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Abstract: This paper aims to provide discernment toward establishing a general framework, dedicated
to data analysis and forecasting in smart buildings. It constitutes an industrial return of experience
from an industrialist specializing in IoT supported by the academic world. With the necessary
improvement of energy efficiency, discernment is paramount for facility managers to optimize daily
operations and prioritize renovation work in the building sector. With the scale of buildings and
the complexity of Heating, Ventilation, and Air Conditioning (HVAC) systems, the use of artificial
intelligence is deemed the cheapest tool, holding the highest potential, even if it requires IoT sensors
and a deluge of data to establish genuine models. However, the wide variety of buildings, users,
and data hinders the development of industrial solutions, as specific studies often lack relevance
to analyze other buildings, possibly with different types of data monitored. The relevance of the
modeling can also disappear over time, as buildings are dynamic systems evolving with their use.
In this paper, we propose to study the forecasting ability of the widely used Long Short-Term
Memory (LSTM) network algorithm, which is well-designed for time series modeling, across an
instrumented building. In this way, we considered the consistency of the performances for several
issues as we compared to the cases with no prediction, which is lacking in the literature. The insight
provided let us examine the quality of Al models and the quality of data needed in forecasting tasks.
Finally, we deduced that efficient models and smart choices about data allow meaningful insight
into developing time series modeling frameworks for smart buildings. For reproducibility concerns,
we also provide our raw data, which came from one “real” smart building, as well as significant
information regarding this building. In summary, our research aims to develop a methodology for
exploring, analyzing, and modeling data from the smart buildings sector. Based on our experiment
on forecasting temperature sensor measurements, we found that a bigger AI model (1) does not
always imply a longer time in training and (2) can have little impact on accuracy and (3) using more
features is tied to data processing order. We also observed that providing more data is irrelevant
without a deep understanding of the problem physics.

Keywords: smart building datasets analyses; enabling technologies for the IoT; Building Information
Modeling (BIM); knowledge generalization; data evaluation

1. Introduction

According to the International Energy Agency (IEA) [1], building operations accounted
for 30% of global final energy consumption in 2021 and 27% of global CO, emissions.
The stringency of building performance criteria is increasing. However, its pace is hardly
matching low-carbon policies, and the energy demand is still on the rise, as well as the
complexity of newly created buildings. The IEA consequently noted a 4% increase in energy
demand from 2020 to 2021. Tackling this evolution to get on track with the 2050 Net Zero
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Emissions Scenario requires ambitious and scalable policies involving all stakeholders to
save on operating costs, especially on Heating, Ventilation, and Air Conditioning (HVAC).
In France, laws evolve to enforce greener building policies with the BACS and Tertiary
decrees (https://www.adeunis.com/en/bacs-decree-buildings/, accessed on 1 January
2020). The former implements mandatory Building Automation and Control Systems,
while the latter focuses on energy savings for their operation with a target of 60% energy
savings in 2050 compared to 2020. Mandatory reports on the Operat official online platform
track the performances and adequacy of new policies put forward by companies, but they
require much information about buildings. Monitoring companies’ efforts to cut energy
consumption under the threat of shaming and fines highlights the scale of a nationwide
effort. As 85% of European buildings are older than 2001 and 85% of current buildings will
still be there in 2050, according to the 2020 European Commission report to the European
parliament, facility managers need solutions adapted to already existing facilities.

Internet-of-Things (IoT) companies, like Adeunis, with its IoT battery-powered sensors,
offer expert tools and flexibility adapted to the iterative monitoring of existing buildings.
Many services and tools exist, with nearly 460 companies associated to create the Smart
Building Alliance (https://www.smartbuildingsalliance.org/en/home/, accessed on 1
January 2020). Facility managers can then save on operating costs, ensure they meet state
policies, and plan for the most-efficient renovation to prioritize.

In this context, occupancy policies hold a frequent interest, as current and future
buildings are dynamic systems serving a spectrum of users with their purposes and
schedules. One such is using flex-office, which consists of sharing a part of the space
between users at the price of scheduling their working hours so that they do not interfere,
but the place occupation rate reaches its full capacity. It synergies well with the increase
in homeworking following the COVID crisis, which is currently still highly valued by job
applicants and is considered a way to tackle the skyrocketing prices of square meters in
the most-demanded places. Such dynamic systems are also subjected to fast evolution and
often a loss of knowledge linked to occupant turnover and the progressive deterioration
of equipment.

Moreover, the study of indoor and outdoor parameters aims at creating building mod-
els by the use of expert systems of black-box Al algorithms. These models may also have
been made already by software like EnergyPlus, but they can be lost or inadequate after
changes during the construction. It is also recommended by the International Performance
Measurement and Verification Protocol (IPMVP-2022) to choose efficient building improve-
ment strategies [2]. The modeling process is also opening to a transition from automation to
Model Predictive Control (MPC) [3], leading to further accurate energy demand in building
operations under the condition of adequate effort to answer big data challenges.

On the big data side, challenges are summarized by the 5V, standing for Volume,
Velocity, Variety, Veracity, and Value, popularized by the paper of Cees de Laat, Demchenko
Yuri, and Peter Membrey [4]. Volume refers to the staggering amount of data, with sensors
monitoring indoor/outdoor environments, energy consumption, and users’ behaviors,
as well as the concurrent information of schedules. Velocity refers to the use of data for
online analysis to attend to the real-time control of building operations. Variety encompasses
the heterogeneity of data and the challenge of data fusion and analysis to understand
the complex interplay between various factors affecting building performance. Veracity
addresses the quality and reliability of data, which is necessary for the trust and accuracy
of any Predictive Control system. The final V of Value represents the ultimate goal of
data analysis in smart buildings. Organizations unlock significant values by extracting
meaningful insights and predictions, driving efficiency and occupant satisfaction. Time
series forecasting and Model Predictive Control optimize energy consumption, reduce
costs, and create a comfortable environment.

Our work focuses on Variety and Veracity to study the scalability of smart building
Al methods and the relevance of data and observations made in this field. To this end, we
studied the ability of Al to forecast HVAC power consumption, CO,, and temperature.
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As a result, we hope to help people implement all of the aforementioned use cases through
informed choices. We believe that the discussion, insights, and results we present can serve
as a general frame to address the Al and IoT issues in the context of smart buildings.

The paper’s organization is as follows. Section 2 describes the dataset used and the
monitored building. In Section 3, we draw parallels between our work and related works
in forecasting time series and related performance generalization. Section 4 explains our
approach to defining and analyzing forecasting issues inherent to the smart building sector.
There, we propose a pragmatic metric to evaluate the utility of Al over a simple lag. It
emphasizes our effort to match the modeling complexity with reasonably sized Al architec-
tures and analyses performance to define challenges raised by building properties. Section 5
provides more experiments to refine further the specific need for data in smart building
forecasting. Indeed, we observe that a bigger architecture does not necessarily need more
time to be trained and can have little impact on accuracy, as well as the dominance of data
processing order along with feature selection. In Section 6, we specifically interpret the
experimental results to provide insights regarding the datasets for future use, pointing
out the importance of understanding physics problems over providing a huge amount
of data. Section 7 concludes the paper. We also give an Appendix A to exemplify our
implementations and the reproducibility concerns.

2. Presentation of the Dataset and the Studied Building

The monitored building [5] is a 1200 m? building mainly serving R&D purposes.
The building, constructed on top of the ground floor, has a small first floor holding a
meeting room. Around 30 employees occupy the building 75% of the working time on
average, as remote working remains an ordinary policy.

The building is monitored with 28 LoRaWAN wireless sensors:

e 7 sensors for temperature and humidity;

* 13 other sensors for temperature, humidity, and CO; on each;

* 3 sensors for the opening and closing of 2 windows and the break room door;

* 3 sensors for the use of meeting rooms by quantifying motion detected over time
and ambient light, which are not used and not shared;

* 3 sensors for the concentrations in total volatile organic components (TVOCs) and
particulate matter (PM1.0, PM2.5, PM10);

* 5sensors for 5 HVAC on the power meter.

The ground plan of the building with the sensors’ positions is provided in Figure 1.
Only one HVAC from the Tech zone is monitored, the one far from the windows.

The experiments in this paper did not use all the sensors, as side experiments made
us change several sensors. The occupancy sensors were inconvenient to exploit. The
two sensors put aside have a red cross on them. Only sensors working concurrently during
most of the experiment were used to prevent huge gaps in data collection. Like other indoor
environment data, the temperature data lasted 232 days, from +2022 October 24 13:20:00+
to +2023 June 14 07:30:00+. Consumption data started later, as they needed specific skills
and raised compatibility problems on the electric panel, lasting 90 days from +2023 March
15 16:20:00+ to +2023 June 14 07:40:00+. Multivariate data were based on the intersection
of datasets.

To cope with the quantity of data and the complexity of irregular building behavior,
for hourly predictions and the base observation of 1-hour sequences, the following data
were used for training and inference:

e 15 weeks of data to train in temperature forecasting;

* 6 weeks to evaluate temperature forecasting performances;

* 8 weeks of data to train in HVAC energy consumption forecasting;

* 6 weeks to evaluate HVAC energy consumption forecasting performances.

All sensors have a time step of 10 min, except weather data, which have a time
step of 1 h. Weather data, from outdoors, encompasses outdoor temperature, pressure,
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humidity, and cloudiness. The choice of 10 min has been made considering the use of
battery sensors and, thus, the cost of high-frequency monitoring at the scale of a building. It
was a reasonable choice, considering the thermal inertia of the building and the scheduling
of workers, with continuous workloads and meetings ranging from 1 to 4 h. A subscription
to OpenWeatherMap permits access to the weather dataset, but it cannot be shared for
licensing reasons.

Despite efforts to limit gaps in data collection, some remain because of network failures
at the scale of a sensor or the whole network. However, Al models, as presented in this
paper, need regular data with a constant step. We chose to keep 10 min and filled small
holes by linear interpolation, which allowed us to keep data at the price of reasonable
interpolation error. The gaps were filled up to 40 min by the left for datasets with 10 min.
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Figure 1. Map of the instrumented building.

3. Related Work

Time series forecasting has been a hot topic for decades for a wide variety of subjects
like stock exchanges [6], traffic jams [7], or smart building energy consumption [2], respec-
tively aiming at more profitability, decreasing traffic jams, and decreasing operating cost
while increasing indoor comfort.

Traditional linear algorithms, such as the Auto-Regressive Integrated Moving Average
(ARIMA) and exponential smoothing models, are still used for time series forecasting,
but often cannot capture complex nonlinear patterns that deep learning algorithms can
analyze. These linear algorithms prove reliable in some cases [8], where data aggregated
over a large territory appear to follow much more-regular patterns. For a wider diversity
of data, using deep learning to tackle high-dimensional correlated time series is a signifi-
cant trend emphasized by the resulting paper of the data forecasting competition M4 [9],
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where winners efficiently combined deep learning techniques and preprocessing steps into
hybrid algorithms.

The preprocessing steps have substantial impacts on forecasting results [10], but the
performances are attributed to adaptable deep learning algorithms like Long the Short-
Term Memory (LSTM) network, which outperform linear algorithms [9,11]. Another
path to improve Al algorithms lies in combining different architectures, with relevant
examples applied to energy forecasting like in [12], where the authors combine LSTM with
a Convolutional Neural Network (CNN) to improve the LSTM performances. A latter
article co-written by the winner of the M4 competition also focuses on the LSTM part to
further improve its results [13].

The paper [11] made impressive use of exponential smoothing to identify data sea-
sonality, where others try to increase the dimension of the space using Empirical Mode
Decomposition (EMD) [10]. The issue of seasonality remains in the case of smart build-
ings, but it is secondary. This field intersects with the indoor Internet of Things (IoT) for
smart buildings, which is reliable and provides timestamps with each communication.
Furthermore, calendars are easy to establish to monitor building occupants” behaviors
and provide enough temporal information, which may be missing in other domains [14].
Since contextual encoding of hours, days, weeks, weekends, and holidays is adequate for
work schedules, seasonality detection is a secondary issue in smart buildings. EMD can be
used along with seasonality detection to reduce noise in data like in the article [15], which
discusses its abilities and makes comparisons to ensemble methods and wavelet transfor-
mation techniques. It also raises issues about the strong constraints to efficiently apply
EMD to data, further developed in the article [16], which explains the highly data-driven
performances of EMD and the Dynamic Wavelet Transform (DWT). This is also supported
by [17], which specifically compares LSTM Neural Networks, ARIMA, and an EMD hybrid
method for energy load forecasting at different scales, showing better results at the scale of
the electric network than at the scale of a building.

On the same basis of the CNIN-LSTM architecture of [12], researchers also focus on
improving Al generalizability. The article [18] put forward a Bayesian model for indoor
air quality forecasting, selecting data based on their respective probabilistic contribution
to the forecast quality, while [19] focuses on the optimal search of hyperparameters with
genetic algorithms to forecast energy loads. The authors of [20] also consider Bayesian
models fusion, to estimate indoor temperature in rooms without sensors, while [21] uses
XGBoost Al models with the same purpose. These two articles explore a new perspective
on building data exploitation. In the specific case of smart building data, Ref. [22] exerted
good accuracy in forecasting energy consumption with an attention layer, designed to select
the most-relevant features and temporal data among a very big dataset. LSTM enhanced
by an attention layer was also used in [23] to study HVAC Predictive Control, using a
real highly monitored building. The purpose of attention layers is then to tackle problems
arising from the huge amount of data to target the most-relevant information.

Time series forecasting genuinely enables Model Predictive Control (MPC) for smart
building control, which focuses much more on decision-making and considers anomalous
or irregular events as the next step after building automation. The first challenge lies in fore-
casting indoor parameters such as temperature [24], CO, [25], and energy consumption [26]
and establishing a compromise regarding occupant perception [27].

However, few works have widened their study to an open-loop HVAC optimization,
considering the scale of the building and the variety of existing HVAC systems. Ref. [28]
uses the EnergyPlus expert simulation software for HVAC control simulation, while [29]
could access real HVAC control. The complexity of infrastructures for MPC, with humans
in the loop [30], is concurrently becoming a main issue, as emphasized by [31,32]. The final
step toward an industrial-scale Al solution will undoubtedly be to address this complexity
in data by enabling the MPC to select relevant data and detect anomalies [33,34]. Such
solutions at industrial scales must also be prepared for scarce data since building with as
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many sensors as in previous studies is uncommon, which is underlined by future directions
quoted in the review [35].

Our paper aims to show a realistic use of Al for data forecasting in smart buildings, em-
bracing a meaningful diversity of performances as expected in a real scenario. The building
presented here, with its amount of sensors and data granularity, is the result of an industrial
project aiming at the most-common case. Consequently, the fine-tuning of complementary
methods to LSTM was out of scope and may not cover such realistic cases. We also show
concern for reproducibility, to give insights into enabling Machine Learning Operations
(MLOps) for the field of smart buildings.

4. Forecasting Neural Network Evaluation
4.1. Pragmatic Metric to Evaluate Al Performances

The literature in the field of time series forecasting outlines the performances of
Recurrent Neural Networks (RNNs) over linear models, with the focus switched to the
size of architectures and the quality and quantity of data. Thus, the authors decided
to provide insight into the LSTM applied to the forecasting task. Indeed, compared to
common architectures like random forest, ARIMA, and the Multi-Layer Perceptron (MLP),
LSTM was more accurate for most hyper-parameters and consistent in its superiority.
Considering the work schedules of occupants in the building, the study was narrowed to
hourly forecasting only.

We also propose a new evaluation metric of the forecasting algorithm performances
that allows us to compare to a no-forecast case. Indeed, we considered a no-forecast
as a mere delay, where the best estimation for future data is the feature’s current value.
The Root-Mean-Squared Error (RMSE) expresses the error, with a much higher penalty for
the biggest errors in forecasting. However, it is hard to directly link the error of prediction
to the potential of Al in forecasting tasks.

Thus, we define performances as the ratio of reduction of the Root-Mean-Squared
Error (RMSE) of prediction when compared to a delay:

RMSE jglqy — RMSE

score =
RMSEdeluy

The upper bound is 1, and a negative value means the algorithm is not worth a simple
delay and should not be chosen to reduce the RMSE. This metric is intuitive, cross-domain,
and questions the very use of algorithms in forecasting issues. We expect it to be used
to move forward with a reasonable use of Al for industrial issues with a high potential
for improvement.

4.2. Forecasting Neural Network Complexity

LSTM is a recurrent Neural Network composed of one repeating cell, trained with
the gradient descent algorithm of back-propagation through time. The training process links
data sequences to future targeted data after several iterations of the LSTM cell, thus
literally learning how to process data through time, as shown in Figure 2a. The LSTM cell
includes four gates, which are Multi-Layer Perceptrons (MLPs) with different activation
functions in yellow in Figure 2b. The dimension of the LSTM Neural Network refers
to the size of the MLP that composes the cell, which is also the size of the latent space.
The figure also emphasizes the ability of LSTM to exert long-term memory thanks to
the upper path, while the short-term memory and output are transmitted through the
lower path. Illustrations are given on Colah’s blog, where an in-depth explanation is
available (https:/ /colah.github.io/posts/2015-08-Understanding-LSTMs/, accessed on 1
January 2020).


https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Information 2024, 15, 94

7 of 17

> —@
e—bb—be

(@)

. m

|
© ® ©

(b)

v

>

Figure 2. LSTM Neural Network principle and architecture. (a) LSTM principle; (b) LSTM
architecture.

We considered concurrently the number of LSTM stacked layers and the dimension of
the arrays processed. Without other information, we used an LSTM network with three
layers and a state space of size 100, over 1 h of temperature data (so seven samples including
the present value) to forecast 1 h (so six steps ahead). The day of the week and the hour
of the day on weekends or holidays were one-hot-encoded. They constitute an array of
dimension 33 with ‘0’ and “1’, concatenated with the output array of the LSTM. The final
array is processed by a Multi-Layer Perceptron (MLP) of 10 neurons, then a neuron without
an activation function. The MLP, thus, provides a latent space resulting from a non-linear
combination of LSTM monovariate output and calendar data. The final forecast is the result
of a linear combination of the 10 dimensions of this latent space by the Perceptron. We
conducted multiple tests, which are not shown here, and highlight the drop in accuracy
when using other calendar encodings. We expected it to result from time discontinuities in
numerical encoding.

Figure 3a depicts the performances of the three layers of the LSTM with several state
space sizes for each temperature sensor. Experiments on forecasting HVAC consumption
used a training set of 8 weeks and a test set of 3 weeks, increased, respectively, to 15 and
6 weeks when the consumption feature is not used. It appears here that the dimensions of
the latent space have little impact on the accuracy of the Neural Network for temperature
forecasting. However, it accelerates the mean training speed, as seen in Figure 3b over
our 16 temperature sensors. Thus, the selection of three layers and a state space of size
100 also holds the potential to handle more-complex data with more features used during
the forecasting.

Since the number of epochs during the training varies a lot for each experiment, with an
impacting stochastic part, we introduced a stopping condition: if no better prediction
appears in the next 50 epochs of training, the best weights found are returned. A hard cap
was put at 2000 epochs to return the best result, which was rarely reached. The choice of
a 50 epochs was made after observing that plateaus lasting more than 50 epochs, which
seldom existed in the training curves.
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evolution of LSTM efficiency as function of the state array size
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Figure 3. Overall performances of LSTM for temperature forecasting on all sensors. (a) Performance
as function of architecture used; (b) mean performances and training duration for several LSTM

architectures.

4.3. Forecasting Policies

Calendar data could be used as multivariate input sequences in the LSTM network
or concatenated with the output and analyzed by a Multi-Layer Perceptron (MLP), like
any other feature. Calendar data provide information on the moment to predict, like the
day of the week, the hour of the day, and the 10-min slice of the hour. It also provides
information on holidays, but one could eventually expect more case-specific details, like
events or occupancy in the building. We chose to directly use the date of the forecasted
data instead of a past sequence because this information is known in our case. The same
choice arose for multi-feature forecasts. On the one hand, we used common multivariate
input arrays. On the other hand, each monovariate feature was processed beforehand by a
different LSTM network of the same size alone:

*  Single feature monovariate time series processed by a single LSTM with the output
concatenated with the calendar data;

¢ Multivariate time series processed by a single LSTM with the output concatenated
with the calendar data;

*  Monovariate time series processed by several LSTMs, with all the output concatenated
with the calendar data.

A single layer of 10 neurons processes all of them, and then, a linear neuron provides
the monovariate output.

The comparison is provided in Figure 4. Each point is the mean value of an exper-
iment’s efficiency over HVAC consumptions for Figure 4a and temperature sensors for
Figure 4b. The keyword seq stands for the use of multivariate sequences, while the key-
word forecasts stands for independent forecasts before analysis by the MLP. The keyword
NoMLP describes the use of the LSTM and Perceptron only, without MLP, and MLP (2) stands
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for the use of a two-layer MLP instead of a single one. Other labels refer to the different
features used.

Forecasting performances depending on parameters for Pred_consump
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Figure 4. Performances as a function of selected forecasting policy and features. (a) HVAC consump-
tion prediction performances; (b) indoor temperature prediction performances.

In Figure 4a, the main increases seem strongly related to using several monovariate
time series compared to a single multivariate sequence. Such improvement is not as
relevant for temperature forecasting in Figure 4a, but a high reduction in training time is
noticeable, at the price of a little drop in accuracy while using independent forecasts.

From the shape of the graphs, accuracy and training time seem generally correlated.
This observation is the direct consequence of the exploratory power of the algorithm during
training, which is linked to reachable performances. With multivariate sequences and MLP
for temperature forecasting, the rise in complexity and the decrease in accuracy could be
the reason for the faster training.

Doing so, we underline the ambiguity of training duration in time series forecasts,
as using a pure delay would be incredibly faster. According to the accuracy metric we
utilized, the comparison to a delay must enable comparative studies based on usefulness
concerning the cost of AL

5. Data Relevance

Retrieving more features and data may improve forecasting performances and increase
the cost of devices and data engineering. Any prior insight may save a lot of time, and this
is investigated next.

5.1. Feature Selection

The variety of experiments shown in Figure 4 allows us to select architectures and
features of interest. For HVAC consumption in Figure 4a, the best accuracy resulted from
the simultaneous forecast of weather, indoor temperature, and HVAC energy consumption,
concatenated with a one-hot encoded calendar, processed by a Multi-Layer Perceptron.
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The absence of a calendar is harmful, and predictions cannot reach higher accuracy without
it. As stated above, this feature’s complexity seems too high for the LSTM to handle
multivariate sequences directly.

The physical features that we decided to monitor are intuitively those related to a close
physical system, with the HVAC being a function of outdoor weather and temperature
and indoor temperatures. Doors are not open often enough to have a ‘real” impact on
this system.

Thus, forecasting ability encompasses the measurement of the building’s physical
properties. A pitfall for such a goal is the lack of information about temperature setpoints,
which can be changed at any time by building occupants and directly impact the link
between HVAC consumption and indoor temperature. It is also relevant as the indoor tem-
perature and HVAC have significant inertia and take time to reach the chosen temperature
target. This inertia makes it very difficult to find setpoint changes by discontinuities in
the data.

5.2. History Length for Hourly Forecasting

Al is often considered a robust tool for any complexity. However, while processing
older data for time series forecasting, a loss of correlation may be inducted, which decreases
the performance. This also applies to dubious physically correlated data, like the weather
of a different place or wind speed near the building. We wished to give an insight into
history relevance in a forecasting framework by deep learning.

In this paper, we considered the time correlation within the history parameter of the
LSTM, which is the duration covered to forecast each value. The length of history always
refers to the duration of the sequence, which ends 1 h before the predicted value.

With a longer history, only sequence—target couples with continuous data are kept
despite remaining holes, so a longer history provides fewer couples. The high quality
of HVAC consumption data allowed us to have no data cut until 720 min. However,
the temperature dataset shrank in the training and test sets at 30 min. For experiment
consistency on temperature history, we selected 11 weeks for the training and 4 weeks for
the test. The moment of evaluated sequences may change, but the amount of data remained
the same for each history tried. Furthermore, no ‘easy-to-observe’ anomalous behavior or
events occurred in the building.

Figure 5 shows how the length of the sequences used impacts the performances of
the forecasting for each sensor, as we still compared it to a simple delay. Figure 6 presents
the average performances over sensors for each history length. However, Figure 5 shows
that each forecasting performance evolved differently depending on the sensors, so the
standard deviation is also presented. As this metric decreases or stays constant, this shows
that the average performances are not led by a single value, but tend to represent most
of the sensors. We observed a rapid increase before a maximum of 1 h of data before
decreasing, for both consumption history in Figure 6a and temperature history in Figure 6b.
The standard deviation of performances was high over the sensors, so we show it on the
same scale as the average performances.

We emphasize here, and according to our dataset, that the relevance of the data is
paramount rather than the sheer quantity. Here, a long history brings increased complex-
ity to the regression, but older samples do not carry interesting information to balance
the complexity.
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Figure 5. Study of performances as a function of history length in minutes. (a) Temperature forecasting
performances; (b) HVAC consumption forecasting performance.
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Figure 6. Study of performances as a function of history length. (a) Consumption forecasting
performances; (b) temperature forecasting performances.

5.3. Training Data Length Study

This section focuses on the amount of data necessary to train the LSTM to forecast and
its impact on the consistency of the forecasting ability. With a fixed test set, we changed
the number of weeks used to train the algorithm. The results are presented in Figure 7.
For mean HVAC consumption forecasts, rapid growth leads to a plateau reached in 2 weeks,
with barely any increase in further weeks, as seen in Figure 7a. Mean temperature forecasts
increase until 9 weeks, with a fast increase, which slows down as more data are added
for the training set, as seen in Figure 7b. The standard deviation is also presented. As it
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decreases or stays constant, it shows that aggregates are not led by a single value, but tend
to represent most of the sensors, validating an average trend.

It is unclear how this behavior should be attributed to the nature of data or the
presence of anomalies in the training or test data. Unknown anomalies might be expected
for simultaneous employees’ days off or exceptionally warm or cold days. In the event of
exceptional behaviors with no label, we might attribute them to the training data or testing
data. In the first case, we expect plateaus in the performance to increase, lasting as much as
irrelevant data. In the second case, we expect a hard cap on performance increases with
hardly any increase while using further weeks. Notice that both cases may coexist and can
be different between sensors.

We consequently highlight the need for high-quality relevant test data, showing the
diversity of the common use of the building. We address this topic against the over-
representation of the training data, which may not be possible for an on site industrial
solution with small datasets. Establishing a monitoring campaign for smart building
forecasting solutions would require a lengthy test dataset, depending on the diversity and
exceptional events that cannot be quantified regarding building behavior irregularity.

evolution of forecast efficiency as function of the number of training weeks
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Figure 7. Performances of forecasting as a function of training data length. (a) Performances of HVAC
consumption forecasting; (b) performances of temperature forecasting.

6. Findings
6.1. Synthesis on the Methodology

We considered the complexity of the forecasting Al algorithm, resulting from the
LSTM memory network and the data-processing policy. We found that higher complexity
in the architecture could induce faster training with little impact on accuracy, as highlighted
in Figure 3. On average, the reason for the training acceleration could be fewer epochs
during the iterative process. LSTM networks are known to be robust to exploding and
vanishing gradients by their architecture, providing a stable learning curve, with stability
increasing with the size of the LSTM network. Training Al algorithms is not linear, and the
training duration should be studied with the training graph and not as a metric.

We furthermore demonstrated the the weakness of LSTM in processing multivariate
correlated time series, showing its limits in adaptability. We chose to use an indepen-
dent forecast combination rather than a simultaneous processing. The former is labeled
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Forecasts in Figure 4. Our insight lies in the ability to separate temporal correlation from
feature correlation. By executing both tasks consecutively, the policy we chose would
simplify the forecasting issue. Another explanation could be linked to causality, as the
observation of some features could hint at behaviors without being linked by a direct
causality relation. Before the analysis by another Neural Network, primary independent
forecasts could limit causality induction between features by the LSTM.

6.2. Synthesis on Data Relevance

We evaluated the relevance of the data used to forecast HVAC consumption and
temperature by selecting the features, the length of sequences involved in each hourly
forecast, and the quantity of training data.

The analysis of the history parameters also showed that 1 h sequence inputs enabled
the best accuracy. This observation could be directly linked to the work schedule of
occupants, which uses hourly steps. The choice of history results from a trade-off between
bringing more data and increasing the complexity of Al processing. Older data may
not bring new information and only increase the size of sequences and the number of
parameters of Al models, thus decreasing performances. Likewise, data older than 1 h can
testify to different meetings, breaks, or technical activities and lack relevance to complete
the latest data.

The training data length encompasses a different trade-off between data diversity and
common data behavior. We want Al to witness the opposite realistic behavior, and much
of the data often offers this opportunity, but dilutes anomalies since anomalies are scarce.
In this study, the performances reached their best with two weeks of data for energy
consumption forecasting, but kept growing with the data for temperature forecasting.
As mentioned in the analysis of the features, the reason might be the scheduling of some
HVAC, while the temperature is irregular. We still see a logarithmic shape that allowed us
to expect a performance increase with more training data for temperature forecasts. Such
an experiment would allow a facility manager to decide when he/she starts operating
his /her building or whether he/she needs a few more weeks.

7. Conclusions and Future Works

Experiments with the massive deployment of smart sensors are becoming increasingly
numerous, and the technology to utilize them is lagging. As Al holds the promise of
automatic optimization, its complexity and uncertainty make it hard to use in an industrial
framework. This paper is based on industrial data from one smart building following a
real industrial monitoring campaign. The summary of our industrial return of experience
is as follows.

Our work proposes experiments on Al architectures and data usefulness to improve
HVAC consumption forecasting and indoor temperature forecasting. The issues to address
were related to data selection by the size and physical impact on the forecasts. We tackled
the issue of Al reliability by focusing on the data used by our algorithm, providing all
necessary information about them and sharing our dataset [5] to promote reproducibility.

We have proposed different analyses and observations on ‘real” data to illustrate an
industrial forecasting framework. To do so, we provided a cross-domain metric to question
the use of Al and a real case evaluation, allowing us to cover several aspects of indoor
environment modeling. It consequently highlighted a few possibilities for Neural Network
architectures and data processing.

In short, the study conducted in this paper provides insight into the design of several
aspects of a forecasting framework for smart buildings, as we gave the insight to focus on
meaningful architectures, features, and key policies to optimize predictions. We hope to
push toward industrial solutions for smart building Predictive Control as we develop trust
and generalizability.

Future work could investigate the issues mentioned in this paper, focusing on data and
Al uncertainty. Detecting regime changes and discontinuities in data holds a major interest
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in improving time series processing. A first approach would be subsequences’ clustering,
where typical sequences are identified to map the behavior of a building. This method
includes sequence recognition and expert knowledge to raise trust in the chosen windows.
Based on the subsequences found, this approach could be broadened to spatial behavior.
The spatial approach alone has been tried and dropped as the behavior varieties over the
time series impede the clustering task. It would enable scenario-specific algorithms and
wiser choices about the variety of algorithms needed, instead of oversized architectures,
which might be ill-designed for such problems.

Training graphs are important for Al engineering to simultaneously monitor the
training of the algorithm and its ability to process new data. In this paper, we dropped the
issue of generalizability over further datasets, but it appears in ‘real’ operating systems.
They could be worth investigating to enable in-training data selection by the shape of the
training graphs and the comparison between the training, validation, and testing steps.
Such a study will aim at more-relevant and faster results by deep Al as the algorithm’s
generalization would have been strictly monitored during the training step.

Quantifying forecast uncertainty is paramount for industrial solutions. A promising
field of research is the use of Bayesian Neural Networks, which allow quantified algorithm
flexibility, thus providing a range for prediction uncertainty. The comparison of datasets
with the analysis of training graphs could also provide expectations about uncertainty
before any Neural Network. This would save time and constitute a step further toward
reasonable Al, as we could prioritize projects with higher potential.

Finally, despite the cost and complexity of building management systems, temper-
ature setpoints and their changes must be monitored to enable control issues, especially
Predictive Control.
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Appendix A. How to Play with Our Notebook?

To respect the principles of open science, i.e., to produce clear, shared hypotheses,
methods, and protocols subject to critical analysis and discussion aimed at their improve-
ment and accessible to as many people as possible, we are making our dataset and the
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Jupyter Notebook public. The anonymized data and the Jupyter notebook necessary to
build the models and reproduce the results (https://github.com/CampusloT/datasets/
tree/main/BuildPred /notebooks, accessed on 1 January 2020) are published under licenses
ODbL-1.0 and GPLv3 in a public Git repository and on the Persido open-data platforms.

In the recent past, independent verification of published research results has not
been systematic, nor even typical in computer science, despite innovation in the field
relying heavily on software, hardware, and data experimentation. More recently, public
authorities have given new impetus to this situation by requiring data management plans
to accompany grant applications for sharing experimental results and recognizing that
access to the experimental artifacts underlying reported results is the best way to ensure
scientific integrity and advance the field.

Consider now the configuration step of the relevant variables of the LSTM as an
example. This part of the code can be found in entry [17] in the notebook.

The parameter depth corresponds to the history in this paper. It describes the length
of sequences, in minutes, used as the input for each value predicted. It was designed to be
a multiple of 10, which is the time step of the data.

The parameter horizon corresponds to the horizon of prediction, which is the number
of minutes between the last sample of the sequence and the value to forecast. It should also
be a multiple of 10.

The parameter nb_samples_train allows a cutting for data, delimiting the maximum
length of the training data in the number of samples. According to a mini-batch learning
policy, the training and datasets will be separated into complete batches of size batchsize,
and incomplete batches are discarded.

The parameter LSTM_size refers to the side of each LSTM layer’s latent space. By de-
fault, they all have the same size. Further modification to the architecture, like the number
of layers, can only be performed in entry [6], which defines choices in architecture.

The parameter param_range_array is used in a for-loop to cover several configura-
tions during a unique run of the notebook. This one and param_name appear in the JSON
data, saving experimental results after the trained algorithm'’s inference on the test data.
A JSON file is saved under the name save_name.

The unused parameter nb_segments allows a k-fold cut in the data portioning between
the training and test data. The loop is blocked to the first iteration in the main code,
and plotting functions may not be adapted yet to this other complexity in JSON files.

The parameter restrict_day allows limiting all data processing to one day of the
week, selected by its number between 1 and 7. However, it requires shortening the
batchsize parameter to 1 day or less, and missing data greatly impact the results’ signifi-
cance. This might not be valuable without more data to dilute anomalous missing values.
Time series graphs do not show the discontinuities in the data, and the partitioning details
are not provided in the JSON file, which implies cautious use of such parameters.

Finally, users might pay close attention to the part about Dataset Loading and Data
Selection, which specify how data are used to process selected features of interest. It also
gives information about the dataset length as it provides an overview of the main dataset
to process.
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