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Abstract: This paper introduces the first completely unsupervised methodology for non-intrusive
load monitoring that does not rely on any additional data, making it suitable for real-life applications.
The methodology includes an algorithm to efficiently decompose the aggregated energy load from
households in events and algorithms based on expert knowledge to assign each of these events to
four types of appliances: fridge, dishwasher, microwave, and washer/dryer. The methodology was
developed to work with smart meters that have a granularity of 1 min and was evaluated using the
Reference Energy Disaggregation Dataset. The results show that the algorithm can disaggregate the
refrigerator with high accuracy and the usefulness of the proposed methodology to extract relevant
features from other appliances, such as the power use and duration from the heating cycles of a
dishwasher.

Keywords: non-intrusive load monitoring; disaggregation; unsupervised; household; energy

1. Introduction

Electricity usage profiling is essential for understanding and improving household
energy consumption patterns [1]. By identifying individual appliance-level energy us-
age patterns, homeowners can make informed decisions on how to manage their energy
use, reduce their carbon footprint, and save money on energy bills [2]. The identification
of appliance consumption has been successfully applied to improve the householders’
quality of life in many different scenarios, such as scheduling the use of large consump-
tion appliances [3], detecting appliance malfunctions [4], or providing early preventive
maintenance [5], among many others.

Two main groups of approaches have been previously studied to monitor each ap-
pliance’s load: intrusive and non-intrusive. Intrusive load monitoring relies on installing
additional sensors at the plug level per appliance cost, being more accurate at the expense
of a higher price due to the high number of plug-level sensors that need to be manufactured,
installed, and maintained. On the other hand, non-intrusive load monitoring (NILM) only
relies on the aggregated load measured at the user connection point with their energy
distributor. As such, NILM approaches use algorithms and machine learning models to
disaggregate the appliance-level load from the aggregated load, leading to a less accurate
but more cost-effective approach. Since the NILM problem was first formulated in the
mid-1980s [6,7], many researchers have proposed different alternatives to address this
challenge. These proposals can be categorized into four different groups depending on the
strategies used to disaggregate the energy load.

State-based approaches, such as Hidden Markov Models (HMMs) [8–10], used to be
the state of the art in NILM as there was a clear relationship between each appliance state
and the hidden states of the model. HMMs are probabilistic methods that require providing
(or learning) a finite set of states, the probabilities of transitioning from one state to another,
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and the probability of producing an output from the hidden state. The major limitation of
this type of approach is its high computational cost, making it too expensive and slow for
real-life applications.

Dictionary-based approaches (sparse coding) [11–14] aim to find data representation
based on the linear combination of a dictionary and a representation where the difference
between the aggregated time series and the linear combination is minimized, each element
of the dictionary represents a different appliance, and the representation is sparse enough.
This minimization problem is NP-Hard and several methods can be used to solve it, such as
K-SVD or LASSO. These approaches can provide good results for supervised scenarios and
can be fast depending on the formulation and algorithms used to solve the optimization
problem. However, they have some major limitations in unsupervised scenarios since the
number of appliances for the dictionary must be provided previously.

Neural network-based approaches, with all the advancements made in deep learn-
ing over the past decade, have become the state of the art for supervised NILM. These
approaches are notoriously slow for training and require large amounts of data but can
provide fast and accurate disaggregation once trained. Several different neural network
architectures have recently been developed for this purpose, such as the use of U-Net [15],
combinations of convolutional neural networks and Long Short-Term Memory [16], and
generative adversarial networks [17].

Lastly, event-based approaches [18–20] detect the use of an appliance by detecting
events where appliances have been switched on or off or changed to a state with con-
siderably different power consumption, usually by edge detection. Once the events are
identified, rising and falling power edges are generally matched and some features of
each event are extracted (power, duration, etc.). Then, a classification (supervised) or
clustering (unsupervised) algorithm is used to map each event to an appliance. These
approaches are generally fast due to the dimensionality reduction provided by the event
extraction. However, they can only detect appliances with consistent energy consumption
in each operational state. The algorithm proposed in this paper is of this kind. A notable
methodology of this kind that has seen some success, even in unsupervised scenarios, is
the use of Graph Signal Processing (GSP) [21–23]. In GSP, a graph is constructed, with each
node representing a rising/falling edge of the original time series. Then, the mathematical
properties of the graph representation and a weighted adjacency matrix are exploited to
convert the problem at hand (clustering, classification) into an unconstrained quadratic
optimization problem that minimizes the total graph variation.

Although numerous approaches to NILM have been suggested, the majority of them
face limitations that hinder practical deployment in real-life applications. A predominant
proportion of these NILM algorithms depend on supervised methods, necessitating energy
companies to acquire and install multiple dedicated sensors (one for each appliance) in
every customer’s household. Despite offering highly accurate disaggregation results, this
approach compromises the intended non-intrusiveness of NILM algorithms and imposes
significant economic burdens due to the substantial costs associated with the installation
of these devices. Unsupervised approaches, which eliminate the need to install sensors,
have barely been studied, with just a few algorithms proposed for this task. However,
even these algorithms have some major limitations for real-life applications. For example,
in [21], even though the disaggregation is conducted in an unsupervised manner, several
hyperparameters must be tuned manually in order to do so, making it unfeasible to
deploy it on a large scale. Furthermore, the disaggregated signals are not mapped to
their corresponding appliance, requiring, according to the authors, an additional step
comparing each event with a signature database, which defeats the unsupervised purpose
of the algorithm. Another example of this situation is found in [24], where the energy
is disaggregated according to an energy consumption survey in Central Europe and a
probabilistic HMM framework of household activities. Not only may we be concerned with
whether the results of the survey are truly transferable to other regions but this approach
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requires some supervised information that is not provided to the energy distributor, such
as the number of occupants, their age, and the nominal power of the appliances.

As such, the work proposed in this paper presents a new algorithm for low-rate
unsupervised NILM that provides the following main contributions to the field:

• It is the first unsupervised algorithm that can be deployed in any residential household
without any additional supervised information;

• We propose a novel event detection algorithm capable of recognizing some instances
in which rising/falling edges overlap;

• The NILM algorithm provides its disaggregation through knowledge of the common
use of appliances and how they work, making it easy to understand but limiting the
number of appliances it can detect.

The rest of the document is structured as follows. The proposed methodology is
detailed in Section 2. Section 3 provides an analysis of the results obtained. And finally, the
conclusions of our work are gathered in Section 4

2. Materials and Methods

The Materials and Methods section presents our algorithm and the methodology used
to validate it. The section starts by formally defining the problem at hand and an overview
of our algorithm. Afterward, a subsection presents our event detector and the following
one presents the expert knowledge used to associate each event with an appliance. Lastly,
the methodology used to validate the proposed algorithm is presented.

2.1. NILM Problem Formulation

Let Pti be the total household’s active power consumption at timestep ti. The task at
hand is to find, for each timestep ti, the contribution of each appliance a, towards the total
consumption power:

Pti = ∑
a∈A

Pat i + nati

where A is the set of all appliances in the household and n is the random noise provided
by measurement errors and any undetected appliances. Furthermore, after disaggregating
each signal, the algorithm should label each independent signal with its corresponding
appliance (fridge, dishwasher, microwave, etc.).

2.2. General Overview of Our Algorithm

Figure 1 represents the general methodology of our algorithm. Since the algorithm
proposed in this paper is an event-based method, its first step is to find substantial active
power consumption. In order to do so, the time series is differentiated by one time step
and only the values that surpass a threshold in absolute value are preserved. These values
represent the falling (negative) and rising (positive) edges that will be matched in the next
step to define the events. After the edges are extracted, the greedy algorithm presented in
Section 2.3 is used to match them, obtaining all the consumption events. Then, we leverage
the knowledge of the pattern uses and general known signatures of the fridge, dishwasher,
washing/dryer, and microwave in Section 2.4.
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Figure 1. Flowchart of the proposed algorithm.

2.3. Event Detection

One of the most important and challenging steps in any event-based NILM algorithm
is to accurately match the rising and falling edges to accurately describe each event. The
proposed algorithm will work iteratively over the time series rising edges, alternating two
phases that can create events in each iteration, denominated matching and pruning.

2.3.1. Matching Phase

The matching phase will try to create an event using the rising edge of the current
iteration. All falling edges prior to the next rising edge are taken into consideration to
create an event. The event can be created if a valid match is found between the rising edge
and one or more falling edges. A valid match implies that the increase in power of the rising
edge is ±25% of the decrease in power of the falling edge(s). When a valid match is found,
the implied rising and falling edges are marked as used and their corresponding events
are added to the algorithm’s output. Since there will be situations in which multiple valid
matches are possible, the matches are always evaluated in the following order (Figure 2).
First, we assess whether the first falling edge is a valid match (Figure 2a). Second, we
evaluate whether any combination of one or more falling edges is a valid match. If there are
multiple valid matches in the latter case, we select the one that has the smallest difference
in total power increase and decrease from the rising and falling edges involved. This can
be seen in Figure 2b, where one rising edge is matched with two falling edges to create
different events, and in the second rising edge of Figure 2c. Lastly, if there is no falling
edge available before the next rising edge (first rising edge in Figure 2c) or no valid match is
found, the algorithm will add the current rising edge to a pending list that will be managed
later in the pruning phase.
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Figure 2. Examples of events created in the matching phase. (a) Match between consecutive edges,
(b) Match with multiple falling edges, (c) No falling edge available after rising edge.

2.3.2. Pruning Phase

The pruning section will be executed after the matching section only if there is any edge
in the pending rising list. This section will try to match older rising edges from the pending
rising list with unused falling edges and will prune any old rising edge that is no longer
useful, even if no match was found for it. We use two different pruning mechanisms. The
first one aims to avoid events that are too long as it is unlikely that those events actually
occurred. We have set this limit to be 2 h for lower consumption events (below 450 W)
and 10 h for the others. The second pruning mechanism (Figure 3a) will prune a rising
edge if the total consumption becomes too low (below 25% of its power increase) to create
a reasonable event. In both cases, a last chance of matching before finally deleting the
rising edge is provided but only taking into account any unused falling edge prior to the
point in the time series that caused the pruning. Matching rising edges from the pending
rising list is similar to the rules provided in the matching section; although, some tweaks
are required. First, we will always evaluate the pending rising edges in a Last In, First
Out (LIFO) manner. Second, for each pending rising edge, we will first evaluate whether
one of the unused falling edges can be used to create an event. Furthermore, if there is
only one pending rising edge pending that should be pruned and one unused falling edge
before its pruning point (Figure 3b), we allow a slightly larger ±30% difference in power
consumption between edges as, otherwise, neither of them will be used. Third, if no match
is found, we will assess whether the sum of the consecutive rising edges from the pending
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list (up to the one currently being evaluated) can be matched with a unique falling edge
(Figure 3c). Lastly, we evaluate if the rising edge can be matched with multiple falling
edges, as conducted in the matching section. The pruning procedure is repeated as long as a
pending rising edge is removed from the pending rising list. Once this procedure finishes,
the algorithm continues iterating to the next rising edge and applying the matching section.
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2.4. Appliance Detection

Once the events have been extracted by the event detector, the next step is to associate
each event to an appliance. Our algorithm is capable of detecting 4 appliances: fridges;
dishwashers; and appliances that must preserve a specific high temperature, such as
the clothes dryer and the microwave. The following sub-sub-sections present the expert
knowledge used to create an algorithm to detect each of these appliances.

2.4.1. Fridge Detection

Any food refrigeration appliance works according to the same principles of cooling
through evaporation [25]. This process is controlled by a thermostat that will start the
cooling process whenever the temperature detected is too hot and stop it once the desired
temperature has been reached. This makes food refrigeration appliances be active periodi-
cally, even when there is no human activity. This is clearly displayed, among other ideas, in
Figure 4, where the daily load signature of two refrigerators from the tracebase dataset [26]
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is downsampled from 1-s to 1-min intervals. We can observe how transients can affect
the NILM process in the upper plot. Transients (in this context) are situations in which
an appliance very briefly consumes more or less power when it is transitioning from an
operational steady state to another (for example, the fridge controller starting or finishing
the refrigeration cycle). This situation is manageable for our proposal as the event detection
algorithm will generally divide these situations into two different events. In the lower plot,
we can also observe that there are several cycles that are longer than usual. This is expected
behavior whenever the household occupants frequently open the fridge door [27], making
the interior hotter and requiring more time to reach the programmed temperature.
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Algorithm 1 is used to disaggregate the fridge from the aggregated signal. The
default values proposed for each parameter of the algorithm are available in Table 1. The
algorithm starts by extracting all events that do not overlap, are below the maximum power
consumption allowed for the fridge, and last a reasonable amount of time for a fridge
cycle. By looking at non-overlapping events, we aim to detect those cycles when there is
no activity at home; thus, there should be less variance between cycles. If enough of these
cycles are found, we take the median of their events’ power and duration and use them to
initially mark any event that is in a range around the median power and has a reasonable
cycle length compared to the fridge events (Lines 1–9). Furthermore, we include three
optimizations to improve the labeling of fridge events. These are the following:
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• If there are any situations in which two events start or finish simultaneously, the other
edge is one minute apart, and the sum of power respects the rules for length and
duration described previously, we also mark them as a fridge event (Line 10). This is
undertaken to manage possible transients at the end of the cycle;

• The second optimization (Line 11) allows the selection of an event with a slightly
higher difference in power consumption if only one suitable event is found in any
instance in which too much time has passed between consecutive fridge events;

• Lastly, the third optimization (Lines 12–16) manages situations in which multiple
fridge events have been found overlapping with each other, preserving those that are
more likely to be the real ones.

Algorithm 1. Fridge detection and labeling optimizations

Input: eventList, Pf ridgemax
, t f ridgemin

, t f ridgemax
, n f ridgemin

, p f ridge, p f ridgeextra

Output: Most frequent program
{

Pcycle1, tcycle1, Pcycle2, tcycle2, tbetween } found.

1: nonOverlappingEvents = Extract from eventList all events that do not overlap with any
other event.

2: For event e in nonOverlappingEvents:
3: If Pe ≤ Pfridemax

and t f ridgemin
≤ te ≤ t f ridgemax

:
4: Append event e to validEvents
5: If size (validEvents) ≥ n f ridgemin

:
6: Pf ridge = median (validEvents.P); t f ridge = median (validEvents.t);
7: Else:
8: return None (fridge was not found)
9: fridgeEvents = all events from nonOverlappingEvents that last t f ridgemin

≤ te ≤ t f ridgemax

and consume Pf ridge ·
(

1 − p f ridge

)
≤ Pe ≤ Pf ridge ·

(
1 + p f ridge

)
10:Add to fridgeEvents all events that either start or finish simultaneously; their sum and

duration are between the boundaries described in the previous line and do not overlap
with a previous fridgeEvent.

11: If the time between two fridgeEvents is longer than the median and there is only one event
that can be a fridge event if p f ridge in Line 9 was increased by p f ridgeextra , we add it

12:For each group of fridgeEvents g that overlap:
13: If size(g) == 2:
14: Keep the element with the closest duration to t f ridge
15: Else:
16: Keep the combination of events with the closest energy (duration multiplied by the event

power) to the median cycle energy (Pf ridge · t f ridge)
17:Return fridgeEvents

Table 1. List of all hyperparameter default values.

Hyperparameter Value Explanation

Pf ridgemax
450 W Maximum power of events used for fridge detection

t f ridgemin
7 min Minimum length of each fridge cycle

t f ridgemax
90 min Maximum length of each fridge cycle

n f ridgemin
100 Minimum number of non-overlapping fridge events to consider it detected

p f ridge 0.25 Maximum percentual threshold for fridge events
p f ridgeextra 0.05 Additional threshold for fridge events if too much time has passed

Pdishmin
750 W Minimum power consumption for dishwasher events

tdishmin
10 min Minimum length of each cycle of dishwashing programs

tdishmax 90 min Maximum length of each cycle of dishwashing programs
ndishmin

5 Minimum number of times the dishwashing program must be detected
ndishmaxcycle

5 Maximum number of similar dishwashing cycles allowed in one program
pdish 0.25 Maximum percentual threshold for dishwashing cycles power
tdi f f 3 min Maximum time difference between new events and the detected dishwashing program
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Table 1. Cont.

Hyperparameter Value Explanation

Pspikemin
750 W Minimum power of events for a spike-based appliance

tnextmax 7 min Maximum time between two consecutive spike events
nspikesmin

5 Minimum number of full spike-based events to detect a spike-based appliance
nconsecutivemin 6 Minimum number of consecutive spikes to consider it a full spike-based event

pspikes 0.25 Percentual difference allowed between a spike-based appliance’s event
tmicrowave 7 min Maximum length of microwave events
nmicrowave 10 Minimum number of times the microwave must be detected
pmicrowave 0.1 Percentual difference allowed between microwave events

Pmicrowavemin 600 W Minimum power of events for microwave detection
Pmicrowavemax 2000 W Maximum power of events for microwave detection

2.4.2. Dishwasher Detection

The dishwasher is another appliance that can be detected relatively easily if the events
are detected accurately; although, our approach will only detect the two main power
consumption events of a dishwashing program. Figure 5 shows the signature of different
programs from four dishwashing appliances: dev_B81D04, dev_995BAC, and dev_B82F81
from the tracebase dataset; and one from House 1 of the Reference Energy Disaggregation
Dataset (REDD) [28]. It should be noted that even though the fourth signature seems harder
to detect, thanks to the capability of our method to disaggregate multiple events that start or
finish simultaneously, two events will also be detected in this case (20–50 min and 70–90 min).
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These two larger events correspond to the instances in which the dishwasher draws
more power for heating purposes. A traditional dishwashing cycle consists of four different
stages: prewashing, washing, rinsing, and drying. Most of the power consumption (the two
events our algorithm looks for) comes from heating the water during the washing phase
and heating fresh water again during the rinsing phase [29]. Depending on the model and
program, additional events of large power consumption may be found; although, in most
cases, they will have at least these two. Furthermore, in most dishwashers, the duration of
these cycles is controlled by a timer. As such, every time the same dishwasher program is
used, we should expect that these large consumption events and the time between both of
them should always last the same.

The identification of the main cycles of the most frequent dishwashing program used
is described in Algorithm 2. This algorithm takes, as input, the events found by the event
detector that are still not labeled and the hyperparameters that control it (the default values
for it are provided in Table 1). The algorithm starts by filtering out events that consume too
little power or are unreasonably short or long to be one of the dishwasher cycles (Lines 1–4).
Then, we also filter out events with similar power that appear too many times in a cycle
as it is extremely likely that they are related to another appliance, such as a large freezer
(Lines 5–6). Lastly, we compute all pairs of events that meet the restrictions (Lines 7–12)
and group them (Lines 13–22), preserving only the most prevailing group if it appears at
least a minimum number of times. Once the most frequent program has been found, the
dishwashing events are labeled by repeating the algorithm from Lines 1 to 12 and marking
all sequences of events that are at most in the range of ±pdish in power and ±tdi f f in time
from the respective features from the most frequent dishwashing program found.

Algorithm 2. Dishwasher program detection

Input: eventList, Pdishmin
, tdishmin

, tdishmax , ndishmin
, ndishmaxcycle

, pdish, tdi f f

Output: Most frequent dishwashing program { Pcycle1, tcycle1, Pcycle2, tcycle2, tbetween

}
.

1: validList = [] (empty list)
2: For event e in eventList:
3: If Pe ≥ Pdishmin

and tdishmin
≤ te ≤ tdishmax :

4: Append e to validEvents

5:
Add to each event a new variable “count” that counts the number of validEvents in a
± pdish · 100% range that happen in less than an hour

6: Remove all events e with count equal or superior to ndishmaxcycle

7: validTuples = []
8: For event e1 in eventList:
9: For event e2 in eventList: (only events that start after the end of e1)
10: tbetween = start of e2− end of e1
11: If (tdishmin

≤ tbetween ≤ tdishmax and pe1 · (1 − pdish) ≤ pe2 ≤ pe1 · (1 + pdish)):
12: Append the tuple (Pe1 , Pe2 , te1 , te2 , tbetween, 1) to validTuples
13: groupsFound = []
14: For Pe1 , Pe2 , te1 , te2 , tbetween, n in validTuples:
15: If size(groupsFound) == 0:
16: Append tuple (P e1

, Pe2 , te1 , te2 , tbetween, n
)

to groupsFound

17: Else:
18: For Pge1

, Pge2 , tge1 , tge2 , tgbetween, n in groupsFound:

19:
If cycle powers Pe1 , Pe2 are in ± pdish · 100% range of Pge1

, Pge2 and
times tge1 , tge2 , tgbetween have at most a difference of ± tdish minutes with
te1 , te2 , tbetween :

20:
Update Pge1

, Pge2 , tge1 , tge2 as the mean of all previous validTuples in the
group and increase ng by 1.

21: break

22:
Return the mean per feature of the group from groupsFound with higher n or nothing if
n < ndishmin
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2.4.3. Other Thermostat-Based Appliances

Another common signature found in the aggregated signal downsampled to 1 min is
the presence of multiple contiguous spikes of energy of short durations, on many occasions
with a starting cycle longer than the spikes. This is a common situation for many heat-based
appliances that require one start cycle to reach the desired temperature and then have
additional cycles to maintain the temperature within reasonable ranges. Appliances, such
as clothes dryers, washing machines, irons, or ovens, present this type of signature [30],
making it extremely difficult to differentiate them without any user-provided feedback.
Figure 6 illustrates this situation for load signatures from an oven, an iron, and a clothes
dryer. The same clothes dryer is displayed with a 1-min and 1-s granularity and displays
one of the additional challenges that low-granularity sensors have with this type of signa-
ture as multiple spikes can appear as a unique cycle or may be completely missing for this
signature.
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Algorithm 3 finds the most frequent power for any spike-based appliance. The
algorithm starts by iterating over all events that have not been assigned to any appliance
that has consumed at least a minimum amount of power (Lines 1–5). Then, we iterate over
all other events that start after the end of the previous event and add them to the spikes
chain if they are within a range of the original event power consumption (Lines 6–11).
This process ends when too much time has passed without a new spike. Then, we add
the sequence to the list of valid sequences if the number of consecutive spikes exceeds a
minimum threshold (Lines 12–13). For comparative purposes, in the rest of the paper, we
have assumed that the most frequently used appliance of this style is the washing machine
or a clothes dryer. Once the power has been found, the algorithm from Lines 1–13 is used
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to mark the events that belong to the washing/drying appliance using the median power
found instead of Pe.

Algorithm 3. Spike-based appliance detection

Input: eventList, Pspikemin
, tnextmax , nspikesmin

, nconsecutivemin , pspikes
Output: Most frequent spike-based appliance median power consumption

1: validSpikes = [] (empty list)
2: For event e in eventList: (only events that are yet to be assigned to an appliance)
3: If Pe ≥ Pspikemin

:
4: mySpikes = [] (empty list)
5: lastEnd = e.end
6: For event e2 in eventList: (only events that start after the end of e):
7: If e2.start–lastEnd > tnextmax :
8: break
9: Else If Pe2 ·

(
1 − pspikes

)
≤ Pe ≤ Pe2 ·

(
1 + pspikes

)
:

10: lastEnd = e2.end
11: Append e2 to mySpikes
12: If size (mySpikes) ≥ nconsecutivemin :
13: Append mySpikes to validSpikes
14: If size (validSpikes) ≥ nspikesmin

:
15: Return median (validSpikes)

2.4.4. Microwave Detection

The last appliance we will disaggregate is the microwave oven. The microwave oven
has become a staple appliance in most modern households. It is frequently used not only
for cooking but also for quickly heating milk or water, reheating food, or heating pre-made
food. Since it is mostly used in short periods, in many cases, even less than 1 min, there
will be instances in which the microwave will not be present in the aggregated signal even
though it was used. However, the microwave usually presents a signal that is denoted by a
short spike in power consumption. A typical microwave oven for a household can draw a
wide range of power while working depending on the power used to heat the food and the
volume of the microwave. Therefore, in order to detect the microwave, we look at any short
event (up to tmicrowave minutes) that is yet to be labeled in a range between Pmicrowavemin
and Pmicrowavemax , removing any instances in which they may be a transient and making
sure they are not part of a sequence of spikes from other thermostat-based appliances. If
there are at least nmicrowave instances of spikes of this kind, we take the median as the usual
power draw of the microwave and will label, as microwave, any element that is not part of
a spike chain, as long as they are in a range of ±pmicrowave of the expected value.

2.5. Validation Methodology

To evaluate how well our algorithm performs, we made use of the Reference Energy
Disaggregation Dataset downsampled to a 1-min granularity. This dataset contains a few
weeks of energy consumption information from six US houses and has been widely used to
evaluate most NILM algorithms. The dataset provides information about the aggregated
power consumption and provides a detailed disaggregation with only a relatively small
unknown load. We selected this dataset as the first three houses had information about
most of the appliances our algorithm can detect, with a relatively small amount of missing
data. Note that we did not compare our algorithm with any other proposal as, to the
best of our knowledge, there is no other algorithm capable of disaggregating and labeling
energy consumption without additional information. As our algorithm is completely
unsupervised, all data from each house were used for evaluation, with the exception of any
time period in which the aggregated signal was missing.
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3. Results
3.1. Evaluation Metrics

To evaluate the NILM disaggregation in each household, we have used the classifica-
tion metrics generally used in this field: Precision (Equation (1)), Recall (Equation (2)), and
the F1-Score (Equation (3)).

The Precision (PR) measures how many instances in which the model determined an
appliance was running were actually right:

Precision (PR) =
TP

TP + FP
(1)

The Recall (RE), also referred to as sensitivity, measures how many times the model
detected an appliance running out of all instances in the data where the appliance was
running:

Recall (RE) =
TP

TP + FN
(2)

Lastly, the F1-Score (F1) is a metric that combines the previous ones to provide a single
metric that weights precision and recall in a balanced way:

F1 = 2 · PR · RE
PR + RE

(3)

For all these formulas, True Positives (TP) are the amounts of time in which an
appliance was running and an algorithm detected it as running, False Positives (FP) denote
all instances in which an appliance was not running but the algorithm detected it as
running, True Negatives (TN) are instances in which the appliance was not being used and
the algorithm detected the appliance was not running, and False Negatives (FN) denote
instances in which the algorithm did not detect the appliance although it was running.
Thus, the use of these metrics provides a more nuanced evaluation of the algorithm’s
performance, taking into account the trade-offs between true positives, false positives, true
negatives, and false negatives.

3.2. Disaggregation Accuracy in Each Household Evaluated

Table 2 presents the results obtained by the algorithm for the REDD’s House 1. This
house contains information about energy consumption from 18 April 2011 to 24 May
2011 with four periods of consecutive days where the consumption data are missing.
The proposed algorithm provided the results for this house in 2.22 s. All appliances
were available in the house and used in this time frame. On one hand, the fridge was
disaggregated with great accuracy, obtaining an F1-Score of 88.61%. On the other hand,
the dishwasher produced a really bad F1-Score of 22.6% with 100% precision, implying
that every time the algorithm marked something as dishwasher, it was correct. This result
can be easily explained as our algorithm can only detect the dishwasher program during
the heating phases. Therefore, the minutes corresponding to the other phases increase
significantly the number of false negatives. However, the high precision obtained shows
the usefulness of our algorithm in detecting the general power consumption and duration
of the dishwasher cycle. A similar situation can be observed for the washer/dryer with
high precision but mediocre recall due to all the minutes the washing/drying program
is working without using the heating component. Finally, the microwave provided only
mediocre results, with an F1-Score below 60% and precision and recalls around that range.
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Table 2. Results for our algorithm in REDD House 1.

TP FP TN FN RE PR F1

Fridge 5539 422 19,337 1002 0.9292 0.8468 0.8861
Dishwasher 125 0 25,319 856 0.1274 1.0 0.2260
Microwave 190 112 25,846 152 0.5555 0.6291 0.5901

Washer/Dryer 232 25 25,822 221 0.5121 0.9027 0.6535

Table 3 presents the results for House 2. Information about energy consumption in this
house is provided between 18 April 2011 and the first hours of 2 May 2011 with no missing
data. In this house, the proposed method took 1.52 s to provide the results. Additionally,
a few hours from 22 May are also available. In this house, although there is a submeter
for the washer/dryer appliance, the measured value never went over 9 W, indicating that
it was never used or there was some misconfiguration. Similar to House 1, the fridge
was disaggregated accurately with an F1-Score of 88.78%. The dishwasher still provided,
again, perfect precision and a better recall in comparison with House 1, which was to be
expected since most of the programs/models used in House 2 had a lower number of
minutes without using the heating component. At last, the microwave provided an even
worse F1-Score in this case as there were more instances in which the microwave was not
detected.

Table 3. Results for our algorithm in REDD House 2.

TP FP TN FN RE PR F1

Fridge 7457 440 10,793 1444 0.8377 0.9443 0.8878
Dishwasher 103 0 19,893 138 0.4274 1.0 0.5988
Microwave 36 2 19,986 110 0.2466 0.9474 0.3913

Washer/Dryer Not used in this house

Finally, Table 4 provides the results for House 3, where the proposed method provided
the disaggregation after 4.96 s. Information about energy consumption in this house was
available between 17 April 2021 and 27 May 2021, with multiple periods of missing data,
most notably the period from 28 April 2021 to 17 May 2021. This was the first house in
which our algorithm did not detect an existing appliance, the dishwasher of this house,
showing one of the limitations of the proposed algorithm. In this case, the program used
only used one major heating cycle; thus, this dishwasher program could not be detected.
For the other appliances, we saw a relatively good disaggregation of the fridge, although
slightly worse than in other houses; the washer/dryer was disaggregated perfectly when
detected with the expected false negatives due to the time it was working but not using the
heating component and the microwave provided, once again, only mediocre results.

Table 4. Results for our algorithm in REDD House 3.

TP FP TN FN RE PR F1

Fridge 7549 1228 14,219 1669 0.8189 0.8601 0.8390
Microwave 52 35 24,505 73 0.416 0.5977 0.5988

Washer/Dryer 350 0 23,633 682 0.3391 1.0 0.5065
Dishwasher Not detected

3.3. Real-Life Applications

Overall, even though the disaggregation provided by our algorithm is not perfect, it is
still, to the best of our knowledge, the only algorithm capable of providing high-quality
disaggregation without using any additional kind of supervised information. The primary
constraint of our algorithm lies in its reliance on the identification of appliances based on
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their consumption patterns. Consequently, appliances that exhibit no discernible pattern or
have an unknown pattern will not be effectively identified by our algorithm. Despite this
limitation, the algorithm demonstrates proficiency in detecting at least the four appliances
that have been studied, utilizing the available information. The simplest application of
the proposed algorithm is the creation of visualizations that can help both customers and
providers to understand the energy consumption of each household, as can be seen in
Figure 7, where the disaggregation conducted by the proposed algorithm for the REDD’s
House 1 is displayed. Another simple example would be to use them as a prior step
for other NILM algorithms that rely on supervised knowledge of the appliance energy
consumption. However, the most interesting applications of this algorithm come from its
ability to learn general characteristics from appliances, such as their power use in each
cycle and their duration. For example, the usual power consumption and duration of
refrigeration cycles could be recorded periodically to detect any possible malfunctioning
of the refrigerator since, as it deteriorates, it is frequent that the cycles become longer.
This is easily detectable in our algorithm as this duration is recorded during the detection
process and, if cycles become too long, the algorithm will suddenly fail to recognize the
fridge. Thus, notifying the customer after verifying this kind of behavior can help diminish
the economic impact of appliance faults. Another possible application of the algorithm
would be to use it to schedule the use of some appliances, such as the dishwasher, to lower
the energy cost of using them. This would be particularly useful in Internet of Things
(IoT) scenarios in which the appliance may be scheduled to run at a specific hour and
optimized according to the needs of the customer. Furthermore, since the algorithm has
low computational requirements, it can be fully implemented in an Edge device at the final
customers’ homes to completely respect their privacy.
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4. Conclusions

This work presented a new methodology to disaggregate energy consumption from
a few selected appliances without the use of additional information, unlike previous
work in the field that required information about the nominal power of the appliances or
information about the household occupants to identify the appliances. The methodology
relied on the development of a new algorithm for event detection and the use of export
knowledge to identify each appliance.

The need for a new event detection algorithm came due to the fact that previous
clustering-based approaches were limited to matching edges with a balance between power
consumption and time duration, as was conducted in [21]. However, this approach is not
ideal for data with low sampling rates as it will be unable to differentiate instances in which
multiple events start or end simultaneously. Therefore, we created a new event-based
detection algorithm that, as explained in Section 2.3, took into account these situations
to provide a better disaggregation into events. Once this disaggregation was completed,
the algorithms developed for each appliance were used to identify them without having
to rely on any additional information. This is a major step towards truly unsupervised
disaggregation as the algorithm can be used directly on household aggregated consumption
without the need to tune any parameters nor the need to know any information about the
customer’s household, providing a completely non-intrusive approach. This comes with
the drawback of limited accuracy and the fact that only appliances that exhibit consumption
patterns that can help us identify them can be detected and properly labeled.

The evaluation of the proposed methodology utilized data from three houses within
the REDD dataset. The results demonstrated a high accuracy in fridge disaggregation and
showcased the algorithm’s ability to learn appliance characteristics, such as the power
and duration of dishwasher heating cycles, in other cases. These findings underscore the
potential practical applications of the proposed approach.

Future works may evaluate the incorporation of the proposed methodology in other
NILM algorithms and their application in IoT/Edge scenarios for tasks such as preventive
maintenance or scheduling.
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