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Abstract: Recently, multi-agent systems have become widespread as essential technologies for various
practical problems. An essential problem in multi-agent systems is collaborative automating picking
and delivery operations in warehouses. The warehouse commissioning task involves finding specified
items in a warehouse and moving them to a specified location using robots. This task is defined as a
spatial task-allocation problem (SPATAP) based on a Markov decision process (MDP). It is considered
a decentralized multi-agent system rather than a system that manages and optimizes agents in a
central manner. Existing research on SPATAP involving modeling the environment as a MDP and
applying Monte Carlo tree searches has shown that this approach is efficient. However, there has not
been sufficient research into scenarios in which all agents are provided a common plan despite the fact
that their actions are decided independently. Thus, previous studies have not considered cooperative
robot behaviors with different goals, and the problem where each robot has different goals has not
been studied extensively. In terms of the cooperative element, the item exchange approach has not
been considered effectively in previous studies. Therefore, in this paper, we focus on the problem of
each robot being assigned a different task to optimize the percentage of picking and delivering items
in time in social situations . We propose an action-planning method based on the Monte Carlo tree
search and an item-exchange method between agents. We also generate a simulator to evaluate the
proposed methods. The results of simulations demonstrate that the achievement rate is improved
in small- and medium-sized warehouses. However, the achievement rate did not improve in large
warehouses because the average distance from the depot to the items increased.

Keywords: decentralized online planning; warehouse commissioning; autonomous mobile robot;
multi-agent system

1. Introduction

Multiple robot systems are becoming increasingly common in industry, and such
systems are expected to revolutionize the factories of the future (Industry 4.0) through
networked devices and mobile manipulation platforms. A paradigm shift from fixed robots
to more flexible general-purpose mobile robots will be significant. In addition, dynamic
resource allocation (DRA) is anticipated to handle uncertain demand, which is a common
problem in city-scale cyber-physical systems (CPSs) [1]. In such scenarios, the decision-
maker optimizes the spatial location of the resources (i.e., agents) to maximize utility by
satisfying constraints specific to the target problem domain. This optimization requires
designing and developing procedures to estimate how the system will evolve, as well as
evaluations of the long-term value of actions. DRA is applied to many real-world problems
in urban management, CPSs, and multi-agent systems. Recently, the use of multi-agent
systems has become widespread as an essential technology [2].

One of the essential problems and applications in multi-agent systems is collaborative
automated picking and delivery operations in warehouses. Warehouse commissioning
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involves finding specified items in a warehouse environment and moving them to a speci-
fied location using robots as efficiently as possible while considering various constraints,
e.g., the capacity of the robots [3]. A critical aspect of warehouse commissioning is coor-
dinating which worker fetches and delivers which item. With human pickers, this task is
allocated to a human picker using pre-computed pick lists, which are generated centrally
by the warehouse management system and executed statically, meaning an allocated task
cannot be reassigned to different pickers when the allocated picker is in motion [4].

Most previous studies related to warehouse commissioning focused on managing and
optimizing robots in a central manner; however, to the best of our knowledge, there has not
been sufficient research into methods for each robot to plan its actions autonomously. Action
plans in autonomous robots are referred to as the spatial task-allocation problem (SPATAP),
which is based on the Markov decision process (MDP). Here, we assume that this problem
should be modeled using decentralized agents rather than focusing on central management
and robot optimization. Previous studies on SPATAP modeled the environment as an
MDP, and it has been reported that applying the Monte Carlo tree search (MCTS) is
efficient [5]. However, there has been insufficient research into scenarios in which all agents
are provided a common plan despite the fact that their actions are decided independently.
In other words, previous studies have not considered cooperative robot behaviors with
different goals, and the problem whereby each robot has different goals has not been
investigated extensively.

Thus, in this paper, we focus on the problem where each robot is assigned a different
task list in order to optimize the percentage of picking and delivering items in time in social
situations . We propose an action-planning method based on MCTS and an item-exchange
system between agents. We also generate a simulator for this task. Our results of simulations
demonstrate that the achievement rate is improved in small- and medium-sized warehouses.

The primary contributions of this study are summarized as follows.

• We propose an environment in which each agent picks up the assigned items under
constraints prohibiting collision during agent movement. We formulate the environ-
ment as a multi-agent MDP and discuss how the next state is determined from the
current state and the actions of all agents;

• We propose a behavioral-planning method to transport items efficiently and a mecha-
nism to exchange allocated items between agents. We also present an action-planning
method based on MCTS;

• To improve the achievement rate, we propose a negotiation protocol and exchange
negotiation strategies to facilitate the exchange of allocated items between agents;

• The results of the simulation test comprehensively demonstrate the achievement rate
of the item-exchange strategies under various test settings.

The remainder of this paper is organized as follows. Section 2 describes previous
studies on warehouse commissioning. Section 3 defines the target problem based on the
SPATAP. Section 4 presents the proposed MCTS-based action-planning method, which we
refer to as the fully decoupled UCT (FDUCT) method. Section 5 proposes the item-exchange
protocol and the exchange strategy between agents. Section 6 explains the simulator used
to evaluate the proposed approach, and Section 7 discusses the results of the simulations.
Finally, Section 8 concludes the paper and presents future challenges.

2. Related Work

Warehouse commissioning is defined as the formal framework of SPATAPs, in which
a team of agents interacts with a dynamically changing set of tasks and where the tasks
are distributed over a set of locations in the given environment [6]. These models provide
principled solutions under the uncertainty of action outcomes and provide defined opti-
mality [5]. In particular, the SPATAP framework can consider moving and working on
a task as actions. The SPATAP framework facilitates reasoning about all such actions to
maximize the expected utility. The MCTS [7] is effective for this problem because it has a
large number of states in each term and a long timeline.
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Other approaches to SPATAP include auction-based methods [8], which are well
suited to task-allocation problems in multi-agent system. Schneider et al. [9] stated that
the “The advantages of the best auction-based methods are much reduced when the robots are
physically dispersed throughout the task space and when the tasks themselves are allocated over time.”
However, they did not address the sequential and changing nature of the tasks because
they assumed the tasks to be static. Generally, auctioning is also strongly dependent
on communication, while the proposed method only requires the locations of the other
agents. In a previous study [10], the evaluation results demonstrated that an MCTS-
based approach can reduce communication costs significantly while achieving a higher
coordination performance.

SPATAPs can also be considered general resource-allocation problems [11]. For ex-
ample, Kartal et al. [12] used the MCTS to solve task-allocation problems. However, they
focused on MRTA problems with a static task list. This differs from the current study due
to the reallocations at each time step and the consideration of spatially distributed tasks
and travel times. Henn et al. [4] focused on order-picking and -batching problems that
only generate static pick lists, which are then executed statically. However, this study did
not consider online replanning, changing the task allocations during execution, or decen-
tralized scenarios. Claes et al. [5] proposed MCTS-based distributed-planning approaches
and ad hoc approximations to solve the multi-robot warehouse-commissioning problem.
This study differs from our work because they did not consider the no-collision constraints
and task-exchange procedures. Haouassi et al. [13] generalized integrated order batching,
batch scheduling, and picker-routing problems by allowing the orders in the order-picking
operations in e-commerce warehouses to split. In addition, they proposed a route-first
schedule-second heuristic to solve the problem. However, this study focused on the impact
of splitting the orders, which differs significantly from the purpose of the current study.

3. Problem
3.1. Spatial Task-Allocation Problem and Markov Decision Process

The SPATAP[6] involves the following environment and is based on a multi-agent
MDP [14]:

• There are N agents;
• There is a graph G = (V, E), and the agent is located at one of the nodes in the graph;
• One node referred to as the depot (stop) is fixed;
• The agent has a fixed value capacity c;
• If the agent has c tasks running, it cannot run new tasks until it is reset in the depot;
• There are four types of agent actions, i.e., do nothing, move to an adjacent node,

execute a task at the current node, and reset;
• All agents act simultaneously for each step;
• Node v has a fixed probability pv, and a task appears at each step with probability pv;
• The state changes every step, and the agent receives rewards according to its actions;
• The agent has full state observability.

The MDP [15] is an environment in which the next state and the reward received by
the agent are determined by the current state and the agent’s actions. The MDP is defined
by the following four values:

• S: Set of agent states;
• A: Set of possible actions;
• T(s, a, s′): Transition function;
• R(s, a, s′): Reward function;

The transition function returns the probability of transitioning to state s′ ∈ S when
action a ∈ A is selected in state s ∈ S, and the reward function returns the reward when
transitioning from state s to state s′ by action a.

The SPATAP is defined according to the following seven values based on the MDP:

• D : Agent set;
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• G = (V, E) : Graph;
• I : The collection of agent states;
• T : The set of node states;
• A : The set of possible actions;
• P(s, a, s′) : Transition function;
• R(s, a, s′) : Reward function;

The state of an agent is the combination of the agent’s current position and the number
of tasks it is currently executing, and the state of a node is represented by the number of
tasks at that node. The transition function returns the probability of transitioning to state s′

when action a is selected in state s, and the reward function returns a reward vector (where
the ith element corresponds to the reward of the ith agent).

3.2. Target Problem

The target problem can be defined based on the SPATAP. Here, a warehouse is rep-
resented as a grid graph G with a single depot node. The warehouse includes N agents,
and each agent selects an action for each step independently and executes it simultaneously.
In addition, each agent can execute the following four actions:

• Stay in place;
• Move to an adjacent node;
• Collect the item;
• Drop the item at the depot.

Movements that cause agents to collide with other agents will fail, and agents that
fail to move will remain in place. Note that a collision can cause a chain of movement
failures. In addition, agents with items cannot collect new items until the current items are
deposited at the depot. In each step, the items assigned to agent 1, agent 2, . . . , and agent n
appear at a random vertex with probability p (each event is independent). Here, the agent’s
objective is to maximize the number of picking items assigned to it that are delivered to the
depot within T steps. Figure 1 illustrates a case with three agents in the warehouse.

Figure 1. Example problems with three agents in the warehouse. Each agent selects an action for each
step independently and executes it simultaneously to maximize the number of assigned items.

The environment of this problem is formulated with the following parameters:

• D: Agent set;
• G: Graph;
• I: The set of possible states of the agent;
• T: The set of possible states of a node;
• A: The set of possible actions for the agent;
• P(s, a, s′) : Transition function;
• R(s, a, s′) : Reward function;
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The state of an agent is the combination of the agent’s current position and the number
of items it has (0 or 1), and the state of a node is the total number of items assigned to each
agent at that node. The transition function returns the probability of transitioning to state
s′ when action a is selected in state s. The reward function returns a reward vector in which
the ith element corresponds to the reward of the ith agent.

No-Collision Constraints

In the target problem’s environment, movements that cause agents to collide with
each other fail, and the agents that fail to move remain in place. Given the actions of all
agents, we can determine the next position of each agent using Algorithms 1 and 2. Here,
the NEXT(pos, a) function returns the next position (ignoring collisions) when the agent
whose current position is pos selects action a. WHOCUR(pos) represents the number of the
agent whose current position is pos (None if none exists), and WHONEXT(pos) is the set of
agents attempting to move to pos. In Algorithm 1, the NextPos(cur, a) function receives
each agent’s current position and action, and it returns each agent’s next position. First,
for each agent d, we markd and initialize f aild to record whether the movement fails, set the
next position when collisions are ignored in nxtd, and update WHOCUR and WHONEXT
(lines 1–7). Then, for each agent d, if Check(d) has not been called, we call Check(d), and if
the movement fails, we set nxtd to curd (lines 8–15). The Check(d) function in Algorithm 2
determines whether agent d can move. First, if another agent is attempting to move to the
same vertex as agent d, agent d fails to move (lines 2–6). In the following, we assume that
this is not the case. If no agent is at the destination of agent d, agent d can move (lines 7–11).
When agent c is at the destination of agent d, if agent c fails to move, agent d also fails
to move (line 21). Thus, the decision is made recursively while tracing the agent at the
destination (lines 12–14). However, if a loop occurs, the movement will fail (lines 15–19).
This rule also prohibits movements that involve agents passing each other.

Algorithm 1 NextPos

Require: cur: Current position in each agent, a: Action in each agent
Ensure: nxt: Next position in each agent,

1: for all d ∈ D do
2: markd ← UNVISITED
3: f aild ← False
4: nxtd ← NEXT(curd, ad)
5: WHOCUR(curd)← d
6: WHONEXT(nxtd)←WHONEXT(nxtd) ∪ {d}
7: end for
8: for all d ∈ D do
9: if markd == UNVISITED then

10: Check(d)
11: end if
12: if f aild then
13: nxtd ← curd
14: end if
15: end for
16: return nxt
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Algorithm 2 Check

Require: d: Agent’s Number focused on currently
1: markd ← VISITING
2: if |WHONEXT(nxtd)| > 1 then
3: markd ← VISITED
4: f aild ← True
5: return
6: end if
7: c←WHOCUR(nxtd)
8: if c == None then
9: markd ← VISITED

10: return
11: end if
12: if markc == UNVISITED then
13: Check(c)
14: end if
15: if markc == VISITING then
16: markd ← VISITED
17: f aild ← True
18: return
19: end if
20: markd ← VISITED
21: f aild ← f ailc

4. Fully Decoupled UCT
4.1. Monte Carlo Tree Search

The MCTS is a search algorithm based on a simulation that is used in game AI and
other applications. A typical example of its application is AlphaGo [16]. It comprises the
four steps, and each step is summarized as follows:

1. Selection: begin from the root node R and select actions according to an appropriate
algorithm until the unexpanded node L is reached;

2. Expansion: Expand if the number of visits to node L is greater than or equal to the
threshold. If the node is visited at the next time, it is for searched more deeply ;

3. Simulation (Rollout, Playout): begin from L and select actions according to an appropri-
ate algorithm until the end of the game (or a certain depth), and then calculate the
obtained cumulative reward;

4. Backpropagation: propagate the reward from L to R and update the average reward
obtained when each action is selected at each node.

The pseudocode for the MCTS is given in Algorithm 3. Here, the Next(cur, a) function
returns the next state when action a is selected at node cur, and the MostSelected(cur)
function returns the most selected action at cur. Moreover, LIMIT represents the upper
limit of the number of iterations, and THRESHOLD is the threshold for expansion.
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Algorithm 3 MCTS

Require: s: Current status
Ensure: a: Most selected action

1: counter ← 0
2: while counter < LIMIT do
3: cur ← s
4: while Expanded[cur] do
5: selected← Select(cur)
6: cur ← Next(cur, selected)
7: end while
8: VisitCount[cur]← VisitCount[cur] + 1
9: if VisitCount[cur] >= THRESHOLD then

10: Expanded[cur]← True
11: end if
12: Rollout(cur)
13: Backpropagation(cur)
14: counter ← counter + 1
15: end while
16: return MostSelected(s)

4.2. Upper Confidence Tree

In the MCTS, actions that are selected in the Selection step are searched for more
intensively. It is important to select the most promising (likely to be optimal) action.
However, if we simply select the action with the highest average reward obtained so far, we
will miss the optimal action if it exists among actions that have not yet been fully explored.
Thus, it is necessary to balance knowledge utilization (i.e., exploitation) and exploration
when selecting actions. For this problem, an existing method treats the selection of actions
as a multi-armed bandit problem [17] and applies the UCB algorithm [18]. In this method,
the score of the behavior a is calculated as

score =
Ra

Na
+ c

√
ln N
Na

,

and we select high-quality actions. Here, Na is the number of times action a was selected,
N is the sum of Na, Ra is the sum of the cumulative rewards obtained when action a is
selected, and parameter c controls how many times the search is performed. The MCTS
using this method is referred to as UCT [7].

4.3. Agent Behavior Prediction

When applying MCTS to a simultaneous start game, e.g., In the SPATAP, the agent
needs to predict the actions that other agents will choose because the next state is not deter-
mined by a single agent’s actions. Note that behavior-prediction algorithms must be fast
because they are executed repeatedly. For the SPATAP, a prediction method that assumes
each agent acts based on some kind of greedy method has been proposed previously [5].
The pseudocode for the iterative greedy algorithm, which is one of the proposed methods,
is given in Algorithm 4. Here, rd,v is the value of node v for agent d, the LIST()function
returns an empty list, and GOTO(d, v) is the value of node v for agent d. This function
returns the behavior when going to node v along the shortest route. The proposed iterative
greedy algorithm scans the list of pairs of agent d and node v in descending order of rd,v,
and it repeats the matching operation if agent d and node v can be matched. Note that
the agent d that is matched with node v moves from the current node to node v via the
shortest route.
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Algorithm 4 Iterative Greedy

Require: s: Current status
Ensure: a: Actions of each agent

1: L← LIST()
2: for all d ∈ D do
3: for all v ∈ V do
4: L.append((d, v))
5: end for
6: end for
7: sort L by rd,v in descending order
8: Dass ← ∅
9: Vass ← ∅

10: for all (d, v) ∈ L do
11: if d ∈ Dass or v ∈ Vass then
12: skip
13: end if
14: ad ← GOTO(d, v)
15: Dass ← Dass ∪ {d}
16: Vass ← Vass ∪ {v}
17: end for
18: return a

4.4. Decoupled UCT

The decoupled UCT (DUCT) algorithm is an extended version of the UCT algorithm
for simultaneous-move games [19]. In the original UCT algorithm, each node of the search
tree stores the number of times action a was selected and the sum of the cumulative rewards
obtained by selecting action a, as shown in Table 1. In contrast, the DUCT algorithm has
a table for each agent at each node of the search tree and selects the actions of each agent
by executing the UCB algorithm for each table. In other words, this method predicts the
behavior using the UCB algorithm rather than using a greedy-based behavior-prediction
algorithm. The advantage of the DUCT algorithm is that it is easy to apply because there
is no need to design a specific algorithm for each distinct problem. However, in practical
applications, when the game has more than three players, the search space becomes huge;
thus, it is difficult to apply the DUCT algorithm directly. Thus, we should also consider
metrics to facilitate pruning.

Table 1. Table of each node in DUCT algorithm.

Action A B C

Number of selections 4 3 3

Cumulative reward 10 5 40

4.5. Fully Decoupled UCT

As mentioned previously, the DUCT algorithm is an extended UCT algorithm for
simultaneous-move games. Compared to using a behavior-prediction algorithm based
on a greedy method, this method is easier to implement because there is no need to
design different algorithms for different problems. However, as the number of agents
increases, it becomes increasingly difficult to search deeply because the number of options
(i.e., the set of actions for each agent) at a certain node increases exponentially relative to
the number of agents. When using a behavior-prediction algorithm based on the greedy
method, the choices at a given node are constant regardless of the number of agents because
only one’s own behavior involves degrees of freedom. If other agents also select actions
using MCTS, it is difficult to predict their actions using an algorithm based on a simple
greedy method.
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Thus, we also propose the fully decoupled UCT (FDUCT) algorithm so that the
number of actions selected at a specific node is constant regardless of the number of agents.
The basic concept of the FDUCT algorithm is to execute as many UCTs as there are agents
in parallel. For example, assume we have three agents (Agent 1, Agent 2, and Agent 3),
and Agent 1 is attempting to plan its own actions using the FDUCT algorithm. In this case,
Agent 1 employs a UCT to plan its own actions (referred to as UCT1) and a UCT to predict
the actions of Agents 2 and 3 (referred to as UCT2 and UCT3, respectively) in parallel.
Here, each UCTi searches for the optimal action in a single agent’s MDP in which only
agent i acts. As a result, the number of actions selected at each node in UCTi is constant
regardless of the number of agents because only the actions of agent i are selected. As a
result, it can search more deeply than the DUCT algorithm. However, it cannot reflect the
interaction between agents; thus, we cannot avoid collisions. Therefore, we also introduce
a mechanism that sequentially shares the actions selected by each agent between UCTs and
performs state transitions in consideration of conflicts.

The pseudocode for the proposed FDUCT algorithm is given in Algorithm 5. Here,
the Decouple(s) function separates the entire state into the states of each agent. First,
the overall state is separated into the states of each agent (line 6), and the actions of each
agent are selected using the UCB algorithm (lines 7–9). Next, state transition is performed
based on the current state and each agent’s actions considering the conflicts between
agents (line 10). Then, the same processing as the normal UCT is performed for each agent
(lines 12–23).

Algorithm 5 Fully Decoupled UCT

Require: s: Current status
Ensure: a: Actions selected at most

1: counter ← 0
2: while counter < LIMIT do
3: cur ← s
4: done← 0
5: while done < n do
6: cur1, cur2, . . . , curn ← Decouple(cur)
7: for all curi do
8: selectedi ← UCTi.Select(curi)
9: end for

10: cur ← Next(cur, selected)
11: cur1, cur2, . . . , curn ← Decouple(cur)
12: for all curi do
13: if UCTi.Expanded[curi] then
14: skip
15: end if
16: UCTi.VisitCount[curi]← UCTi.VisitCount[curi] + 1
17: if UCTi.VisitCount[curi] >= THRESHOLD then
18: UCTi.Expanded[curi]← True
19: end if
20: UCTi.Rollout(curi)
21: UCTi.Backpropagation(curi)
22: done← done + 1
23: end for
24: end while
25: counter ← counter + 1
26: end while
27: return MostSelected(s)
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5. Item-Exchange Protocol and Agent Strategies

We also propose a mechanism to exchange allocated items between agents. This algo-
rithm prevents agents from becoming overloaded or idle by distributing the load among
the available agents in order to improve the efficiency of warehouse commissioning tasks.

5.1. Item-Exchange Protocol

The exchange of items between agents is performed according to the following proto-
col. Item exchange occurs at the beginning of each step before the agent executes an action.

1. Each agent selects at most one item from among the items assigned to them that they
would like to have transported on their behalf and submits a request;

2. Each agent selects and responds to at most one request that it is willing to accept;
3. The requesting agent selects a single agent willing to accept the request. After that,

the requesting agent sends the acceptance message to the agent.

5.2. Exchange Strategy

In this section, we describe the proposed item-exchange strategy. Here, a request
strategy is employed to determine whether to issue a request and which item to request for
transportation. An acceptance strategy is used to determine whether to accept a request and
which request to accept. The strategy to determine who to select from among the agents
who have responded that they will accept the request is called the nomination strategy and
is distinguished from this strategy.

5.2.1. Request Strategy

We first define the load loadi of agent i using the following formula. Here, Vi is the set
of vertices with an item assigned to the agent, count(v) is the number of bags at vertex v,
and dist(v) is the number of bags from the depot of vertex v. The distance curi is the current
position of agent i. In addition, HasItemi is true when agent i has the item; otherwise,
HasItemi is false.

loadi =

{
∑v∈Vi

dist(v)× count(v) + dist(curi) (agenti has Items)
∑v∈Vi

dist(v)× count(v) (otherwise)

An agent decides whether to issue a request based on its own load and the average
load. If its load exceeds the average load, it issues a request; otherwise, a request is
not issued.

We propose the following three strategies to determine which item to request for
transportation:

• Select the item closest to the depot (NEAREST_FROM_DEPOT);
• Select the item most distant from the depot (FARTHEST_FROM_DEPOT);
• Select a item at random (RANDOM).

However, in any case, items whose distance from the depot exceeds the difference
between their own load and the average load are excluded from the available candidates.

5.2.2. Acceptance Strategy

An agent determines whether to accept a request based on its own load and the average
load. If its own load is less than the average load, it will accept the request; otherwise, it
will not accept the request.

We propose the following three strategies to determine which request to accept;

• Select the request closest to the depot (NEAREST_FROM_DEPOT);
• Select the request most distant from the depot (FARTHEST_FROM_DEPOT);
• Select a request at random (RANDOM).

However, items whose distance from the depot exceeds the difference between the
agent’s load and the average load are excluded from the available candidates.
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5.2.3. Nomination Strategy

Among the agents who indicated they are willing to accept the request, the agent with
the lowest load is nominated.

6. Multi-Agent Warehouse-Commissioning Simulator
6.1. Input

The configuration file input to the simulator is in a JavaScript Object Notation format.
The items that can be set in the configuration file are summarized as follows, and an
example of how to write the configuration file is shown in Figure 2a. In addition, Figure 2b
shows the visualization of our simulator. It is a straightforward visualization because our
simulator is simple to use for evaluating our proposed approach. “♯” means the wall, “.”
means the load, and “D” means the agent. In future work, we will improve the visualization
by showing the position of each agent (different colors) in the graph.

• numAgents: Number of agents;
• lastTurn: Number of steps to perform the simulation;
• newItemProb: Probability that a new item will appear;
• numIters: Number of iterations in the FDUCT algorithm;
• maxDepth: Maximum depth to search in the FDUCT algorithm;
• expandThresh: Expansion threshold in the FDUCT algorithm;
• reward: The reward is obtained when the agent collects and unloads the item at

the depot;
• penalty: The penalty (i.e., a negative reward) is given to an agent when it collides with

another agent;
• discountFactor: Discount rate in cumulative reward calculation;
• randSeed: Random number seed value;
• enableExchange: Whether to exchange luggage;
• requestStrategy: Request strategy;
• acceptStrategy: Acceptance strategy;
• nominateStrategy: Nomination strategy;

Figure 2. Example of configuration file and visualization.
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6.2. Output

The following results are output when the simulation ends.

• The number of items that appeared;
• The number of items that could be carried;
• The achievement rate for each agent.

If multiple simulations are run, the average and variance of these values are output.
In addition, the total number of items that have appeared, the total number of transported
items, and the overall achievement rate, which is (the total number of items that have been
carried)/(total number of items that have appeared), are also output.

7. Evaluation

We evaluated the effectiveness of the item-exchange system by comparing the sim-
ulation results obtained with and without the item-exchange process. In addition, we
performed simulations for all pairs of request strategies and acceptance strategies, and we
evaluated the exchange strategies by comparing the results. We conducted a preliminary
test to determine appropriate parameter values for the FDUCT algorithm.

7.1. Common Settings

The common settings used in all simulations are shown in Table 2. In real applications,
time constraints exist. In our simulations, we set the time limitations (lastTurn ) and
evaluated the achievement rate by 100 steps. The values of maxDepth (the maximum
depth to search in the FDUCT algorithm), expandThresh (the expansion threshold in the
FDUCT algorithm), and the penalty (given when collisions with other agents occur) were
determined based on the parameter-tuning results. The simulation was performed 30 times,
and the average overall achievement rate was compared.

Table 2. Common setting of simulation test.

Parameter Value

numAgents 3
lastTturn 100
newItemProb 0.1
numIters 20,000
maxDepth 20
expandThresh 2
reward 100
penalty −5
discountFactor 0.9
randSeed 123

7.2. Grid Graphs for Warehouses

Three types of grid graphs for warehouses were used in our tests: warehouse-small
(30 nodes), warehouse-medium (66 nodes), and warehouse-large (214 nodes). Each graph
is shown in Figures 3–5, respectively. In these figures, the blue nodes represent the depots.
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Figure 3. Warehouse-small grid graph.

Figure 4. Warehouse-medium grid graph.

Figure 5. Warehouse-large grid graph.
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7.3. Evaluation Result

In this simulation test, we evaluated the effectiveness of the item-exchange strategy by
comparing the simulation results obtained with and without the item-exchange process.
We also performed simulations for all pairs of request and acceptance strategies, and we
evaluated the exchange strategies by comparing the obtained results.

7.3.1. Warehouse-Small

The results of the simulation tests for the warehouse-small case are shown in Figure 6. Here,
BASELINE represents the result obtained without the item-exchange process, and X_Y
represents the result when the request strategy was X and the acceptance strategy was
Y. For example, NEAREST_RANDOM represents the result obtained when the request
strategy was NEAREST_FROM_DEPOT and the acceptance strategy was RANDOM.
The achievement rates for the different strategies are ranked in descending order as
follows : FARTHEST_RANDOM, NEAREST_RANDOM, NEAREST_FARTHEST, RAN-
DOM_FARTHEST, RANDOM_NEAREST, NEAREST_NEAREST, RANDOM_RANDOM,
FARTHEST_FARTHEST, and FARTHEST_NEAREST, BASELINE. In summary, the achieve-
ment rate exceeded that of BASELINE, which demonstrates that the item exchange is effec-
tive. In addition, the average achievement rate obtained using NEAREST_FROM_DEPOT
as the request strategy was 0.678, the average achievement rate obtained using FAR-
THEST_FROM_DEPOT was 0.674, and the average achievement rate obtained using RAN-
DOM was 0.675. For the warehouse-small case, using the NEAREST_FROM_DEPOT
request strategy obtained the best average results. This means that other agents with
more time (i.e., a lighter load) were asked to transport items that appeared near the depot,
and the agent collected items that appear further away from the depot due to the division
of roles. Note that it is also possible to have a reverse division of roles, where an agent
requests another agent to transport an item that appears far away, and the requesting agent
collects a closer item. Nearby items tend to be collected preferentially; thus, there is a
high probability that it will not be carried out in time, even if the transportation of an item
that appears far away is requested. Thus, it is easier to divide the roles by requesting the
transportation of nearby items.

Figure 6. Achievement rate of each strategy in warehouse-small case.

7.3.2. Warehouse-Medium

The results of the simulation tests for the warehouse-medium case are shown in
Figure 7. The achievement rates for the different strategies are ranked in descending
order as follows: FARTHEST_NEAREST, BASELINE, RANDOM_FARTHEST, NEAR-
EST_RANDOM, NEAREST_NEAREST, RANDOM_NEAREST, NEAREST_FARTHEST,
FARTHEST_FARTHEST, RANDOM_RANDOM, and FARTHEST_RANDOM. The achieve-
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ment rate of FARTHEST_NEAREST was higher than BASELINE, which demonstrates that
the item-exchange process is effective. However, unlike the warehouse-small case, most
strategies could not exceed the BASELINE because, as warehouses become larger, the aver-
age distance from the depot to items increases, and the time limit is reached by collecting
items close to the depot. In addition, the reason the achievement rate was higher than the
BASELINE only when FARTHEST_NEAREST was utilized is summarized follows. The
achievement rate is increased due to the transport of far-off parcels among them relatively
close to the depot that would normally not be carried within the time limit.

Figure 7. Achievement rate by strategy for warehouse-medium case.

7.3.3. Warehouse-Large

The results of simulation tests obtained for the warehouse-large case are shown
in Figure 8. The achievement rate for the compared strategies are ranked in descend-
ing order as follows: BASELINE, FARTHEST_NEAREST, FARTHEST_RANDOM, FAR-
THEST_FARTHEST, RANDOM_FARTHEST, NEAREST_RANDOM, NEAREST_NEAREST,
RANDOM_NEAREST, NEAREST_FARTHEST, and RANDOM_RANDOM. Note that the
achievement rate of the methods with item exchange did not exceed the BASELINE because
the warehouse was larger than the warehouse-medium case, and the distance from the
depot to the items was longer.

Figure 8. Achievement rate by strategy in warehouse-large case.
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8. Conclusions

In this paper, we have described an environment wherein each agent transports
items assigned to it under a constraint prohibiting movement that would cause agent
collisions. We have proposed a behavior-planning method and an item-exchange system
to transport items efficiently in such an environment. We evaluated the effectiveness of
the item-exchange system and exchange strategy through tests using a simulator. As
an action-planning method, we also proposed the FDUCT algorithm, which is based on
the conventional DUCT algorithm. This method predicts agent behavior using the UCB
algorithm. We found that this method solves the problem, whereby the number of options
at a given node increases exponentially with respect to the number of agents. For the
item-exchange system, we presented an exchange protocol and proposed several exchange
strategies. In the warehouse-small simulation test, we found that the achievement rate
exceeded the rate obtained without the item-exchange process. We also found that using
the NEAREST_FROM_DEPOT-request strategy resulted in a higher achievement rate on
average compared to the other compared strategies. However, in the warehouse-medium
and warehouse-large cases, as the warehouse became larger, the average distance between
the depot and the items also increased.

Thus, potential future work could focus on cases in which the number of agents
is larger. Evaluations with a larger number of agents are the potential focus of future
work. If the number of agents increases more, we can simulate traffic jams. We believe
that the proposed approach can escape the traffic jams as much as possible because it
considers no-collision constraints. In addition, the proposed FDUCT algorithm solves the
problem where the number of options at a given node increases exponentially according
to the number of agents. A possible solution is the approach of narrowing down to a
certain number of agents based on the distance between agents. Other potential future
work involves improving the problem settings and evaluation indicators. With the current
problem setting, the achievement rate naturally decreases as the size of the warehouse
increases. In the meantime, new items appear to have reached a fundamental solution.
Thus, it is necessary to set an upper limit on the number of items that appear and perform
evaluations based on the time required to transport all items.
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