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Abstract: Sentence-level sentiment analysis, as a research direction in natural language processing,
has been widely used in various fields. In order to address the problem that syntactic features were
neglected in previous studies on sentence-level sentiment analysis, a multiscale graph attention
network (MSGAT) sentiment analysis model based on dependent syntax is proposed. The model
adopts RoBERTa_WWM as the text encoding layer, generates graphs on the basis of syntactic de-
pendency trees, and obtains sentence sentiment features at different scales for text classification
through multilevel graph attention network. Compared with the existing mainstream text sentiment
analysis models, the proposed model achieves better performance on both a hotel review dataset and
a takeaway review dataset, with 94.8% and 93.7% accuracy and 96.2% and 90.4% F1 score, respectively.
The results demonstrate the superiority and effectiveness of the model in Chinese sentence sentiment
analysis.

Keywords: sentiment analysis; graph attention networks; dependent syntactic analysis; NLP

1. Introduction

Sentiment analysis involves the task of analyzing the sentiment of given textual data,
and, with the rapid development of Internet applications in recent years, the demand for
this task has been increasing, making it a hot research topic. Currently, most of the textual
data on the Internet exist in the form of short comments; thus, it is important to study
sentiment analysis at the sentence level. Sentiment analysis at the sentence level has two
main subtasks: vector representation of the input text and sentiment feature extraction.

The current mainstream feature representation of text uses the word embedding
technique [1,2], which represents the input text as a multidimensional vector. Before the
birth of neural networks, tf-idf was used to represent text. The text representation was
obtained by calculating the word frequency of each word and dividing it by the total
number of documents for normalization. The word vector representation obtained by this
method greatly depends on the given corpus documents, and there are problems such
as an inability to learn contextual information and distribution features; hence, the text
representation obtained is less effective. Furthermore, the feature representation obtained
using this method is similar to one-hot coding, and the problem of curse dimensionality is
inevitable as the number of words in the corpus increases.

In order to solve the problems of curse dimensionality and semantic gaps, subsequent
studies focused on the construction of distributed low-dimensional dense word vectors.
On the basis of this idea, the word2vec model [3], which can use two different models
(CBOW and Skip-Gram), was proposed. Since the implementation of word2vec is based on
the sliding window approach, only local features can be extracted, and more information
cannot be effectively fused. To solve the problem of word2vec, the GloVe model [4] was
proposed to combine the global information of the corpus.

However, both word2vec and GloVe have the problem that the representation of word
vectors is the same in different contexts, which obviously does not meet the requirements
of natural language. For example, the word apple obviously has different meanings
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with regard to an Apple phone and an apple orchard, and the representation of both
appearing in the corresponding utterance should not be the same; therefore, in order to
incorporate contextual information, pretrained language models such as ELMo [5] and
BERT [6] have emerged. Currently, the BERT family of models performs better in all major
natural language processing tasks. In this paper, a variant of BERT, the RoBERTa_WWM
model [7,8], is used as the text encoding layer.

The existing methods for sentiment feature extraction mainly include the convolutional
neural network (CNN), the recurrent neural network (RNN) [9] and its variants, and the
graph neural network (GNN). Kim [10] proposed a multichannel CNN to extract text
sentiment features and obtained good results. However, the CNN model uses convolutional
kernels to extract local features from the input data, ignoring the whole of the sentence,
and the obtained features lack global contextual information.

RNN, as a kind of temporal network, is more consistent with the sequence structure
characteristics of the sentence text compared with CNN, and it can better extract the
global features of the sequence. Since the structure of RNN itself is passed backward
in a time sequence, there is a problem in that the gradient of the sequence disappears
during the passing process. To solve this problem, a series of RNN variants have been
proposed, among which the most widely used ones are the long short-term memory model
(LSTM) [11] and the gated recurrent unit model (GRU).

In recent years, graph neural networks (GNNs) have been applied to several natural
language processing tasks. A GNN can update the node features in the network according
to the edges in the network and obtain the global information of the whole graph by
aggregating the nodes in the graph. Although both GNN and RNN acquire global features
of sentences, RNN only learns the overall features of a sentence serially from end to end by
treating the input sentence as a sequence, and this approach ignores the syntactic structure
of the utterance. In contrast, natural language is based on a certain syntactic foundation.
The graph network-based model proposed in this paper constructs a syntactic dependency
tree of sentences through syntactic relations, obtains a graph corresponding to the tree, and
learns the corresponding global features of sentences by updating the edges in the graph.
The main contributions of this paper are as follows:

1. A multiscale GAT [12] model based on syntactic dependency trees is proposed to
extract sentiment features of sentences as a function of their syntactic structure, which
solves the problem of CNN, LSTM, and other models ignoring the syntactic features
of sentences.

2. A method for constructing graph networks after encoding Chinese utterances is pro-
posed. The representation of node features in the syntactic spanning tree is obtained
when syntactic analysis is performed on Chinese utterances.

3. Two Chinese e-commerce review datasets are constructed; the proposed model is
applied to the datasets, and good results are obtained.

2. Related Work

Sentiment analysis tasks are currently classified into sentiment lexicon-based algo-
rithms, machine learning-based algorithms, and deep learning-based algorithms [13,14].
Sentiment lexicon-based algorithms require domain personnel to create a specialized sen-
timent lexicon; then, the text to be classified is divided into words, the words in the text
are sentiment labeled using the constructed sentiment lexicon, and the sentiment score
is calculated using semantic rules to derive sentiment tendency. Hu et al. [15] proposed
that the key to determining sentiment polarity is the degree of sentiment of adjectives, and
they created a sentiment lexicon for sentiment analysis. Yang et al. [16] proposed a method
to construct domain-specific lexicons. Zhou et al. [17] proposed a method to construct a
sentiment dictionary for Chinese microblogs. The main core of the sentiment lexicon-based
approach lies in the construction of the sentiment lexicon, the suitability of the approach
greatly depends on the degree of the construction of the lexicon, and the construction
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process of the lexicon itself is complicated and mostly domain-specific, making it less
applicable.

Machine learning-based methods are essentially feature engineering extraction meth-
ods, i.e., extracting different classes of features from a labeled dataset. Pang et al. [18] first
used machine learning for sentiment analysis by comparing SVM, NB, and ME with multi-
ple feature combinations for the classification of movie reviews, and they concluded that
the combination of monadic features and SVM worked best. Wikarsa et al. [19] used a plain
Bayesian classifier for Twitter users’ comment sentiment analysis, classifying emotions
into six categories, with an experimental accuracy of 83%. Ying Su et al. [20] proposed
an unsupervised model for text sentiment analysis by combining a plain Bayesian model
and a latent Dirichlet distribution, which outperformed other unsupervised models in
terms of correctness. The machine learning-based approach for sentiment analysis may
have problems such as sparse feature vectors, dimensional explosion, and difficult feature
extraction when feature extraction is performed.

Deep learning is a multilayer representation learning algorithm with a deeper net-
work structure and stronger expressive power compared to traditional machine learning
algorithms. Sentiment analysis based on deep learning generally takes the word vector
obtained from word embedding training as the input of the sentiment analysis model, and
then performs feature extraction through the feature extraction network of the model, after
which the sentiment polarity is obtained by means of classification. Yuan [21] combined
LSTM and Word2Vec for sentiment analysis of book reviews. Wang et al. [22] used LSTM
for Twitter sentiment analysis and obtained good results. Wang et al. [23] combined CNN
and LSTM models, using CNN to deal with local dependencies and LSTM to deal with
remote dependencies, and achieved better results. Feng et al. [24] proposed a sentiment
analysis scheme based on a convolutional neural network and attention mechanism for a
sentiment analysis scheme and achieved good results. Li et al. [25] used CNN and BiLSTM
for feature fusion and obtained better results than a single-feature network.

Among several methods currently applied to sentiment analysis, deep learning-based
methods outperform the others in terms of the complexity of work, the ease of implementa-
tion, and the final experimental results.

3. MSGAT
3.1. Model Architecture

As shown in Figure 1, MSGAT consists of seven modules: input, sentence encoding,
construct parse tree, vertex representation, generate edge list, feature extraction, and
classification. Being an end-to-end model, it accepts sentences as the input and outputs
sentiment polarity.
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A preprocessed dataset is used as the model input; a detailed description of the dataset
is given in Section 4. For a given input sentence, each word in the Chinese sentence is first
represented using a vector, which is generated by the sentence encoding module. Because
the feature of the input sentence is calculated via GAT, vertices and edges are needed. The
vertex representation module generates vertices, while edges are output by the generate
edge list module. Both of these modules require the construct parse tree module’s output
as the input. After obtaining vertices and edges, the feature extraction module uses GAT to
output the sentiment feature, which is the input of the classification module.

For vertex representation, due to the nature of Chinese phrases, a single word cannot
normally be a phrase, and dependency parsing of Chinese sentences is based on phrase
components. It is necessary to aggregate the vector generated by the sentence encoding
module. In the phrase in the figure, which consists of two words, the feature representation
is obtained by aggregating the two vectors.

The feature extraction module includes two components: GAT and the pooling layer.
Through the operation of GAT and pooling, the vertex features in each graph network are
updated. By aggregating the vertex features, the sentiment features corresponding to the
sentence at different scales are obtained. The features at different scales are fused as the
final feature vector.

3.1.1. Sentence Encoding

The word embedding adopts the RoBERTa_WWM pretraining model. The RoBERTa
model is an improved BERT model, mainly modifying the pretraining method, through
dynamic masking, elimination of the next sentence prediction task, expansion of the batch
size, etc. For WWM (whole word mask), for example, when predicting the sentence “There
is an apple tree.”, the original mask will pick the word “apple” as the mask part for
prediction, while WWM will mask the words “apple tree” as the whole word mask, which
is more reasonable.

Given a sentence S of length N, the vector representation of the sentence
z = {z1, z2, . . . , zN} is obtained by encoding it with the RoBERTa model. For each zi,
a 768-dimensional vector is represented.

3.1.2. Construct Parse Tree

Natural languages have their own syntactic structures. A specific sentence is con-
structed on the basis of dependency syntactic relations according to the meaning to be
expressed. The dependency relations, here referred to as parse trees, can be obtained by
performing a dependency syntactic analysis of the sentence.

For example, a sample sentence entered into Figure 1. After the dependency syntactic
analysis, a parse tree is obtained as shown in Figure 2.
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The relationships of the sentence shown in the diagram are represented in Table 1.
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Table 1. Dependency relationship table.

Relation Description

advmod Adverbial modifier
punct Punctuation
case Dependencies

amod Adjective modifier
conj Parallelism

nmod Compound noun modifier
nsubj Subject–predicate relationship

3.1.3. Vertex Representation

According to the parse tree of the sentence, the word vectors are aggregated to obtain
the feature representation of each node in the tree. For Chinese, the node often refers to
phrase, which consists of several words. Thus, it is not necessary to aggregate vectors if the
node is a single word.

For node i in the tree, assuming that it consists of the words [zk, zk+1] corresponding
to sentence, the feature representation of node i is as in Equation (1).

Ti=AGG(zk, zk+1), (1)

where Ti denotes the feature of node i. AGG is the aggregation operation, which can be
selected as the summation, mean, maximum, etc. One can also use concat to stitch the
features as the node’s features. Here, we choose mean aggregation, which is simple to
implement and works well.

3.1.4. Generate Edge List

The edges of nodes are constructed according to the parse tree, and the set of edges
is used as the updated adjacency matrix, which is input into GAT. As the tree structure
shows in Figure 2, there is a relational edge between feel and warm; assuming that these
two nodes are numbered 1 and 2, the generated edge is denoted as (1,2). By traversing
the whole tree, the set of all edges is obtained, denoted as A. A is the adjacency matrix of
the sentence. When each node is updated, the neighboring vectors are added to the node
itself by the adjacency matrix according to the attention weights. For the vector of the node
itself, it also needs to be added when updated; hence, the edges of all nodes pointing to
themselves are added to the set.

In summary, the obtained A is expressed in Equation (2).

A =

{
(i, j) i 6= j ; i, j ∈ E
(i, i) i ∈ E

, (2)

where E is the set consisting of all nodes in the tree, and i and j are the nodes in the set.

3.1.5. Feature Extraction

After obtaining the node features and adjacency matrix, it is input into the GAT for
node feature updating, followed by the pooling operation for down-sampling, and then the
sentence features are obtained at the current scale by aggregating the overall node features.
After two rounds of feature learning in the network, the sentence features at two different
scales are obtained. These features are fused as the final vector of the sentence, which is the
sentiment feature vector of the corresponding sentence.

The GAT takes the feature vectors of the nodes and the adjacency matrix of the nodes
as the input, and updates features of the nodes through the adjacency matrix via the
attention mechanism. Suppose that the input node features T =

{
T1, T2, . . . , TN ; Ti ∈ RF},

where N denotes the number of nodes, and F denotes the dimension of features. In order
to obtain sufficient expressiveness, set a weight matrix W ∈ RF′×F, and perform a linear
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transformation on Ti to obtain WTi. Then, perform the self-attention and calculate the
attention coefficients using Equation (3).

eij = a
(
WTi, WTj

)
, (3)

where j is a node adjacent to i; a ∈ R2F′ is used to map the spliced high-dimensional features
into a concrete real number as the attention of node i to node j.

Afterward, the normalization operation is carried out for the attention coefficient
as follows:

αij =
exp
(

LeakyReLU
(
eij
))

∑k∈Ni
exp(LeakyReLU(eik))

. (4)

After obtaining the attention coefficients, feature fusion is performed on the original
features as the output features for each node as follows:

T′i = σ

(
∑

j∈Ni

αijWTj

)
. (5)

TopKPooling [26] is used as the pooling layer. The filtering ratio is set as 0 < ratio < 1,
denoted as r; then, the k highest weighted nodes from the graph nodes are filtered to form
a new graph, and the adjacency matrix is updated to the matrix of selected nodes. Thus,
k = rN, where N is the number of nodes in the original graph. Setting a learnable matrix
P ∈ RF′×1, the weights are calculated according to Equation (6).

y =
T′P
||P|| . (6)

Then, k nodes are filtered as in Equation (7).

i = topk(y). (7)

The selected nodes are updated with features according to the weight values, as in
Equation (8).

T′′ = (T′tanh(y))i. (8)

The adjacency matrix is updated as in Equation (9).

A′ = Ai,i. (9)

Extracting the global features of the new graph obtained after pooling can be achieved
in three ways: global average pooling, global maximum pooling, and global summation.
The global average pooling is used as the extraction method, as in Equation (10).

x =
1
Ni

Ni

∑
n=1

T′′n. (10)

The global features of three different scales are (x1, x2, x3), summed as the final global
feature xs.

3.1.6. Classification

The output of the feature extraction is fed into the feedforward neural network to
obtain the final sentiment polarity. A softmax function is used as the activation function,
defining a positive label of 1 and a negative label of 0.

The cross-entropy loss function was chosen to calculate the loss with Equation (11).

L =
1
N ∑

i
−[yilog(y′i) + (1− yi)log(1− y′i)], (11)
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where yi is the true label, and y′i is the network-predicted value.

4. Experiment and Discussion
4.1. Dataset

The experiments are based on two Chinese datasets, a hotel review dataset and a
takeaway review dataset. The data distribution for these datasets is shown in Table 2.

Table 2. Dataset distribution.

Dataset
Positive Emotions Negative Emotions

Total
Train Test Train Test

Hotel review dataset 3726 1596 1711 732 7766
Takeaway review dataset 2800 1200 5592 2394 11,986

The hotel review dataset was collected from the Meituan platform, which is an E-
commerce platform that is well known in China. The takeaway review dataset was collected
from the ELEME platform, which belongs to Alibaba. These comments were obtained from
the comments section of the corresponding platform, which fully reflects the authenticity
and validity of the data. All of the comments were written by Chinese people in Mandarin,
and they were collected at the beginning of this year.

As is customary in China, people usually write reviews out of appreciation for good
service and complaints about unsatisfactory service. Therefore, neutral reviews are rare.
For this reason, we removed these comments and retained only the positive and negative
ones, and this work was carried out simultaneously when annotating the dataset. Invalid
comment data also needed to be removed. After these processes, we obtained the amount
of data shown in Table 2.

Of course, these data are not the final input data. The data in the dataset were text-
preprocessed to remove emoticons and invalid characters from the comments; the format
of the processed data is shown in Table 3.

Table 3. Data format (for readability, the original text has been translated to English).

Dataset Content

Hotel review dataset

(1, Business king room, the room is large, the bed is 2 m
wide, the overall feeling of economy is good!)
(0, I booked a suite in the secondary floor during the
National Day, and it was more than a little worse, the
furniture was shabby and the TV was incredibly small and
unimaginably spartan.)

Takeaway review dataset
(1, Delicious! Fast! The packaging has quality too . . .
restaurant food without leaving home!)
(0, Too bad. I waited 2 h for the beef, and I was about to
throw up; never again.)

In the table, 1 indicates a positive sentiment label and 0 indicates a negative sentiment
label. The tags and comment data are separated by commas.

4.2. Experimental Environment

The hardware devices and software versions used for the experiments are listed in
Table 4.



Information 2023, 14, 416 8 of 11

Table 4. List of experimental environments.

Classification Specific Description

Hardware type

CPU: Intel(R) Xeon(R) W-2255 CPU @ 3.70 GHz
GPU: NVIDIA GeForce RTX 3080 Ti
Memory: 64 GB
Hard disk: 4 TB

Software version

OS: Windows 10
python: 3.9.12
torch: 1.12.0
pycharm: 2022.1.3

4.3. Baselines

The BERT model has excellent performance in all major subtasks in NLP, and the
pretrained model can be directly used in downstream tasks. The BERT + BiLSTM model
uses the BERT model as the text encoding layer, and then BiLSTM extracts features contain-
ing textual context for sentiment classification; the TextCNN-based model uses multiple
convolutional kernels of different sizes for feature extraction and splices multiple features
for sentiment classification.

In order to avoid the influence of the coding layer on the final results, the above models
all use the RoBERTa model as the text coding layer. In terms of training parameters, the
same batch size, learning rate, and epoch were set as stated in Table 5.

Table 5. Parameter settings.

Parameter Name Description Value

Batch size Volume of data per batch 32

Epoch Number of times the dataset
was learned 20

Learning rate Learning rate 10−5

Optimizer Optimizer AdamW
Dropout Random drop rate 0.5

4.4. Experimental Results and Analysis

Experiments were conducted for each model, and the results obtained are shown in
Table 6.

Table 6. Experimental results.

Model
Hotel Review Dataset Takeaway Review Dataset

Accuracy F1 Accuracy F1

RoBERTa 90.84 93.46 90.76 85.29
RoBERTa +

BiLSTM 93.49 95.27 91.99 87.73

RoBERTa +
TextCNN 93.62 95.31 92.51 88.62

RoBERTa +
MSGAT 94.79 96.23 93.72 90.44

As can be seen from the data in the table, RoBERTa + MSGAT performed better on
both datasets and achieved good scores in terms of both accuracy and F1 scores. TextCNN
and BiLSTM were similar in terms of performance, and the difference between them varied
depending on the initial values of different weights, but the difference was essentially
nonsignificant. The results obtained using only the RoBERTa model were not as good as the
other three models, but they also achieved good scores, verifying the strong performance
of the RoBERTa model itself.
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For a more visual observation of the convergence of each model, the loss of each model
on the dataset is shown in Figure 3.
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Figure 3. Convergence of each model. (a) Loss convergence on the hotel review dataset; (b) Loss
convergence on the takeaway review dataset.

It is obvious from Figure 3 that the convergence of the models was similar except
for the RoBERTa model, whereby the convergence of the RoBERTa + MSGAT model was
a little more stable. Since the RoBERTa model reached convergence in the early stage of
training, after setting the same epoch as the other models, the model no longer converged
subsequently, but varied within a certain range.

4.5. Ablation Study

The ablation experiments were conducted to determine the effects of the number of
graph attention network layers and different graph network feature aggregation methods
on the experimental results. The hotel review dataset was chosen here as the comparison
experimental dataset because it had relatively fewer data for the model to learn, more
clearly reflecting the difference in results between different parameters.

Table 7 shows the experimental results with different numbers of layers of the GAT.

Table 7. Experimental results with different numbers of the layers.

Number of GAT Layers Accuracy F1

Single GAT 94.01 95.63
Double GAT 94.79 96.23
Triple GAT 94.36 95.88

From the data in the table, it can be intuitively seen that the best results were obtained
using two-layer GAT, while the three-layer GAT was slightly worse than the two-layer
GAT, but better than one-layer GAT. It can be considered that the one-layer GAT network
was not sufficient for feature extraction, which made the classification results poor, and
the three-layer GAT was over-fused, which made the features redundant and affected the
classification effect.

Table 8 shows the experimental results using different feature aggregation methods.

Table 8. Experimental results of different polymerization methods.

Global Aggregate Function Accuracy F1

global_mean_pool 94.79 96.23
global_max_pool 94.45 95.96
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From the results in the table, it can be seen that the above two aggregation methods
did not have a great impact on the experimental results, and both could provide very good
results. There is no definite conclusion as to which of the two commonly used aggregation
methods, namely, mean aggregation and maximum aggregation, was more effective. For
the dataset in this paper, the effects of the two methods were relatively similar, and the
effect of mean aggregation was relatively better.

5. Conclusions

In Chinese sentence-level sentiment analysis, we propose using an MSGAT to combine
the syntactic structure and the sentiment features of sentences as a whole. This solves the
problem that traditional deep learning methods, such as the long short-term memory model
(LSTM) and the convolutional neural network (CNN), only extract serialized and local
sentiment features when extracting sentiment features of sentences, ignoring the syntactic
structure information. Through the feature fusion method, the transformation of input
sentences into syntactic dependency trees is achieved. It is experimentally demonstrated
that MSGAT achieved better performance than BiLSTM and TextCNN on the proposed
Chinese datasets. The performance on larger datasets is yet to be verified. For sentence
sentiment polarity analysis as a dichotomous classification, the application of sentiment
multiclassification tasks needs to be further considered as a research direction.
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