] CRS-CONT 2022 7 classes: 60.09
39 [62] FER-former 2023 7 classes: 62.18
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Table 1. Cont.

A/A Datasets Method Descriptor Year Performance (%)

40 [289] PPDN 2016 7 classes: 84.59
41 [290] DCPN 2018 7 classes: 86.23

42 Oulu-
CASIA [291] CNN 2018 8 classes: 91.67

43 [263] Multi-task learning CNN 2019 8 classes: 89.6

44
45

[48]

[47]

SCNN
Cascade attention-based
FER network

2022

2022

6 classes: 88.09

8 classes: 89.29

46 [292] VGG-Face 2020 7 classes: 77.5
47 [293] PSR network 2020 7 classes: 88.98
48 [294] MixAugment 2020 7 classes: 87.54
49 RAF-DB [67] EfficientFace 2021 7 classes: 88.36
50 [295] RUL 2021 7 classes: 88.98
51 [68] EAC 2022 7 classes: 89.99
52 [62 FER-former 2023 7 classes: 91.30

53 [296] CNN–ResNet 2020 7 classes: 65.5
54 AFEW [297] Multi-level 2020 7 classes: 55.17

6.0 attention model
55 [40] Multi-task neural network 2021 7 classes: 59.27

56 [252] EEM (KTN + STSN) 2020 7 classes: 90.49

57 [42]
CNN + grid-wise
attention + visual
transformer

2021 7 classes: 90.04

58 FER+ [64] TransFER 2021 7 classes: 90.83
59 [65] EASE 2022 7 classes: 90.26
60 [62] FER-former 2023 7 classes: 90.96

4. Facial Expression Datasets

To the best of our knowledge, this is the first attempt to study and catalogue the most
well-known datasets and evaluate the performances of different state-of-the-art models on
these datasets. Training neural networks with examples is a crucial factor in the success
of deep learning. Researchers have access to various facial expression recognition (FER)
datasets to facilitate this process. However, each dataset differs from others in terms of
factors such as the number and size of images and videos and variations in illumination,
population, and face pose [292]. These differences provide a diverse range of training
examples for neural networks, enabling them to learn and generalize across various FER
scenarios [298].

To meet the diverse needs of researchers in the field, an ideal benchmark database
should include static and dynamic images of faces displaying prototypical expressions of
emotion and various expressions involving the activation of single or multiple Action Units
(AUs). Namely, datasets may consist of either static or dynamic images. Dynamic images
or sequences contain more information than single images, including temporal information.
The four categories of datasets are IC (image controlled), IU (image uncontrolled), SC
(sequence controlled), and SU (sequence uncontrolled).

Controlled datasets (or lab): Controlled datasets or labs are created in environments
such as research laboratories or studios. These datasets involve capturing facial expressions
under well-controlled conditions, including lighting, camera angles, and backgrounds.
Examples of controlled datasets include JAFFE [72,73], CK+ 76–78], and many more.

Uncontrolled datasets (or In-the-Wild): In-the-wild datasets consist of images or
videos collected from real-world scenarios. These datasets present additional challenges
due to lighting, occlusions, and pose variations, as well as challenges due to factors like
variations in lighting, occlusions, diverse camera qualities, and pose variations. Examples
of in-the-wild datasets include AffectNet [83] and Emotic [101,102], etc.
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Researchers use a variety of datasets to evaluate the performance of facial expression
recognition (FER) systems. These datasets cover various conditions, from controlled lab
settings to challenging real-world scenarios. Using diverse datasets ensures the develop-
ment of robust and accurate models that perform well across different environments and
applications. Datasets are initially categorized based on the data type—images or videos.
Subsequently, they are classified as controlled (lab) and uncontrolled (in the wild). The
final sub-category is based on the year of the datasets creation. Datasets that belong in the
image category:

1. Image

(a) Controlled (Lab) JAFEE [72,73], MMI [97,98] (both in video and image), BU-
3DFE [74,75], Multi-Pie [96], RAFD [89], TFD [87], Yale [79], KDEF [90,91],
SFEW 2.0 [84,85], and CalD3r & MenD3s [129].

(b) Uncontrolled (or in the wild) FER2013 [89], FER+ [71], Emotion Net [92,93],
AffectNet [83], RAF-DB [94], AFEW 7.0 [80–82] ExpW [95], Aff-Wild2 [103],
and Emotic [101,102].

2. Video

(a) Controlled (Lab)
(b) CK+ [76–78], MMI [97,98], Oulu-CASIA [88], MUG [99,100]. Uncontrolled (In

the wild) Aff-wild2 [103].

Typically, FER experiments make use of multiple datasets, including but not limited to
FER+, JAFFE, CK+, Yale, AffectNet, SFEW 2.0, FER2013, TFD, EmotioNet, Oulu-CASIA,
RaFD, KDEF, RAF-DB, ExpW, MMI, and MUG. These datasets offer a rich set of facial
images or videos, facilitating the training and evaluation of FER algorithms.

In Figure 19, there are examples of 12 different well-known datasets. In recent years,
the use of 3D datasets, such as BU-3DFE, has become more prevalent. The creation of
datasets featuring 3D faces and 4D videos represents an innovative and pioneering ap-
proach in today’s research landscape [299].

This section focuses primarily on the methodologies used in database development.
It outlines essential database features such as the number of samples, image resolution,
subject demographics, types of emotions captured, categorization, and origin. Also, in
Table 2 an overview of the facial expression datasets is illustrated.

Table 2. An overview of the facial expression datasets.

A/A Dataset Emotions Year Subjects Samples Origin Resolution Category

1 FER+ [71] 8 2016 N/A 35,887 images N/A Microsoft 48 × 48 IU
2 JAFFE [72,73] 7 1998 10 213 static images Japan 256 × 256 IC
3 BU-3DFE [74,75] 7 2006 100 2500 images USA 512 × 512 IC

4 CK+ [76–78] 7 2000 123 593 image
sequences USA 640 × 490 SC

5 Yale [79] 6 2017 11 165 images California,
USA 168 × 192 IC

6 AFEW 7.0
[80–82] 7 2011 330 1809 videos Canberra,

Australia N/A SC

7 AffectNet [83] 7 2017 N/A 450,000 images USA 256 × 256 IU

8 SFEW 2.0 [84,85] 7 2015 N/A 1766 images Canberra,
Australia 720 × 576 IC

9 FER2013 [86] 7 2013 N/A 35,887 images Canada/USA 48 × 48 IU

10 TFD [87] 7 2010 N/A 112,234 images Toronto,
Canada 32 × 32 IC

11 Oulu-CASIA [88] 6 2009 80 2880 image
sequences Finland/China 320 × 240 SC

12 RAFD [89] 8 2010 67 1608 images Netherlands 1024 × 681 IC
13 KDEF [90,91] 7 2018 70 4900 images Sweden 562 × 762 IC
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Table 2. Cont.

A/A Dataset Emotions Year Subjects Samples Origin Resolution Category

14 Emotion Net
[92,93] 6 2016 N/A 950,000 images Ohio, USA Web

images IU

15 RAF-DB [94] 7 2017 N/A 29,672 images Netherlands N/A IC

16 ExpW [95] 7 2018 N/A 91,793 images Honk Kong Web
images IU

17 Multi-Pie [96] 6 2009 337 755,370 images USA 400 × 400 IC

18 MMI [97,98] 6 2002 75 740 images and
2900 videos Netherlands 720 × 576 IC&SC

19 MUG [99,100] 7 2010 86 1462 sequences Greece 896 × 896 SC
20 Emotic [101,102] 26 2019 34.320 23,751 images N/A N/A IU

21 Aff-Wild2 [103] 7 2018 258 1,413,000 images
and 260 videos UK/Finland 1454 × 890 IU&SU

22 CalD3r &
MenD3s [129] 7 2023 104 + 92 4678 images +

4038 images
Southern
Europe/Brazil 1454 × 890 IC

For example, the Yale database includes a range of emotions such as happy, normal,
sad, sleepy, surprised, and wink. Meanwhile, the Multi-Pie database features emotions
like neutral, smile, surprise, squint, and disgust. The eight commonly captured emotions
across datasets are neutral, contempt, anger, sadness, fear, disgust, surprise, and happiness.
While ’in-lab’ conditions are commonly used for FER research, ’in-the-wild’ conditions
pose unique challenges. These include limited sample sizes, ambiguous annotations, and
unconstrained variations such as occlusions, pose differences, and variations in lighting [62].
Each of the explained datasets is briefly described below, and the categorization will be as
follows:

image → Controlled, uncontrolled → Chronological order
video → Controlled, uncontrolled → Chronological order

4.1. Image
4.1.1. Controlled (or Lab)
JAFFE [72,73]

The JApanese Female Facial Expression (JAFFE) dataset (the first one which contains
expressions in the lab) is one of the earliest static facial expression datasets, dating back to
1998. It comprises a collection of images depicting facial expressions posed by Japanese
women. These images are accompanied by semantic ratings based on nouns that describe
the various expressions. The JAFFE database is designed as a laboratory-controlled pic-
ture collection featuring 213 posed emotion examples. The dataset includes images from
10 Japanese female subjects, resulting in 213 sample images. Each of the ten subjects is pre-
sented with three or four photographs showcasing seven different facial emotions. These
emotions are the six fundamental facial expressions: anger, disgust, fear, happiness, sorrow,
and surprise. Additionally, each subject also has one neutral expression image. However, it
is worth noting that this database can be challenging to use effectively due to the limited
number of instances available per subject and expression.

MMI [97,98]

The Man Machine Interaction (MMI) database has 326 sequences from 32 subjects,
with 213 sequences tagged with 6 expressions and 205 captured frontally. The participants’
ages range from 19 to 62, with different ethnic backgrounds and sexes. This database has
740 images as samples and 75 subjects. MMI sequences are onset–apex–offset, starting from
neutral, peaking in the middle, and returning to neutral. MMI presents more challenging
situations with high interpersonal variability, non-uniform expressions, and accessories.
The popular strategy for person-independent 10-fold cross-validation is to select the neutral
and three peak frames in each frontal sequence.
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BU-3DFE [74,75]

The Binghamton University 3D Facial Expression (BU-3DFE) database is a compre-
hensive dataset containing 606 sequences of facial expressions from 100 participants of
different genders and ethnicities. In total, it comprises 100 subjects and 2500 images. This
dataset includes six universal facial expressions and seven expressions per participant,
resulting in 2500 3D face expression models and 2500 two-view texture pictures. It is a
valuable resource for various applications, including facial expression recognition, virtual
reality, and animation, thanks to its provision of 25 immediate 3D expression models per
person, offering detailed information. The dataset encompasses a diverse range of ethnic
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ancestries, including White, Black, East Asian, Middle Eastern Asian, Hispanic Latino, and
others, with approximately 60% females and 40% males. Several approaches have been
reported for 3D facial expression recognition [300].

Multi-PIE [96]

The Multi Pose, Illumination, Expressions (Multi-PIE) database contains a total of
755,370 images from 337 different individuals. The subjects in this dataset are predomi-
nantly men (235 or 69.7% vs. 102 or 30.3% females). Also, 60% of the people were Europeans
and Americans, 35% were Asian, 3% were African Americans, and 2% were other. The mean
age of the participants was 27.9 years. Also, this dataset offers demographic information
such as gender, birth year, race, and whether the subject wears glasses.

RAFD [89]

The Radboud Faces Database (RaFD) is a high-quality “lab” database that comprises
67 models displaying eight emotional expressions. It includes Caucasian males and females,
Caucasian children, and Moroccan Dutch males, totaling 67 subjects and 1608 images. This
database was created by the Behavioural Science Institute of Radboud University Nijmegen
and is intended for non-commercial scientific studies by accredited universities. Each model
is trained to show eight emotional expressions, represented by three look directions and
captured from five camera positions. The emotions include anger, disgust, fear, happiness,
sadness, surprise, contempt, and neutrality.

Yale Face Database [79]

The Yale Face Database consists of 165 grayscale GIF images featuring 15 individuals.
Within this database, there are 11 photos available for each individual, each correspond-
ing to a specific facial expression. These expressions include happiness, neutrality, sad-
ness, drowsiness, surprise, and winking. In total, the database comprises 11 subjects and
165 images.

TFD [87]

The Toronto Face Database (TFD) is a collection of facial expression datasets com-
prising a total of 112,234 photos. These facial images are normalized to 48 × 48 pixels,
with the eyes equidistant and aligned at the same vertical coordinate. TFD introduces a
partitioning scheme involving five folds, dividing the data into training, validation, and
test sets at allocations of 70%, 10%, and 20% of the frames, respectively. Although the
database contains a vast number of images (112,234 images), it unfortunately lacks specific
details about the subjects. The dataset includes grayscale images of faces, each measuring
32 × 32 pixels, and is categorized into seven distinct emotional expressions. The dataset is
further divided into labeled, public test, hidden test, and unlabeled subsets. Illustrations of
faces displaying different expressions can be observed in Figure 19.

KDEF [90,91]

The Karolinska Directed Emotional Faces (KDEF) comprises a total of 4900 images
showcasing various human facial emotions. These photographs portray 70 individuals,
each expressing seven distinct emotional states. The database includes 4900 images and
involves a total of 70 subjects. Each emotional expression is captured from five unique per-
spectives, providing a comprehensive view of facial expressions. Among the 70 individuals
included, there are 35 females and 35 males, all within the age range from 20 to 30 years.
Notably, the subjects do not have beards, mustaches, earrings, or eyeglasses, and efforts
have been made to minimize visible makeup.

CalD3r & MenD3s [129]

The paper presents the CalD3r and MenD3s databases, featuring spontaneous 2D
and 3D facial expressions from diverse young adults, elicited through validated affective
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images. These databases aim to enhance ecological validity in facial expression recognition,
categorizing emotions into seven types and confirming them via participants’ self-reports.
This marks a significant advancement in creating more natural, real-world applicable
emotion recognition systems.

4.1.2. Uncontrolled (or in the Wild)
FER2013 [86]

The FER2013 database, which was the first to include facial expressions “in the wild”,
compiles approximately 35,887 facial images originally utilized in the ICML 2013 Chal-
lenges in Representation Learning. These images were sourced from Google image search
API, registered, shrunk to 48 × 48 pixels, and categorized into seven expressions: surprise,
anger, fear, disgust, happiness, sadness, and neutrality. It should be noted that, although the
database contains 35,887 images, there are no specific details provided regarding individual
subjects. The dataset is divided into three categories: training, validation, and testing.
The emotions most frequently represented in the dataset are happiness, anger, sadness,
neutrality, fear, surprise, and disgust. This dataset has significantly contributed to the
advancement of research in facial expression recognition and continues to be a valuable
resource for researchers in this field.

FER+ [71]

The FER+ dataset is an extension of the original FER2013 dataset, initially compiled by
Pierre Luc Carrier and Aaron Courville through the web crawling of facial images associ-
ated with emotion-related keywords. In this extended dataset, the images are meticulously
labeled into one of eight distinct emotion categories: neutral, happiness, surprise, sadness,
anger, disgust, fear, and contempt. This database has 35,887 images, but similar to the
original FER dataset, there are no specific details provided about individual subjects. Each
image in FER+ was tagged by ten crowd-sourced taggers, resulting in a higher-quality
ground truth for capturing the emotions depicted in still images compared to the original
FER labels. Researchers working with the FER+ dataset can leverage these ten taggers to es-
timate an emotion probability distribution for each facial image, enabling the development
of algorithms that can generate statistical distributions or SFEW 2.0 [84,85].

The Static Facial Expressions in the Wild (SFEW) was generated by choosing static
frames from the AFEW database and calculating keyframes based on facial point clustering
retrieved from movies. SFEW 2.0, the most widely used version, contained the benchmark-
ing data for the SReco sub-challenge in EmotiW 2015. This database contains 1766 images,
but there are no details about the subjects. SFEW 2.0 is divided into three sets: training
(958 samples), validation (436 samples), and testing (372 samples). Each image is labeled
with one of seven emotions: surprise, happiness, disgust, fear, neutral, anger and contempt.
While the expression labels for the training and validation sets are available to the public,
those for the testing set are available upon request.

Emotion Net [92,93]

The EmotioNet database is a vast collection comprising 950,000 annotated images
focusing on Action Units (AU) (an Action Unit identifies facial muscle movements asso-
ciated with expressions. The recognition of AUs helps to analyze facial expressions and
infer emotions using computer vision and machine learning techniques)6. EmotioNet is a
large-scale database containing one million photos of facial expressions gathered online. Of
the 1 million images, 950,000 were tagged automatically using an AU detection algorithm,
while the remaining 25,000 images underwent manual annotation, encompassing 11 AUs.
It is worth noting that this database does not include specific details about the individuals
represented in the images. Additionally, the EmotioNet Challenge includes a “second track”
featuring six basic expressions, ten compound expressions, and a subset of 2478 photos
with expression labels.
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AffectNet [83]

AffectNet is a vast dataset comprising over 1 million facial images meticulously
collected and annotated to create a database of facial emotions observed in real-world
scenarios. The dataset is derived from images found on the internet using 1250 emotion-
related keywords. These keywords were combined with terms related to gender, age, or
ethnicity to obtain nearly 362 strings in the English language, such as “joyful girl”, “blissful
Spanish man”, “furious young lady”, or “astonished senior” in six languages and collected
using three major search engines (Google, Bing, and Yahoo). About half of the retrieved
images were manually annotated for the presence of seven discrete facial expressions and
the intensity of valence and arousal. Approximately half of the retrieved images underwent
manual annotation, which included the identification of seven discrete facial expressions
and the quantification of intensity for valence and arousal. The remaining half of the images
were annotated using a distribution model rather than the traditional category model. The
database contains 450,000 images, and it is worth noting that specific details about the
individuals represented in the images are not provided.

AffectNet empowers research on automated facial expression identification by offering
two alternative emotion models. Researchers can utilize two baseline deep neural networks
to categorize images and predict the strength of valence and arousal. These models have
demonstrated superior performances when compared to traditional machine learning
approaches and commercially available facial expression recognition systems.

B [94]

The Real-world Affective Faces DataBase (RAF-DB) is an extensive facial expression
database consisting of around 30,000 (29,762 images) diverse facial images downloaded
from the Internet. Using crowd-sourcing annotation, all the images were independently
labeled by approximately 40 annotators. This dataset encompasses seven different emotion
labels and includes approximately 30,000 facial images from thousands of individuals.
Notably, the database does not provide specific details about the subjects featured in
the images.

ExpW [95]

The Expression In-the-Wild (ExpW) dataset is designed for facial expression recogni-
tion and comprises 793 faces that are manually labeled with expressions. Each of the face
photos is labeled with one of the seven fundamental expression categories: angry, disgust,
fear, glad, sad, surprise, or neutral. This dataset includes 91,793 images, and specific details
about the subjects featured in the images are not provided.

Emotic [101,102]

The EMOTion In Context (EMOTIC) is a database of images with people in real
environments, annotated with their apparent emotions. The images are annotated with
an extended list of 26 emotion categories combined with the three common continuous
dimensions, Valence, Arousal, and Dominance. This database has 23,751 images, but there
are no details about the subjects.

Aff-Wild2 [103]

Aff-Wild2, an extension of the Aff-Wild database, is a large-scale dataset for in-the-
wild facial expressions. It contains 1,413,000 video frames and includes variations in pose,
age, illumination conditions, ethnicity, and profession. The dataset is annotated for various
facial expressions, encompassing both basic emotions (such as happiness, sadness, anger,
and disgust) and complex emotions (like boredom, confusion, and surprise). While the
database contains 23,751 images, it does not provide details about the subjects.

In [267], the focus of the ABAW Competition is on developing algorithms for the
automatic analysis of affect, including facial expressions. This competition includes sev-
eral challenges relevant to facial expression recognition: Valence–Arousal Estimation,
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Expression Classification, and Action Unit Detection. It aims to promote research and
development in the field of affective computing. Additionally, the third Affective Behavior
Analysis in-the-Wild (ABAW) Competition was held in conjunction with the IEEE Inter-
national Conference on Computer Vision and Pattern Recognition (CVPR) in 2022. This
competition builds upon previous events held at ICCV 2021, IEEE FG 2020, and IEEE CVPR
2017, and it also aims to advance the automatic analysis of affect. Overall, both the ABAW
Competition and the Aff-Wild2 database are essential resources for researchers working on
facial expression recognition. They highlight the growing interest in this specific area of
affective computing.

4.2. Video
4.2.1. Uncontrolled (or Lab)
CK [76]

The Cohn-Kanade (CK) dataset was released in 2000 to promote research into the
automatic detection of individual facial expressions. Since its release, the CK dataset has
become the most widely used for evaluating and developing algorithms. It consists of
100 university students aged from 18 to 30 years. Of the total population, 65% are female,
15% are African American, and 3% are Asian or Latino, with the remaining 17% falling
into other categories. The videos capture seven different facial expression. The database
contains 1766 images, but there are no specific details about the subjects.

CK+ [76–78]

The Extended Cohn-Kanade (CK+) dataset is a laboratory-controlled database that
consists of 593 video segments from 123 individuals of diverse genders and cultural
backgrounds. Each video captures a face transitioning from neutral expression to a peak
emotion, recorded at 30 FPS with a resolutions of either 640 × 480 or 640 × 490 pixels.
The dataset includes 327 categorized sequences across seven expression classes: anger,
contempt, disgust, fear, happiness, sorrow, and surprise. The absence of specified training,
validation, and test sets complicates the comparison of algorithms evaluated using this
dataset. The database contains 593 videos, but is based on 123 subjects.

Oulu-CASIA [88]

The Oulu-Chinese Academy of Science Institute of Automation (Oulu-CASIA) NIR &
VIS facial expression database contains six expressions (surprise, happiness, sorrow, anger,
fear, and disgust) from 80 participants, ranging in age from 23 to 58 years. Notably, 73.8%
of the subjects are male. This database comprises a total of 2880 videos. Each participant
was instructed to sit in front of the camera on a chair in the observation room. The camera-
to-face distance was around 60 cm. They were instructed to mimic facial expressions based
on example photo sequences provided to them. The imaging hardware used for this study
operates at a frame rate of 25 frames per second and has a resolution of 320 × 240 pixels.

MUG [99,100]

The Multimedia Understanding Group (MUG) database comprises 86 sequences of
images featuring 35 white women and 51 Caucasian men aged between 20 and 35 years.
This database consists of 1462 videos and involves 86 subjects, each seated in front of a
camera. They were instructed to perform six basic facial expressions (happiness, sadness,
anger, fear, surprise, and disgust), along with experiencing laboratory-induced emotions.
The database is divided into two parts. The first part consists of categorically labeled image
sequences, each with varying lengths containing from 50 to 160 images. The second part
involves recording participants while they watched a film designed to elicit emotions. The
primary objective of this database is to provide ample material for recognizing genuine
expressions in real-world scenarios.
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AFEW 7.0 [80–82]

The Acted Facial Expressions In The Wild (AFEW) 7.0 dataset was constructed by
various Australian universities and research organizations. Comprising 1809 videos and
featuring 330 subjects, this dataset is an invaluable asset for research on dynamic facial
expressions. Since 2013, it has served as the evaluation benchmark for the annual Emo-
tion Recognition in The Wild Competition (EmotiW) (Emotion Recognition in The Wild
Competition). AFEW includes video excerpts capturing spontaneous facial expressions
under varied environmental conditions and is annotated with seven different expressions.
The dataset’s annotation has been continually updated to include data from reality TV
shows. For the 2017 EmotiW challenge, AFEW was divided into three separate data parti-
tions. Overall, the collection provides a rich array of real-world, or near real-world, facial
expressions across diverse settings and scenarios.

4.2.2. Uncontrolled (or in the Wild)

The AffWild2 database [103] also includes video samples, totaling 260 videos.

5. Comparison Dataset and Methods

Below are some diagrams that approximate the number of open-access papers pub-
lished in various fields, as well as the number of papers on Facial Expression Recogni-
tion (FER), that specifically mention certain datasets, for the years from 2018 to 2023. In
Figure 20, the data reveal that CK+ was the most frequently used dataset in 2018. In 2019,
AffectNet surpassed CK+ to take the lead. During 2020, both CK+ and AffectNet were
commonly utilized. For the years 2021 and 2022, AffectNet regained its position as the
most popular dataset. As of 2023, AffectNet continues to hold this status. In summary, over
the six years from 2018 to 2023, AffectNet has been cited in 207 open-access papers. CK+
follows it with 144 citations, FER2013 with approximately 103, RAF-DB with 97, FER+ with
79, JAFFE with 66, Oulu-CASIA with 55, SFEW with 43, MMI with 40, and AFEW with 6,
among others. These data were sourced from https://paperswithcode.com/ accessed on 1
February 2023.

Information 2024, 15, x FOR PEER REVIEW 48 of 64 
 

 

 

Figure 20. Number of papers per year (https://paperswithcode.com/ accessed on 1 February 2023). 

Many models have been evaluated for performance, but some stand out nota-
bly. Initially, FER-former [62] emerges as one of the best models, leading as superior with 
three different datasets. Specifically, it achieved an accuracy of 90.96% on FER+, outper-
forming the second-best model with 90.25% [65]. On RAF-DB, it scored 91.3%, a 1.3% 
lead over the second-best model at 89.99% [68]. On SFEW 2.0, it reached 62.18%, which 
is 2.09% higher than the next best model [69]. This model stands out due to its incorpora-
tion of multi-modal fusion, a hybrid stem that combines CNNs and Transformers, 
FER-specific transformer mechanisms, heterogeneous domain-steering supervision, 
a n d  multifarious token heads, and its demonstrated superior performance in facial 
expression recognition tasks. 

Another state-of-the-art model is FER-VT [42], with the best accuracy on the 
CK+ dataset, an astonishing 100% accuracy without the need for extra training data. 
FER-VT introduces a novel framework for CNN-based Facial Expression Recogni-
tion (FER), incorporating two attention mechanisms at both the low-level feature 
learning and high-level semantic representation stages. By selectively focusing on im-
portant facial regions, FER-VT enhances the model’s ability to capture discriminative 
features and extract meaningful representations. This framework addresses limitations 
in traditional CNN-based FER models and improves accuracy in recognizing facial ex-
pressions. This model distinguishes itself through its Grid-wise Attention Mechanism, 
which captures dependencies between facial regions and regulates parameter updates 
during low-level feature learning, thereby improving feature representation and discrim-
ination. Furthermore, its Visual Transformer Attention Mechanism uses visual semantic 
tokens from high convolutional layer blocks to capture complex relationships and seman-
tic cues in facial expressions. This contributes to the model’s superior accuracy in recog-
nizing facial expressions. The transformer mechanisms in FER-VT provide it with a dis-
tinct advantage over other models. 

A noteworthy third model is TransFER [64], which comprises three key compo-
nents: Multi-Attention Dropping (MAD), ViT-FER, and Multi-head Self-Attention 
Dropping (MSAD). Notably, the ViT (Vision Transformer) architecture plays a pivotal 
role in this model’s exceptional performance. 

One of the reasons why this model outperforms others is its emphasis on rela-
tion-aware representation learning. TransFER significantly focuses on learning relation-
aware representations, a crucial aspect in Facial Expression Recognition (FER). This 
approach enables the model to capture dependencies and correlations among facial 
regions, enhancing its ability to understand and discriminate between facial expres-
sions, ultimately improving performance. Additionally, TransFER leverages attention 
mechanisms, such as Multi-Attention Dropping (MAD) and Multi-head Self-

Figure 20. Number of papers per year (https://paperswithcode.com/ accessed on 1 February 2023).

Many models have been evaluated for performance, but some stand out notably.
Initially, FER-former [62] emerges as one of the best models, leading as superior with three
different datasets. Specifically, it achieved an accuracy of 90.96% on FER+, outperforming
the second-best model with 90.25% [65]. On RAF-DB, it scored 91.3%, a 1.3% lead over the
second-best model at 89.99% [68]. On SFEW 2.0, it reached 62.18%, which is 2.09% higher
than the next best model [69]. This model stands out due to its incorporation of multi-modal
fusion, a hybrid stem that combines CNNs and Transformers, FER-specific transformer

https://paperswithcode.com/
https://paperswithcode.com/


Information 2024, 15, 135 46 of 61

mechanisms, heterogeneous domain-steering supervision, and multifarious token heads,
and its demonstrated superior performance in facial expression recognition tasks.

Another state-of-the-art model is FER-VT [42], with the best accuracy on the CK+
dataset, an astonishing 100% accuracy without the need for extra training data. FER-VT
introduces a novel framework for CNN-based Facial Expression Recognition (FER), incor-
porating two attention mechanisms at both the low-level feature learning and high-level
semantic representation stages. By selectively focusing on important facial regions, FER-VT
enhances the model’s ability to capture discriminative features and extract meaningful
representations. This framework addresses limitations in traditional CNN-based FER
models and improves accuracy in recognizing facial expressions. This model distinguishes
itself through its Grid-wise Attention Mechanism, which captures dependencies between
facial regions and regulates parameter updates during low-level feature learning, thereby
improving feature representation and discrimination. Furthermore, its Visual Transformer
Attention Mechanism uses visual semantic tokens from high convolutional layer blocks to
capture complex relationships and semantic cues in facial expressions. This contributes to
the model’s superior accuracy in recognizing facial expressions. The transformer mecha-
nisms in FER-VT provide it with a distinct advantage over other models.

A noteworthy third model is TransFER [64], which comprises three key components:
Multi-Attention Dropping (MAD), ViT-FER, and Multi-head Self-Attention Dropping
(MSAD). Notably, the ViT (Vision Transformer) architecture plays a pivotal role in this
model’s exceptional performance.

One of the reasons why this model outperforms others is its emphasis on relation-
aware representation learning. TransFER significantly focuses on learning relation-aware
representations, a crucial aspect in Facial Expression Recognition (FER). This approach
enables the model to capture dependencies and correlations among facial regions, en-
hancing its ability to understand and discriminate between facial expressions, ultimately
improving performance. Additionally, TransFER leverages attention mechanisms, such
as Multi-Attention Dropping (MAD) and Multi-head Self-Attention Dropping (MSAD).
These mechanisms are instrumental in capturing fine-grained details and facilitating the
exploration of diverse relationships among local facial patches. They prove highly effective
in enhancing feature learning and discrimination within the FER context. Lastly, the model
incorporates global–local Fusion, which combines the strengths of both global and local
facial expression cues. This holistic approach enhances the model’s capacity to capture com-
prehensive information and context, improving performance. Regarding its performance,
TransFER achieves impressive accuracy scores of 90.83% on the FER+ dataset, 90.91% on
RAF-DB, and 66.23% on Affectnet. These results position TransFER as the second-best per-
former in our survey across these datasets. For all the reasons mentioned, it is undoubtedly
worth referencing this model.

A fourth model that merits mentioning is Emotion-GCN [37]. This state-of-the-art
model boasts the highest performance, with an accuracy of 66.46% on the AffectNet dataset.
The framework employs a Graph Convolutional Network (GCN) to capture the interde-
pendencies between the categorical and dimensional models of affect. It learns a shared
feature representation for both discrete and continuous recognition tasks. Additionally, the
GCN is used to explicitly model the dependencies between facial expression classifiers and
valence–arousal regressors.

Furthermore, STRNN [58] is a hybrid Convolutional-Recurrent Neural Network (CNN-
RNN). There are several reasons why this model stands out as a state-of-the-art approach.
First, the paper proposes a hybrid architecture that combines the strengths of Convolutional
Neural Networks (CNNs) for spatial feature extraction with Recurrent Neural Networks
(RNNs) for capturing temporal dependencies in facial expressions. This combination allows
for a more comprehensive understanding of facial expressions, thereby improving accuracy.
Second, the model takes into account the temporal dynamics present in facial expressions.
Facial expressions are not static, they involve temporal variations. By modeling these
temporal dependencies, the STRNN method can capture the evolution of expressions
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over time, leading to more accurate recognition. Collectively, its hybrid architecture and
consideration of temporal dependencies position this paper as one of the state-of-the-art
methods in Facial Expression Recognition.

Another noteworthy state-of-the-art model that has to be emphasized is the AR-BEx
model [275]. This paper significantly enhances the performance of the cross-attention
window-based Vision Transformer (ViT) in generating feature embeddings. The approach
effectively tackles challenges related to inter-class similarity, intra-class disparity, and label
ambiguity in facial expression recognition tasks. The model achieves robust representa-
tions through extensive augmentation and data refinement, enabling it to capture crucial
variations in facial expressions. Furthermore, the window-based ViT’s cross-attention
mechanism improves the model’s capacity to focus on relevant facial regions and attend to
vital features. This integrated approach, overall, enhances the discriminative power and
reliability of the feature embeddings, leading to more accurate and resilient facial expres-
sion recognition. It is undeniable that this model excels on the JAFFE dataset, achieving
an impressive performance score of 96.67%. What makes this model truly special is its
reliability balancing strategy—an approach designed to mitigate challenges stemming from
partial and unbalanced data in facial expression learning (FEL). This strategy not only
enhances the reliability of the model’s predictions, but also boosts its overall performance.
Additionally, throughout the paper, the transformer mechanism consistently contributes to
an improved performance, making the ARBEx model a noteworthy advancement in the
field of facial expression recognition.

A seventh model to take into consideration is the multi-rate 3DCNN [50], which is
based on a multi-rate signal processing scheme. This model employs 3D Convolutional Neu-
ral Networks (3DCNN) to harness feature maps from multiple frames as inputs, enabling
the extraction of motion information. In this approach, the 3D CNN utilizes feature maps
from multiple frames as inputs, allowing for the extraction of valuable motion information.
The model consists of three different 3DCNN networks, each producing distinct feature
vectors. Additionally, it leverages SENet, which incorporates self-attention mechanisms to
recalibrate features by aggregating feature maps across spatial dimensions. The resulting
emphasized features are then fed into a joint fusion classifier for emotion classification.

State-of-the-art models in facial expression recognition exhibit certain characteristics
that contribute to their superior performance. These models often employ hybrid architec-
tures, attention mechanisms, and fusion strategies. Hybrid architectures combine different
networks, allowing for improved feature extraction, representation, and discrimination.
Attention mechanisms, such as self-attention or grid-wise attention, selectively focus on
important features or regions, capturing dependencies and semantic cues. Multi-modal
fusion combines various sources of information, enhancing the model’s understanding and
recognition abilities by capturing complementary cues. Incorporating transformers enables
state-of-the-art models to capture complex relationships, model dependencies, and extract
meaningful representations, providing an advantage over other deep learning models
and improving performance. Furthermore, models that consider temporal dependencies
by incorporating recurrent neural networks or hybrid architectures capture the temporal
dynamics of facial expressions, resulting in more accurate recognition. Techniques such
as feature calibration and reinforcement, global–local fusion, and addressing specific chal-
lenges in facial expression recognition also contribute to the state-of-the-art performance of
these models.

6. Discussion and Conclusions

Over the last decade, Facial Expression Recognition (FER) has garnered increasing
attention from the scientific community. This paper serves as a comprehensive review
of FER, starting with the methods developed in the pre-deep learning era. These initial
methods primarily focused on facial feature extraction and emotion classification, the
two most crucial steps in traditional FER systems. Moreover, this paper emphasizes the
deep learning era, exploring its historical context, methodologies, and advancements. It
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extensively reviews state-of-the-art papers, offering a comprehensive overview of the latest
research and developments in the field. Additionally, the paper presents a brief survey
of the most commonly used FER datasets, detailing their respective characteristics, such
as the types of emotions captured, the year of creation, the subjects involved, and their
geographical origins. Despite the significant advancements and growing interest in FER,
many unanswered questions and challenges remain. As we move forward, future research
should consider addressing the following questions:

(1) How do human beings correctly identify facial expressions?
The mechanism behind the human identification of facial expressions remains not fully

understood. It is a multi-faceted process involving the visual analysis of facial features,
learned emotional associations, and innate biological responses. This intricate interaction
of perception-acquired understanding and inherent biological mechanisms calls for further
investigation.

(2) How can we make the models even faster than before?
While neural networks have significantly accelerated model performance and en-

hanced accuracy, the question arises: can we achieve even better? As technology evolves,
we can expect to encounter models yielding increasingly efficient outcomes. One promising
avenue is the development of hybrid models, which combine traditional methods with
deep learning techniques. These hybrid approaches have shown promise in delivering
improved results [301,302].

(3) How could we integrate facial expression analysis with other modalities?
The incorporation of multiple modalities, such as speech, facial recognition, and

physiological and lexical data, has recently gained traction in the field, resulting in what is
known as fusion models [303]. These models tackle the challenging task of harmonizing
heterogeneous modalities for enhanced emotion expression recognition. For instance, in the
Affective Behavior Analysis in-the-wild Competition, the Multi-Task-Learning challenge
calls for the development of algorithms that can simultaneously perform multiple affective
analysis tasks [267]. This concept mirrors multi-task learning in machine learning and could
be considered as analogous to human cognitive multitasking. By advancing more efficient
and practical algorithms for real-world emotional analysis, researchers may improve our
understanding of human emotions and behaviors, thereby shedding light on the first
question raised in this discussion.

(4) Will we see more models and research focused on thermal infrared imaging in
the coming years?

Compared to facial expression recognition in the visible spectrum, the thermal infrared
spectrum has received relatively less attention in research [304]. However, as technology
advances and the need for more robust and versatile recognition systems grows, it is
plausible that thermal infrared imaging will gain more prominence in future research
endeavors.

(5) Is it possible to compress a deep model to reduce the large network parameters
of deep models?

Deep learning models, particularly those with numerous layers, incur significant
computational costs due to their extensive parameter count, leading to storage and training
time challenges. Exploring advanced model compression techniques is essential to enhanc-
ing efficiency by reducing both the computational resources and time needed for model
deployment and data processing.

(6) Is it possible to develop multimodal systems with a high performance on “in-
the-wild” data?

While multimodal systems have demonstrated strong performances in controlled
laboratory settings, they still face challenges in achieving ecological validity when applied
to real-world “in-the-wild” data.

(7) It is observed that increasing the complexity of the models can lead to better
results.
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Deep learning models, such as deep neural networks, achieve this by learning hier-
archical representations of data through the stacking of multiple layers of interconnected
nodes or neurons. In the future, we can anticipate the emergence of increasingly complex
classifiers that have the potential to yield even better results.

(8) Variation-free datasets limit deep learning models’ effectiveness and adaptability.
Datasets that lack variations, such as occlusion, illumination, and resolution challenges,

may seem ideal for training deep learning models. However, these variations enable deep
learning models to generalize effectively, handle real-world scenarios, prevent overfitting,
improve representation learning, and utilize their capacity optimally. Encompassing these
challenges, training on diverse data empowers models to extract relevant features, patterns,
and complexities, enhancing their performance, robustness, and ability to handle unseen
instances. Removing variations curtails a model’s capacity to adapt and generalize in
different scenarios, ultimately impeding its real-world applicability. In summary, variations
in data, even with inherent challenges, are indispensable for deep learning models to learn
effectively and achieve superior results.

(9) How can we tackle ethical and social concerns associated with FER systems,
including privacy, bias, and potential misuse?

Facial Expression Recognition (FER) systems raise ethical and social concerns regard-
ing privacy, bias, and potential misuse. Privacy concerns arise when FER systems are
employed for surveillance without consent, highlighting the need for transparent data
collection practices and obtaining informed consent. Biased training datasets can lead to
inaccurate results and perpetuate discrimination, making it crucial to ensure diverse and
representative data collection. Additionally, the misuse of FER systems, such as emotional
manipulation or discriminatory actions, must be prevented by establishing guidelines and
regulations. It is essential to address these concerns to promote the ethical and respon-
sible development and use of FER systems, safeguarding privacy, mitigating bias, and
preventing potential misuse.
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BPTT Back Propagation Through Time
GAN Generative Adversarial Network
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SIFT Scale-Invariant Feature Transform
FC Fully Connected
MRE-CNN Multi-Region Ensemble CNN
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