01010

01010

Y] information

Article

Authorship Identification of Binary and Disassembled Codes
Using NLP Methods

Aleksandr Romanov

check for
updates

Citation: Romanov, A.; Kurtukova,
A.; Fedotova, A.; Shelupanov, A.
Authorship Identification of Binary
and Disassembled Codes Using NLP
Methods. Information 2023, 14, 361.
https://doi.org/10.3390/
info14070361

Academic Editor: Mark Stevenson

Received: 31 May 2023
Revised: 18 June 2023
Accepted: 24 June 2023
Published: 25 June 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Anna Kurtukova *

, Anastasia Fedotova ’ and Alexander Shelupanov

Department of Security, Tomsk State University of Control Systems and Radioelectronics, 634050 Tomsk, Russia;
alexx.romanov@gmail.com (A.R.); afedotowaa@icloud.com (A.F.)
* Correspondence: av.kurtukova@gmail.com

Abstract: This article is part of a series aimed at determining the authorship of source codes. Analyz-
ing binary code is a crucial aspect of cybersecurity, software development, and computer forensics,
particularly in identifying malware authors. Any program is machine code, which can be disassem-
bled using specialized tools and analyzed for authorship identification, similar to natural language
text using Natural Language Processing methods. We propose an ensemble of fastText, support
vector machine (SVM), and the authors’” hybrid neural network developed in previous works in this
research. The improved methodology was evaluated using a dataset of source codes written in C and
C++ languages collected from GitHub and Google Code Jam. The collected source codes were com-
piled into executable programs and then disassembled using reverse engineering tools. The average
accuracy of author identification for disassembled codes using the improved methodology exceeds
0.90. Additionally, the methodology was tested on the source codes, achieving an average accuracy
of 0.96 in simple cases and over 0.85 in complex cases. These results validate the effectiveness of the
developed methodology and its applicability to solving cybersecurity challenges.

Keywords: authorship; source code; disassembly; neural network; machine learning

1. Introduction

Identifying the author of a computer program is a critical task in digital forensics [1]
and plagiarism detection [2]. Solutions to this task can be beneficial for litigation related
to intellectual property and copyright issues and for various forensic investigations of
malicious software.

The existing methods for identifying the author of a computer program can be cate-
gorized into three groups: those that analyze the source code [3-7], the assembly code of
the disassembled program [8-14], and universal methods applicable to both cases [14,15].
Although these methodologies are based on different algorithms and approaches, all of
them share a common principle: each author-programmer has a unique coding style. This
style can be identified through the following elements (see Figure 1):

Design patterns.

Language construct.

Code block formatting.

Code comments style.

Identifiers, variables, functions naming.

“Code smells” [16]—poorly written source code that does not conform to the lan-
guage’s code writing conventions used by the author of the program.

o G W=

These features belong to the original program source code but are not present in the
binary code. However, some of these features remain identifiable even after the program
has been compiled and disassembled. As a result, determining authorship based on binary
and disassembled code is more methodologically complex and requires modern solutions
tailored to this type of analysis.

Information 2023, 14, 361. https:/ /doi.org/10.3390/info14070361

https:/ /www.mdpi.com/journal/information

https://doi.org/10.3390/info14070361
https://doi.org/10.3390/info14070361
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-2587-2222
https://orcid.org/0000-0001-5619-1836
https://orcid.org/0000-0001-7844-4363
https://doi.org/10.3390/info14070361
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14070361?type=check_update&version=1

Information 2023, 14, 361

2 of 21

Code comments style Code block formatting

Design patterns ‘ Developer habits Language construct

Identifiers, variables,

"Code smells" : .
functions naming

Figure 1. Developer habits.

This study aims to develop a comprehensive solution based on NLP algorithms that
enables the precise identification of a program author with high accuracy, utilizing both
source and compiled binary codes.

The development of such a methodology requires the utilization of state-of-the-art
NLP methods. One actively growing and popular approach is multi-view learning [17-19].
Its principle lies in leveraging complementary data sources to provide a comprehensive
representation of the research object. However, using this approach as a baseline carries
certain risks for the following reasons:

1. Lack of multiple views. By definition, the multi-view learning process requires
multiple distinct and complementary representations to ensure a comprehensive
understanding of the research object. However, in the case of the textual represen-
tation of source code, additional views that reflect different aspects of the code may
be lacking.

2. Complexity and interpretability. Program code is a highly structured text with numer-
ous complex dependencies. Applying multi-view learning to source code can lead
to increased computational complexity and make the interpretation of results more
challenging. The machine learning methods used in this research allow for a more
controlled process and a simpler interpretation of results.

3. Limited performance improvement. Multi-view learning can be highly beneficial
in domains where different data representations provide additional insights into
the research object. However, in the case of program code, such representations
may not necessarily lead to improved performance compared to simpler and more
interpretable machine learning methods. It is important for us to strike a balance
between computational complexity and solution effectiveness.

Binary or disassembled code can be a distinct representation in addition to source code
and be used in multi-view learning. This work focuses on the question of whether the use
of binary code as a standalone component is possible for this purpose. As an alternative,
we propose using an ensemble of classifiers.

The research presents a significant scientific novelty through the introduction of
an ensemble of classifiers utilizing Natural Language Processing (NLP) methodologies.
This ensemble comprises the author’s hybrid neural network (HNN), SVM equipped
with carefully selected feature space, and fastText utilizing experimentally optimized
parameters. To the best of our knowledge, these specific approaches have not previously
been employed for authorship identification where data are presented as disassembled
code. This amalgamation of novel methodologies represents a pioneering contribution to
the field.

The paper is organized as follows: Section 2 focuses on the literature review, including
a detailed discussion of the studies aimed at identifying the author of binary programs;

Information 2023, 14, 361

30f21

Section 3 provides insights into our previous research concerning program source code
authorship, addressing both simple and complex cases; in Section 4, we expound on the
composition and formation of datasets of source and disassembled codes for programs; pre-
liminary experiments conducted to address it are outlined in Section 5; Section 6 presents a
universal method for identifying program authors based on the findings from the prelim-
inary experiments; Section 7 focuses on the test cases of the methodology, examining its
performance on both source and binary codes; in Section 8, we present a comprehensive
summary of the results obtained and engage in a thorough discussion of the method’s
limitations and prospects for future development.

2. Literature Review

An effective system called Binary Authorship Verification with Flow-aware Mixture-
of-Shared Language Model (BinMLM) has been developed for determining the authorship
of binary codes [8]. This system utilizes a recurrent neural network (RNN) model that
is trained on consecutive opcode traces extracted from the control flow graph (CFG). By
combining these methods, unnecessary noise is eliminated, and the unique coding styles
of developers can be accurately identified. Additionally, this system proves valuable in
situations where limited computing resources are available. The authors conducted tests
on disassembled datasets from Google Code Jam (GC]J), Codeforces, and real advanced
persistent threat (APT) datasets. For the GCJ dataset, the average Area Under the ROC
Curve (AUC-ROC) value was 0.865, with an average precision (AP) of 0.87. For the
Codeforces dataset, the AUC-ROC values were 0.85 and 0.86, respectively. These results
outperformed the n-gram approach and the method proposed by Caliskan-Islam et al. [14]
by an average of 0.06 for the GCJ dataset and 0.19 for the Codeforces dataset. In addition to
its high efficiency, the authors highlight that BinMLM is capable of providing organization-
level validation, offering valuable information about the group responsible for an APT
attack on software.

The authors of article [9] solve two related problems in binary code analysis: identify-
ing the author of a program and finding stylistic similarities between programs written by
unknown authors. The solution-finding process involves five steps. The first step involves
collecting a corpus of programs with known authorship. In the second step, the CFG
and instruction sequence are extracted for each binary file. Function template extraction
is done using a recursive traversal parser. Among such templates, the authors identify
idioms, graphlets, supergraphlets, libcalls, and call graphlets, as well as n-grams. Idioms
are small instruction sequences that determine the stylistic features of the disassembled
assembly code. Graphlets are subgraphs consisting of three nodes that are part of the
CFG. Supergraphlets are adjacent nodes merged into one, and call graphlets are graphlets
consisting exclusively of call instruction nodes. Libcalls are the names of imported libraries.
In this study, n-grams are considered short byte sequences of length n. In the third step,
a subset of functions corresponding to the programmer’s style is selected by calculating
mutual information between extracted functions and a specific developer, and then ranking
them according to the calculated correlation. The fourth step involves training a Support
Vector Machine (SVM) on the labeled corpus. The final step is clustering using the k-means
algorithm. To avoid clustering based on the wrong feature, such as program functionality,
the information obtained in the fourth step is used. A distance metric was used to transform
unlabeled data before clustering, based on the labeled set. To test the approach, the authors
used three datasets: GCJ] 2009, GCJ] 2010, and r CS537 2009. Accuracy was the metric used
to evaluate classification performance based on cross-validation. For a combination of
5 function templates for 20 authors, it was 0.77 for GCJ 2009, 0.76 for GCJ 2010, and 0.38
for CS537. For five authors, the accuracy was higher, at 0.94, 0.93, and 0.84, respectively.
Adjusted Mutual Information, Normalized Mutual Information, and the Adjusted Rand
Index were used to evaluate clustering performance. For the GCJ 2010 dataset, they were
0.6, 0.72, and 0.48, respectively.

Information 2023, 14, 361

4 0f 21

The study [10] focuses on BinGold, a system designed for binary code semantic
analysis. The approach involves using dataflow to extract the semantic flow of the registers
and semantic components of the control flow graph. These flows and components are then
transformed into a new representation called the semantic flow graph (SFG). During binary
analysis, many properties related to reflexivity, symmetry, and transitivity of relations are
extracted from the SFG. The authors evaluated BinGold on 30 binary applications, including
OpenSSL, Pageant, SQLite, and 7z, using precision, recall, and F1 as quality metrics. The
metrics were calculated for each application and ranged from 0.66 to 0.9. In addition to
similarity estimation, the authors conducted experiments on the GCJ dataset to address
two other problems: binary code author identification and cloned component detection in
executable files. The F0.5 metric [11] was 0.8 for the authorship identification task and 0.88
for the cloned component detection task, respectively. The authors argue that their proposed
approach is more robust for binary code because the extracted semantic information is less
susceptible to easy obfuscation, refactoring, and changes in compilation parameters.

A group of researchers from Princeton University has been working on solving the
problem of software author identification for several years. In their previous studies,
they focused on de-anonymizing source codes. However, in their recent work [12], they
applied their prior experience to the analysis of binary codes. The authors argue that the
most informative features used for source code classification are entirely absent in binary
code. Therefore, they propose the utilization of supervised machine learning methods
to de-anonymize the authors of binary files. The authors” experiment consisted of four
steps. Initially, they disassembled the binary codes and then decompiled and translated the
programs into C-like pseudocode. Subsequently, a fuzzy parser was employed to process
the pseudocode, generating abstract syntax trees (ASTs) that contained both syntactic
features and n-grams. To reduce dimensionality, the researchers performed a selection
process that identified the most informative features from the disassembled and decompiled
code using information gain and correlation-based feature selection methods. In the final
step, they trained a random forest classifier on the resulting feature vectors. The accuracy
of this approach, evaluated using the GCJ dataset, averaged 0.89. The authors emphasize
that their method is robust against easy obfuscation techniques, changes in settings and
compilation parameters, as well as binary files lacking their character tables.

The article [13] discusses the issue of performing forensic analysis on binary code files.
To simplify reverse engineering in the context of forensic procedures, the authors present
a system called the Onion Approach for Binary Authorship Attribution (OBA2). This
system is based on three complementary levels: pre-processing, attribution using syntactic
features, and attribution using semantic features. To extract meaningful functions, the
authors utilize five predefined templates from [9] idioms, graphlets, supergraphlets, libcalls,
and n-grams. These extracted features are then ranked according to their correlation with
specific candidate authors and passed to the first level, known as the Stuttering Layer. At
this level, a sequence of actions is proposed to identify user-defined functions and eliminate
library code. These actions include binary disassembly, application of startup signatures,
matching of entry points, compiler identification, accessibility of library signatures, creation
of hashing-based patterns, marking of matched functions, and code filtration. The result of
the first layer is the creation of function signatures for common libraries, which are essential
for extracting user-defined functions. The next level is the Code Analysis Layer, where
a combination of algorithms is employed to create an author’s syntactic profile for each
candidate author. These author profiles can later be utilized for clustering and classification
tasks. The final level is the Register Flow Analysis Layer, which forms a binary code model
called a register flow graph. This model captures programming style by analyzing the
significant semantic aspects of the code and acts as an abstract intermediate representation
between the source and assembly code of the program. The evaluation of the system was
performed on the GCJ 2009 and GC]J 2010 datasets. The system achieved an accuracy of
0.93 for three program authors, 0.9 for five authors, and 0.82 for seven authors.

Information 2023, 14, 361

50f21

The study [15] presents an overview of current research in the field of program au-
thorship attribution, focusing on both source code and binary code analysis. The authors
aim to compile a comprehensive list of features and characteristics that are potentially
relevant to attributing malware authorship. Based on their analysis, the authors identify
several informative attributes for source code programs. These include linguistic features,
such as the style and vocabulary used, as well as the presence of specific bugs and vul-
nerabilities. Other significant attributes encompass formatting, specific execution paths,
and the AST, CFG, and Program Dependence Graph (PDG) representations of the code.
When it comes to binary codes, the authors emphasize additional key features. Firstly, there
is the compiler and system information, which can be inferred from unique instruction
sequences or system-specific function calls. Furthermore, it is possible to gain insight
into the programming language in which the program was written. Overall, the study
sheds light on the diverse range of features that can be leveraged for program authorship
attribution, both in the context of source code and binary code analysis. This is achieved
through support subroutines and library calls preserved in the binary code. Secondly,
it involves the opcode sequences, which represent specific actions dictated by assembly
instructions such as imul, lea, jmp, and others. Thirdly, it includes strings, which are
null-terminated American National Standards Institute (ANSI) strings, constant types
used in calculations, and their values serving as offsets. Some informative features were
examined in the aforementioned [9] study, including idioms, graphlets, and n-grams. In
addition to these characteristics, system calls and errors are also significant. Within the
experiment, three datasets were used: GitHub, GCJ, and Malware. The source codes were
compiled with different settings using GNU Compiler Collection (GCC), Xcode, and Intel
C++ Compiler (ICC). After disassembling the binary codes with Interactive DisAssembler
(IDA), specific features and functions were extracted for subsequent ranking. Finally, the
features with the highest ranks were used to evaluate the approaches presented in [12-14].
The approaches trained on informative features for 10 authors demonstrated the following
accuracies: [12]—0.84, [9]—0.8, and [14]—0.89. Although the last approach proved to be
the most effective, it exhibited the fastest decline in accuracy when the number of authors
for classification increased. The approach in [12] was the most robust to changes in the
number of authors.

It is worth noting that none of the previously discussed studies conducted additional
experiments on method attacks. In software development, some programmers, particularly
those involved in malware development, actively seek to protect their anonymity and
employ de-anonymization tools. These tools can significantly undermine the accuracy
of existing methodologies for determining program authorship. For instance, in [20], the
authors focus on transforming a test binary to preserve the original functionality while
inducing misprediction. The article highlights the inherent risks associated with attacks on
binary code, where even a single-bit alteration can render the file invalid, lead to runtime
failures, or lead to the loss of original functionality. The study explores two types of attacks
on binary code: untargeted attacks, causing misprediction towards any incorrect author,
and targeted attacks, causing misprediction towards a specific one among the incorrect
authors. Researchers identify two primary avenues for attacks: modification of the feature
vector and modification of the input binary itself. The authors’ non-targeted attack achieved
an average success rate of 0.96, indicating the effectiveness of obfuscating the authors’ style.
The targeted attack had a success rate of 0.46, highlighting the complexity and potential for
manipulating the programming style of a specific author. In summary, the study’s findings
reveal that binary code authorship identification methods relying on code functions are
susceptible to authorship attacks due to their vulnerability to modification.

Preventing attacks on methods is not the only aspect that researchers developing
source code authorship identification solutions should consider. Table 1 shows the main
advantages and disadvantages of each of the proposed approaches. It takes into account
the most important aspects: First, the effectiveness of the approach for identifying the
author-virus writer as the target application scenario. Second, robustness to noise in data,

Information 2023, 14, 361

6 of 21

that is, the ability to ignore uninformative and/or downgrade the effectiveness of the
author’s approach. Third, resistance to obfuscation, one of the most popular methods of
attack. Fourth, applicability to both binary and source code, that is, the universality of the
approach and the ability to determine authorship based on both the source and binary code
of the program.

Table 1. Comparison of the advantages and disadvantages of approaches.

Study Effective for Resistant to Noise Resistant to Code Applicable to Source and
Viruses in Data Obfuscation Binary Codes

Song Q. [8] + + — —
Rosenblum, N. [9] — + — —
Alrabaee S. [10] — — + _
Caliskan-Islam, A. [12] — + — —
Alrabaee S. [13] — + — —
Caliskan-Islam, A. [14] — + — +

There were several conclusions drawn from the analysis conducted:

1. The majority of the features utilized predominantly describe the functionality of the
program rather than the author’s style.

2. The feature space needs to be filtered based on the informativeness of each individ-
ual feature.

3. The effectiveness of the approaches depends on the specific domain. The features used
may be characteristic of a particular domain, such as programs written for developer
competitions or malicious software.

4. Feature source importance. The authors employ various decompilation tools that
have different functionalities and settings. This variation can have a negative impact
on the classification results.

5. Misleading features. The experimental results indicate that highly ranked informative
features are often not informative and are not related to the author’s style. The
most common reason for this issue is that the highest scores in mutual information
calculations are assigned to code fragments automatically generated by the compiler
rather than genuine authorship-related features.

6. Attacks on authorship attribution methods have the potential to significantly decrease
the effectiveness of modern methodologies, as they are not robust against obfusca-
tion and de-anonymization tools. These attacks can undermine the reliability and
robustness of the program authorship identification process.

3. Our Previous Research

We examined both simple [21] and complex cases [22,23] when addressing the task
of determining the author of a source code. Simple cases encompassed scenarios where
the authorship determination involved straightforward source codes containing explicit
authorship features. On the other hand, complex cases involved analyzing obfuscated code,
code that met coding standards, short commits, mixed training datasets, and artificially
generated code.

As part of the study [21], a series of experiments were conducted to analyze source
codes written in the eight most popular programming languages. These codes were written
by developers with varying levels of qualification and experience, ranging from engineering
students to professionals with extensive corporate development backgrounds.

In the experiments, both SVM and the author’s HNN were considered classifiers. The
feature set for SVM included lexical characteristics (such as loop nesting depth, average
string length, average function parameter count, etc.), structural characteristics (such as the
ratio of whitespace to non-whitespace characters, the ratio of empty lines to code length,
the ratio of spaces to code length, etc.), and “code smells” (such as the average number of
parameters in class methods, average lines of code in methods, comment length, etc.).

Information 2023, 14, 361

7 of 21

The fast correlation filter (FCF) was employed to filter out uninformative attributes.
Its effectiveness compared to other feature selection methods has also been determined in
previous studies [21-23]. This filter utilized a symmetric uncertainty measure to identify
dependencies between features and form a subset of informative features. By using the
fast correlation filter, only features that are informative for the specific case are included
in the training set. This subset of informative features can account for 10% or more of
the original feature set. As a result, we eliminate noise in the training data and enhance
the discriminative power of the classifiers being used. The parameters of the SVM were
determined based on previous work conducted on related topics [24].

The advantage of HNN (Figure 2) over SVM lies in its ability to independently extract
informative features. The source code was transformed using the one-hot encoding method,
creating a vector of 255 zeros and a single one positioned according to the American
standard code for information interchange (ASCII) code of the character. This vector was
then fed as input into the neural network. The neural network architecture consisted of
convolutional, recurrent, and dense layers. The convolutional part employed Inception-v1
with filters of different dimensions (Convl x 1,3 x 3, and 5 x 5) to capture both local and
global distinctive characteristics. The recurrent component, represented by a bidirectional
gated recurrent unit (BiGRU), captured short-term and long-term temporal dependencies.
The dense layers were responsible for scaling the network. Finally, the output layer, which
utilized the Softmax function, transformed the logits obtained from the dense layers into
a probability distribution based on the number of classes (authors), N. The experimental
results demonstrated that, on average across programming languages, HNN outperformed
SVM by 5%. HNN achieved an accuracy of 97% in certain cases, while SVM achieved
96% accuracy.

Input layer (256)

Inception-V1
v v Y
ConvlD: /" ConvlD; ™ ” ConvlD:
1x1 3x3 5x5
(64) . « (128) / . (256)

l | J

BiGRU (128) ;

GRU

GRU

Y

Dense (512)

Y

Dense (512)

v

Softmax layer (N)

Figure 2. HNN architecture.

Information 2023, 14, 361

8 of 21

The focus of our previous study [22] revolved around two complex scenarios: obfus-
cated source codes and codes written according to coding standards. The author’s HNN
was employed to determine the authorship of the source code. Initial experiments revealed
a significant decrease in accuracy; however, modifying certain parameters proved effective
in making the classifier suitable even for complex cases. By employing updated parameters
and expanding the training dataset, HNN exhibited high accuracy in both scenarios. The
loss in identification accuracy for obfuscated source codes was found to be below 10%, with
an average accuracy of 85%. Similarly, an average accuracy of 85% was achieved when the
source code was written according to coding standards.

Other complex cases (mixed datasets, artificially generated source codes, and codes
developed collaboratively) were examined in [23]. Classifiers such as the author’s HNN,
fastText, and Bidirectional Encoder Representations from Transformers (BERT) were eval-
uated for their effectiveness. Among these, the author’s HNN demonstrated the highest
performance with an equivalent amount of data. For mixed datasets consisting of two
languages, the accuracy was 87%. In the case of datasets involving three or more languages,
the accuracy remained at 76%. In scenarios where author identification was conducted
based on commits in team-based development, the average accuracy ranged from 87% to
96%, depending on the volume of training data. Finally, for data generated by pre-trained
Generative Pretrained Transformer (GPT) models on the source code, the average accuracy
was 94%.

Based on the obtained experience, for the universal methodology of program author
identification based on both its source and binary codes, three machine learning models
are proposed:

e The author’s HNN with experimentally determined parameters;
o fastText with default parameters;
SVM trained on the feature set defined in [9].

Since disassembled code is significantly longer than the corresponding source code
implementing the same program, BERT would require unreasonably high computational
and time resources. Therefore, it is not considered within the scope of this research.

4. Dataset Description

The analysis of contemporary solutions for the problem of binary or disassembled
code author identification has highlighted certain aspects that require special attention
during the development of our own methodology. The primary consideration revolves
around the approach to dataset formation for the study. Many researchers have utilized the
publicly available GCJ source code dataset [25]. This choice carries both advantages and
disadvantages.

On the one hand, using the GCJ dataset provides researchers with a substantial amount
of experimental data, enhancing the objectivity of their evaluations. However, this dataset
possesses specific characteristics. It primarily consists of solutions to the same problems and
cases, limiting the relevance of the evaluation solely to this particular domain—programs
created within the context of the competition.

Consequently, the approaches derived from such data have not been tested on other
datasets, making it likely that they will exhibit significantly lower accuracy due to the
domain-specific nature of the GCJ dataset.

Therefore, we decided to create our own dataset of source and binary/disassembled
codes. This process involved several key steps (Figure 4):

1. The data downloading process from the hosting platform was performed using Python
scripts that utilized the GitHub Application Programming Interface (API) [26].

2. Source code filtering. As a result of the collection, the raw dataset contains source
codes up to five lines long, as well as those that are uncompilable or contain syntax
errors. We consider such data to be uninformative, so they were filtered out. Addition-
ally, we filtered out all the authors whose repositories contained less than 20 source
code files. Thus, we use source codes that can be used with GCC, the compiler chosen

Information 2023, 14, 361 9 of 21

for the study [27]. The final statistics on the dataset are presented in Table 2, and the
distribution of authors by the number of files in the dataset is shown in Figure 3.

3. Compiling source codes using the GCC compiler. The source codes, obtained after
filtering, were compiled with the specified version of GCC. The compiler version,
environment settings, and compilation parameters were either sourced from the
READMEE file or, if unavailable, set by default.

4. Disassembling executable files. It was a crucial step in the dataset creation process, as
the primary objective was to develop a methodology for identifying the author of an
unknown executable file. To accomplish this, the IDA Pro tool [28] was utilized for
the disassembly process.

Table 2. Dataset statistics.

Statistical Measure Source Codes Disassembled Codes
General number of authors 167 167
General number of files 12,779 5661
Average number of files per author 63 25
Maximum number of files per author 132 51
Minimum number of files per author 20 20
Average number of lines of code 146 1677

Number of files

m20-23 m24-27

m28-31 m32-35

m36-39 ®m40-43

44-47 48-51

Figure 3. Distribution of authors by the number of files in the dataset.

Information 2023, 14, 361 10 of 21

Domain expert GCC IDA Pro
Downloading codes
from GitHub
T
r——
Code compilation
" Compiled code
S
)
Disassembly of compiled code
o e - e
Binary code
e

Figure 4. UML diagram of the dataset creating process.

5. Experimental Setup

In order to establish an efficient and universally applicable methodology, it is essential
to conduct preliminary experiments using individual classifiers. These experiments are
designed to assess the accuracy of the selected models, namely HNN, SVM, and fastText.
By evaluating the performance of each classifier, we can determine their effectiveness in
identifying the author of a program with high accuracy.

In our study, we utilized K-fold cross-validation and compared our results with other
works and our own previous experiments [21,23,24], ensuring objectivity and comprehen-
sive evaluation. While we acknowledge the importance of leave-one-user-out (LOUO) and
other cross-validation techniques, we believe that K-fold cross-validation was a suitable
choice for our research objectives, providing reliable and meaningful results. This approach
ensures an objective evaluation and addresses the issue of excessive variability in estimates.
Accuracy is used as a quality metric:

TP+ TN

Acc = 1
T TPTFP+TN+EN M

where TP—true positive, TN—true negative, FP—false positive, and FN—false negative.

These parameters are calculated based on the confusion matrix, which stores informa-
tion about the right and wrong decisions made by the model for each class.

As part of the experiment, cases were considered with 2, 5, and 10 candidate authors,
and the number of training files ranged from 10 to 30. The reason for this choice is that
analyzing less than 10 files is insufficient for high-accuracy authorship identification and
analyzing authors with more than 30 files requires significantly greater computational
power due to the larger volume of data involved. Furthermore, it is worth noting that
the majority of individuals typically do not possess more than 30 files. Considering these
factors, we have chosen to present results only for authors within a range of 10 to 30 files
(Figure 3). This range strikes a balance between obtaining a sufficiently representative
sample size and managing computational requirements. The results are presented in
Figures 5-7.

Information 2023, 14, 361 11 of 21

mHNN u SVM u fastText

10 20 30

Number of files

1.00

0.90

0.8

o

0.7

Accuracy
o

0.6

o

0.5

(=]

0.40

Figure 5. Accuracy metrics for two authors.

= HNN u SVM mfastText
1.00

0.90

0.80
0.7
0.6
0.5
0.40
10 20 30

Number of files

Accuracy
o o

(=]

Figure 6. Accuracy metrics for five authors.

= HNN uSVM = fastText

1.00
0.90
0.80
3
® 070
=
3(3 0.60
0.50 II
0.40
10 20 30

Number of files

Figure 7. Accuracy metrics for 10 authors.

In order to determine the statistical significance of the obtained results, Non-parametric
Friedman and Némenyi post hoc tests were employed. We formulated the null hypothesis,
stating that the differences in accuracy between fastText, HNN, and SVM are random, and
the alternative hypothesis, suggesting the statistical significance of the obtained results. To
calculate the p-value for the Friedman statistical test [29], the results of the 10-fold cross-
validation were used for 2, 5, and 10 authors with 30 files. The p-value for 2 authors was
0.0000549; for 5 authors, it was 0.0000914; and for 10 authors, it was 0.0000934. In none of
the cases did the p-value exceed the threshold of 0.05, thus leading to the acceptance of the

Information 2023, 14, 361

12 of 21

-
fastText ~|

HNN

cD

A

1

2

(@)

alternative hypothesis, indicating that the differences in model accuracy are significant and
not random. Némenyi’s post hoc test [30] was utilized to assess the differences between
the models. The graphical interpretation of the Demshar plot is presented in Figure 8§,
where subfigure (a) demonstrates the results for 2 authors, subfigure (b) for 5 authors, and
subfigure (c) for 10 authors, respectively.

CD CD
A A

3 1 2 3 ' | 2 3

1 1 1 1 J —
E SVM fastText J L— SVM fastText J L— HNN

HNN ——— SVM
(b) (c)

Figure 8. Results of Némenyi’s post hoc test for (a)—2 authors, (b)—5 authors, (c)—10 authors.

The results obtained can be interpreted as follows: in the case of two authors, the

difference between the average ranks of HNN and SVM is smaller than the critical difference
(CD), indicating that the difference in the effectiveness of these models is insignificant.
Furthermore, both models were significantly outperformed by fastText in terms of ranks.
For five and ten authors, the results were similar, with the difference in effectiveness
between HNN and SVM becoming nearly negligible.

Based on the final results of the experiments and tests, it can be concluded that fastText

is particularly effective in identifying the author of the disassembled program code. With a
sufficient number of codes per author, the accuracy of fastText reaches 0.91. It is important
to note that in earlier studies on identifying the author of the source code of a program,
fastText showed lower efficiency compared to HNN, with an average difference in accuracy
of 5%. However, the combined use of these models as an ensemble of classifiers can provide
a universal solution for determining program authorship.

6. Methodology Based on the Ensemble of Classifiers

A generalized methodology for determining the author of a source and/or binary/

disassembled code based on an ensemble of classifiers is presented in Figure 9.

The first step, extensively described in Section 2, involves preparing the training data

for vectorization. In the case of identifying the author of the program based on the source
code, the file is directly passed to the vectorization module without any preprocessing.
However, to identify the author of a program based on the binary code, the source code
undergoes compilation with GCC and subsequent disassembly with IDA Pro. The resulting
reverse-engineered file is forwarded to the vectorization module.

The second step is to convert the training data into a vector form. Each of the classifiers

requires a corresponding format of input data:

The input for SVM consists of a set of normalized and vectorized features. When
analyzing assembly code, the feature space for SVM includes a set of features proposed
in [9], such as idioms, graphlets, supergraphlets, libcalls, call graphlets, and n-grams.
On the other hand, when analyzing source code, a set of features developed in the
authors’ previous studies [21] is utilized.

HNN processes the data in raw text format without any preprocessing. The original
text is directly fed into the one-hot vectorizer. One-hot encoding creates a vector
containing 255 zeros and a single unit for each unique character in the text. The unit is
positioned based on the character’s ASCII code to represent its presence or absence in
the text.

fastText also requires the raw text format of data as its input. The model automat-

ically generates word embeddings using skip-gram and Continuous Bag of Words
(CBOW) methods.

Information 2023, 14, 361

13 of 21

Dataset

Vectorizer Ensemble of classifiers

[
[GCC compile]

v

Compiled
code
T
[IDA Pro
disassambly]

v

Disassmebled
code

Source code —]

[fast-
correlation
feature

Exiaeiion] Feature set

[normalize&
encoding] [identification]
v [multiply § .~
| Feature [SVM] SVM byws] § | The true
vectors | probabilities ’ author
[one-hot [multiply ¢
encoding] One-hot [HNN] HNN by w] @
vectors || > probabilities :
[CBOW&
skip-gram [multiply
encoding] Word [fastText] fastText by ws]
embeddings || probabilities

Figure 9. UML activity diagram for the process of determining the author of a program.

The final step is presented in Algorithm 1. This step involves training the ensem-
ble of classifiers for author identification. The optimal hyperparameters for SVM and
HNN classifiers were determined through experimental evaluation using the Grid search
algorithm [31], while for fastText, the built-in autotune-validation function was utilized.

The following parameters were used for SVM [32]:

SVM type: multi-class classification;

Training algorithm: sequential optimization method;
Kernel: sigmoid;

Regularization parameter (C): 1;

Tolerance error: 0.00001.

HNN hyperparameters [33] were chosen as follows:

Optimization function: Adadelta;

Activation function for the output layer: Softmax;

Regularization function: 0.2 (using the Dropout function);
Activation function for hidden layers: Rectified Linear Unit (ReLU);
Learning rate: 107%;

Decay rate (rho): 0.95;

Epsilon (eps): 1077.

The majority of fastText hyperparameters [34] were optimal for task solving:

Learning rate: 0.9;
Threads: 15;
IrUpdateRate: 5.

The main principle of the ensemble is to assign weight coefficients (presented in the
schema as w1, w2, and w3) to the outputs of individual classifiers. In the analysis of
disassembled codes, the highest weight (w3 = 0.4) is assigned to the solutions provided
by fastText, as it has proven to be the most accurate classifier for this case. The decisions
made by HNN and SVM carry equal weights—w1 = 0.3 for SVM and w2 = 0.3 for HNN,
respectively. Consequently, the author identified by fastText will be considered correct
in all cases except when the solutions from both HNN and SVM coincide, resulting in a
combined weight of 0.6 against fastText’s weight coefficient of 0.4.

Information 2023, 14, 361

14 of 21

In the analysis of source codes, the highest weight is assigned to the solutions pro-
vided by HNN (w2 = 0.4), indicating its effectiveness in complex cases. The solutions
from fastText and SVM classifiers, which are considered less effective in such scenar-
ios, carry equal weights of 0.3. This is similar to the case with binary codes—w3 = 0.3
for fastText and wl = 0.3 for SVM, respectively. The approach to identifying the au-
thor of the source code using this ensemble is similar to the analysis of assembly code,
where the weights of the classifiers determine their contribution to the final identification.

Algorithm 1. Ensemble of classifiers.

Set x_src: >Source code feature vectors
Set x_asm: >Assembly code feature vectors
Set data_type: >‘asm’
Set epochs: >10
Set Estimator 1: >SVM
Set Estimator 2: >SHNN
Set Estimator 3: >fastText
Set model_list: >[Estimator 1, Estimator 2, Estimator 3]
Set anon_ex: >‘path/filename.asm’
procedure predict(models_list, weights, ex, data_type):
pred = {}
for model_f, model_w in (models_list, weights):
model = model.load(model_f)
probs = model.predict(ex)
pred[model] = [argmax(probs) x model_w, argmax(probs, axis = —1)]
if (data_type = ‘asm’):
if pred[‘svm.bin’][0] = pred[’hnn.bin’][0]:
if pred['svm.bin][0] + pred[’hnn.bin’][0] > pred[‘ft.bin"][0]:
return pred[‘svm.bin’][1]
else:
return pred|[‘ft.bin’][1]
else:
if pred[’svm.bin’][0] = pred[ft.bin"][0]:
if pred[’svm.bin’][0] + pred[‘ft.bin’][0] > pred['hnn.bin"][0]:
return pred[’svm.bin’][1]
else:
return pred['hnn.bin"][1]
procedure train_Estimator(Estimator, train_set, val_set, epochs):
for i in epochs do:
Estimator, logs = Estimator.fit(train_set, val_set, shuffle = True)
return Estimator, logs
procedure set_data_weights():
if (data_type = ‘asm’):
weights =[0.3, 0.3, 0.6]
data = x_asm
else:
weights =[0.3, 0.6, 0.3]
data = x_src
return weights, data
begin
weights = set_weights(data_type)
for tr_set, ts_set in KFold(data, k_splits = 10):
for model in model_list:
model, logs = train_Estimator(model, tr_set, ts_set, epochs, repeats)
model.save({model}.bin)
ex = vectorize(anon_ex)
true_author = predict([’svm.bin’, "hnn.bin’, ‘ft.bin’], weights, ex, data_type)
end

Information 2023, 14, 361

15 of 21

7. Testing of the Methodology for Identifying the Author of the Program

The developed methodology underwent testing for the source and binary codes of
programs. Experiments were conducted to evaluate the methodology’s performance in
author identification, encompassing both simple and complex cases. In certain experiments,
the number of disputed authors was increased to 20, thereby challenging the methodology’s
ability to accurately identify the correct author. The results of the ensemble of classifiers,
specifically for the analysis of disassembled codes, are illustrated in Figure 10. Additionally,
the results of the analysis of source codes in simple cases are presented in Figure 11.
These figures provide visual representations of the performance metrics obtained from the
experiments, enabling a comprehensive understanding of the classifier’s effectiveness.

4 m 5 authors =10 authors =20 authors

0.9
0.8
0.7
0.6
0.5
0.4
10 20 30

Number of files

Accuracy

Figure 10. The results of binary/disassembled code author identification.

m5 authors m10 authors m20 authors

1
0.9
0.8
0.7
0.6
0.5
0.4
10 20 30

Number of files

Accuracy

Figure 11. Source code identification results in simple cases.

Applying the ensemble to binary codes resulted in an accuracy improvement of over
0.1 when compared to using the classifiers individually. With an ample number of training
files, the accuracy exceeds 0.9.

The results obtained by the ensemble for the original source codes are comparable to
those obtained earlier [22], that is, the ensemble has no negative effect on this case.

In addition to simple cases of source code author identification, it is crucial to examine
more complex cases to ensure the stability of the enhanced methodology. These scenarios
include obfuscation, compliance with coding standards, team development, and the use of
artificially generated code samples.

In Figure 12, the results of author identification for obfuscated source code are pre-
sented. The obfuscation tool used in this analysis was AnalyzeC [35]. The obfuscation
process with this tool involves the following steps:

Information 2023, 14, 361 16 of 21

Complete removal of comments, spaces, and line breaks;
Adding pseudo complex code that does not change functionality;
Using preprocessor directives: obfuscation may involve manipulating or transforming
preprocessor directives, such as #define or #ifdef, to further obfuscate the code’s logic
or structure;

e Replacing strings with hexadecimal equivalents.

The results obtained by the ensemble are comparable to those obtained earlier [22],
that is, the ensemble does not have a negative effect on this case.

m5 authors m 10 authors m20 authors

09
08
3
S o7
e |
§ 06
05
04
10 20 30

Number of files

Figure 12. Results of authorship identification for obfuscated code.

The next case involves identifying the author of source code written by a development
team. In this case, programmers utilize a version control system, such as GitLab or GitHub,
and commit their changes to the project repository. It is common for source codes to
contain indications of multiple authors. Hence, the ability to determine authorship based
on commits becomes particularly significant.

During the data collection process, information regarding commits, their content,
and authors was obtained utilizing the GitHub API. Figure 13 illustrates the results of
author identification for the source code constructed from these commits. By employing
an ensemble of classifiers instead of solely relying on a separate HNN [23], a noticeable
increase in accuracy was achieved. On average, the accuracy gain obtained through the use
of the ensemble amounted to 0.03.

m 5 authors m10 authors m20 authors

0.95

0.8
0.7 I
0.7
10 20 30

Number of files

Accuracy
o o
(o] (8} ©

(&)}

Figure 13. Results of authorship identification based on commits.

One of the most challenging cases in the early research was the authorship identifi-
cation of source code written according to coding standards (see Figure 14). The primary

Information 2023, 14, 361

17 of 21

objective of coding standards is to facilitate code maintenance and enhance code readability.
However, this can often result in minimizing the unique attributes that could help identify
the author.

Wio code style (10 files) =\Wio code style (200 files) = Wio code style (30 files)
m With code style (10 files) u With code style (20 files) m'With code style (30 files)
1.00
0.80
0.80
0.70
0.60

Accuracy

0.50
0.40
0.30
0.20

5000 7000 10,000
Number of symdols in file

Figure 14. Results of authorship identification for code written according to coding standards.

In the evaluation of this particular case, the source codes of the Linux Kernel [36] were
utilized. These codes, written in C/C++ following widely accepted standards [37], served
as the basis for assessing author identification. Despite the inherent difficulties posed by
code conforming to coding standards, an average increase of 0.03 in accuracy was achieved
when compared to using the HNN separately [22].

The final challenging case arises from the increasing popularity of GPT models and
their effectiveness in source code generation. Specifically, the experiments focused on
the task of distinguishing authorship between different generative models (GPT-3, GPT-2,
and RuGPT-3), as illustrated in Figure 15. To tackle this case, the ensemble approach was
employed, which proved to be beneficial. The utilization of an ensemble of classifiers
yielded a noteworthy increase of precisely over 0.07 in accuracy when compared to using
the HNN alone [23].

1

0.95

o
©

Accuracy
=]
&

o
3

0.75

0.7
10 20 30

Number of files

Figure 15. Results of authorship identification for artificially generated code.

To ensure that our method does not have a negative impact on complex cases compared
to simple ones, we conducted a paired samples t-test. This test involves comparing the
results of cross-validation between simple and complex cases and calculating a p-value for
each pair. The null hypothesis, which states that the difference is not statistically significant,

Information 2023, 14, 361

18 of 21

is accepted when the p-value is greater than 0.05. The alternative hypothesis suggests a
significant loss in accuracy. For the pair “simple source code—obfuscated source code”, the
p-value was 2.35. For the pair “simple source code—commit”, the p-value was 0.06. For the
pair “simple source code—artificially generated source code”, the p-value was 0.88. Lastly,
for the pair “simple source code—code written according to coding standards”, the p-value
was 1.83. None of these pairs yielded a result below the threshold of 0.05, indicating that
the difference in accuracy between simple and complex cases is not statistically significant.

The summarized information on the results obtained in this study is presented in
Table 3. To facilitate a clearer comparison, we considered the maximum number of authors
(10) and files (30) for both simple and complex cases of source code authorship identification.
The table includes the results of the ensemble method and individual classifiers. It also
presents the results for SVM with and without the fast correlation filter for feature selection.

Table 3. The summarized information on the results obtained in this study.

Method Binary Simple Source Obfuscated Commits Source Codes Written
Codes Codes Source Codes According to Code Standards

SVM w/o FCF 0.39 0.43 0.32 0.4 0.31
SVM with FCF 0.62 0.89 0.74 0.7 0.65
HNN 0.66 0.95 0.85 0.93 0.88
fastText 0.79 0.88 0.75 0.87 0.74
SVM with FCF + HNN 0.69 0.92 0.8 0.89 0.87
SVM with FCF + fastText 0.8 0.88 0.77 0.89 0.74
HNN + fastText 0.82 0.93 0.85 0.9 0.87
fastText + HNN + SVM 0.93 0.96 0.85 0.94 0.89

The information about the distinction of authorship between generative models has
been excluded from the summary table, as their comparison with other obtained results
does not provide any valuable insights.

The results we obtained on the GCJ dataset are presented in Table 4. They are compared
to the results reported by the authors in their published works [10,13,14].

Table 4. Results of comparative analysis.

Number of Author’s Efficiency

Study Authors Measure Result Our Result Difference
5 F0.5 0.8 0.96 +0.16
Alrabaee, S. [10] 10 F0.5 0.76 0.93 +0.17
20 F0.5 0.71 0.88 +0.17
5 Acc 0.935 0.97 +0.015
Rosenblum, N. [13] 20 Acc 0.765 0.87 +0.105
3 Acc 0.93 0.99 +0.06
Alrabaee, S. [14] 5 Acc 0.9 0.97 +0.07
7 Acc 0.82 0.96 +0.14

Several experiments were carried out to ensure that the developed methodology
matches or even surpasses the accuracy of other research teams. Considering that the
majority of papers relied on the GCJ dataset for evaluating their approaches, we chose to
perform supplementary experiments using our methodology on the same dataset, specif-
ically focusing on binary code analysis. To provide a fair and unbiased comparison, we
incorporated the GCJ 2009 and 2010 data into our dataset. The metrics and author counts
were consistent with those stated in the referenced articles. It should be noted that in one of

Information 2023, 14, 361

19 of 21

the papers [10], a performance metric different from accuracy (Acc) was used. The authors
employed the F0.5 metric, which is calculated as follows:

1.25 x Precision X Recall
F0.5 = 2
05 0.25 x Precision + Recall @)

The table demonstrates that our ensemble-based methodology is on par with, if
not superior to, the methods proposed by previous researchers. Notably, the ensemble
demonstrates a significant improvement in accuracy in some cases. Furthermore, the
ensemble’s performance on the GCJ dataset surpasses that on GitHub. This can be explained
by the fact that evaluating classifier accuracy on GCJ data lacks objectivity due to its specific
characteristics. The GCJ dataset primarily comprises homogeneous data, enabling the
classifier to focus solely on copyright features while disregarding functional differences
and program specifics. In contrast, the GitHub dataset consists of heterogeneous data,
including different programmer expertise and qualifications and a diverse range of tasks.
Consequently, the experiments on GitHub simulate real-world applied problems, leading
to a more objective assessment.

8. Conclusions

The article aims to develop a universal methodology for authorship attribution for both
source code and assembly code. Several research studies were conducted to identify the
most effective classifier among modern NLP algorithms. The results obtained demonstrated
that the author’s HNN, developed in previous studies, is the most accurate for analyzing
source codes. In contrast, for analyzing assembly codes, fastText with optimal parameters
was found to be the most accurate. Based on these findings, it was decided to combine these
classifiers into an ensemble and supplement it with SVM, which operates on feature sets
selected by experts. The solution based on the ensemble of classifiers was supplemented
with weight coefficients that vary depending on the problem being solved. For assembly
codes, the highest weight was assigned to fastText solutions, while for source codes, the
HNN received the highest weight.

The developed methodology underwent testing for both simple and complex cases. In
the simple case, where a sufficient number of authors’ files were available, the accuracy
for both source and binary codes exceeded 0.9. Additionally, the accuracy remained
comparable to that achieved by the author’s HNN for obfuscated source codes. Moreover,
for source codes adhering to coding standards, formed from commits and artificially
generated, an average increase in accuracy of 0.04 was achieved.

Thus, we have successfully improved the previously suggested methodology, adopted
it to analyze assembly codes, and rendered it universally applicable. This methodology
allows, firstly, the identification of the program author even in the absence of its source
code, based solely on the disassembled code. This can be particularly useful in cases where
authorship needs to be established for malicious software. Secondly, it enables resolving
the authorship of the program in legal proceedings involving intellectual property and
copyright. A third relevant application is the detection of plagiarism in the educational pro-
cess, particularly in student programming assignments, aiming to enhance the objectivity
of assessment.

Through our extensive research, we have identified the following key advantages of
the methodology:

1. Universality: the ability to identify the author of both assembly and source code based
on the program’s text and extracted features.

2. Efficiency: the technique consistently achieves an accuracy exceeding 0.85 in all
experiments, regardless of task complexity or data specificity. This level of accuracy is
sufficient for practical applications.

3. Independence from complicating factors: the methodology remains robust against
intentional factors such as obfuscation, coding standards, team collaboration, and

Information 2023, 14, 361 20 of 21

artificial generation, as well as unintentional factors such as stylistic changes due to
increased experience and programmer skill.

The primary practical application of the proposed approach is authorship identification
in malicious programs. This aspect is planned to be further developed in our future work.

The limitations of the methodology, as well as possibilities for further improvement,
are described in the following aspects. Firstly, to achieve high authorship identification
accuracy, the program needs to be pre-deobfuscated, as even minimal obfuscation signifi-
cantly reduces the system’s effectiveness. Secondly, the results are directly dependent on
the number of authors and the amount of training data available for each author. Increas-
ing the number of authors or lacking a sufficient number of training instances gradually
decreases the system’s effectiveness. Thirdly, the full capabilities of the system are not yet
fully explored. There is a possibility that the specific programming language or compiler
used to write the program may also have a negative impact on the system’s effectiveness.

In future work, we plan to adapt multi-view learning techniques to textual data and
incorporate complementary information from source and binary/disassembled code.

Author Contributions: Supervision, A.R. and A.S.; writing—original draft, A K. and A.R.; writing—
review and editing, A.R. and A.F,; conceptualization, A.K., A.R. and A.F.,; methodology, A.R. and
A K,; software, A.K,; validation, A.F. and A K ; formal analysis, A.R. and A.F; resources, A.S.; data
curation, A.S. and A.R.; project administration, A.R.; funding acquisition, A.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education of Russia,
Government Order for 2023-2025, project no. FEWM-2023-0015 (TUSUR).

Data Availability Statement: Data supporting reported results including links to publicly archived
datasets and analysis code. Available online: https://github.com/kurtukova/src_asm_dataset
(accessed on 18 June 2023).

Acknowledgments: The authors express their gratitude to the editor and reviewers for their work
and valuable comments on the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

Palmer, G. A Road Map for Digital Forensic Research. Technical Report DTR-T001-01 FINAL, Digital Forensics Research Workshop.
Available online: https://dfrws.org/wp-content/uploads/2019/06/2001_USA_a_road_map_for_digital_forensic_research.pdf
(accessed on 10 May 2023).

Schleimer, S.; Wilkerson, D.S.; Aiken, A. Winnowing: Local Algorithms for Document Fingerprinting. Available online:
https:/ /theory.stanford.edu/~aiken /publications/papers/sigmod03.pdf (accessed on 10 May 2023).

Abuhamad, M.; AbuHmed, T.; Mohaisen, A.; Nyang, D. Large-Scale and Language-Oblivious Code Authorship Identification.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada,
15-19 October 2018; pp. 101-114.

Zhen, L.; Chen, G.; Chen, C.; Zou, Y.; Xu, S. RoPGen: Towards Robust Code Authorship Attribution via Automatic Coding Style
Transformation. In Proceedings of the 2022 IEEE 44th International Conference on Software Engineering (ICSE), Pittsburgh, PA,
USA, 25-27 May 2022; pp. 1906-1918.

Holland, C.; Khoshavi, N.; Jaimes, L.G. Code authorship identification via deep graph CNNs. In Proceedings of the 2022 ACM
Southeast Conference (ACM SE ‘22), Virtual, 18-20 April 2022; pp. 144-150.

Bogomolov, E.; Kovalenko, V.; Rebryk, Y.; Bacchelli, A.; Bryksin, T. Authorship attribution of source code: A language-agnostic
approach and applicability in software engineering. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, Athens, Greece, 23-28 August 2021;
pp. 932-944.

Ullah, E; Wang, J.; Jabbar, S.; Al-Turjman, F; Alazab, M. Source code authorship attribution using hybrid approach of program
dependence graph and deep learning model. IEEE Access 2019, 7, 141987-141999. [CrossRef]

Song, Q.; Zhang, Y.; Ouyang, L.; Chen, Y. BinMLM: Binary Authorship Verification with Flow-aware Mixture-of-Shared Language
Model. In Proceedings of the 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER),
Honolulu, HI, USA, 15-18 March 2022; pp. 1023-1033.

Rosenblum, N.; Zhu, X.; Miller, B.P. Who Wrote This Code? Identifying the Authors of Program Binaries. In Computer Security—
ESORICS 2011; Atluri, V., Diaz, C., Eds.; Lecture Notes in Computer Science, 6879; Springer: Berlin/Heidelberg, Germany, 2011.

https://github.com/kurtukova/src_asm_dataset
https://dfrws.org/wp-content/uploads/2019/06/2001_USA_a_road_map_for_digital_forensic_research.pdf
https://theory.stanford.edu/~aiken/publications/papers/sigmod03.pdf
https://doi.org/10.1109/ACCESS.2019.2943639

Information 2023, 14, 361 21 of 21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.

Alrabaee, S.; Wang, L.; Debbabi, M. BinGold: Towards robust binary analysis by extracting the semantics of binary code as
semantic flow graphs (SFGs). Dig. Investig. 2016, 18, 11-22. [CrossRef]

A Gentle Introduction to the Fbeta-Measure for Machine Learning. Available online: https://machinelearningmastery.com/
fbeta-measure-for-machine-learning/ (accessed on 10 May 2023).

Caliskan-Islam, A. When Coding Style Survives Compilation: De-anonymizing Programmers from Executable Binaries.
arXiv 2017, arXiv:1512.08546.

Alrabaee, S.; Saleem, N.; Preda, S.; Wang, L.; Debbabi, M. OBA2: An Onion Approach to Binary code Authorship Attribution.
Dig. Investig. 2014, 11, 94-103. [CrossRef]

Caliskan-Islam, A. Deanonymizing programmers via code stylometry. In Proceedings of the 24th USENIX Security Symposium,
Washington, DC, USA, 12-14 August 2015; pp. 255-270.

Alrabaee, S.; Shirani, P.; Debbabi, M.; Wang, L. On the Feasibility of Malware Authorship Attribution. Dig. Investig. 2016, 28, 3-11.
[CrossRef]

Zia, T,; Ilyas, M.L]. Source Code Author Attribution Using Author’s Programming Style and Code Smells. Intell. Syst. Appl. 2017,
5,27-33.

Available online: https://doi.org/10.1016/j.eswa.2023.119614 (accessed on 20 June 2023).

Available online: https:/ /journals.plos.org/plosone/article?id=10.1371/journal.pone.0245230 (accessed on 20 June 2023).
Available online: https://www.sciencedirect.com/science/article/abs/pii/S1566253516302032?via%3Dihub (accessed on
20 June 2023).

Meng, X.; Miller, B.P; Jha, S. Adversarial Binaries for Authorship Identification. arXiv 2018, arXiv:1809.08316.

Kurtukova, A.V,; Romanov, A.S. Identification author of source code by machine learning methods. Tr. SPIIRAN 2019, 18, 741-765.
[CrossRef]

Kurtukova, A.; Romanov, A.; Shelupanov, A. Source Code Authorship Identification Using Deep Neural Networks. Symmetry
2020, 12, 2044. [CrossRef]

Kurtukova, A.; Romanov, A.; Shelupanov, A.; Fedotova, A. Complex Cases of Source Code Authorship Identification Using a
Hybrid Deep Neural Network. Future Internet 2022, 14, 287. [CrossRef]

Romanov, A.S.; Shelupanov, A.A.; Meshcheryakov, R.V. Development and Research of Mathematical Models, Methods and Software
Tools of Information Processes in the Identification of the Author of the Text; V-Spektr: Tomsk, Russia, 2011; 188p.

Code Jam. Available online: https://codingcompetitions.withgoogle.com/codejam (accessed on 10 May 2023).

GitHub API. Available online: https://docs.github.com/en/rest?apiVersion=2022-11-28 (accessed on 10 May 2023).

GCC, the GNU Compiler Collection. Available online: https:/ /gcc.gnu.org (accessed on 10 May 2023).

IDA Pro. Available online: https://hex-rays.com/ida-pro/ (accessed on 10 May 2023).

The Friedman Test. Available online: https://docs.scipy.org/doc/scipy/reference/generated /scipy.stats.friedmanchisquare.html
(accessed on 10 May 2023).

Nemenyi Post hoc Test. Available online: https://scikit-posthocs.readthedocs.io/en/stable/generated /scikit_posthocs.posthoc_
nemenyi_friedman/ (accessed on 10 May 2023).

Tuning the Hyper-Parameters of an Estimator. Available online: https:/ /scikit-learn.org/stable/modules/grid_search.html
(accessed on 10 May 2023).

Sklearn.svm.SVC. Available online: https:/ /scikit-learn.org/stable/modules/generated /sklearn.svm.SVC.html (accessed on
20 June 2023).

Adadelta. Available online: https://pytorch.org/docs/stable/generated/torch.optim.Adadelta.html (accessed on 20 June 2023).
List of Options. Available online: https:/ /fasttext.cc/docs/en/options.html (accessed on 10 May 2023).

AnalyseC. Available online: https://github.com/ryarnyah/AnalyseC (accessed on 10 May 2023).

Linux. Available online: https://github.com/torvalds/linux (accessed on 10 May 2023).

Linux Kernel Coding Style. Available online: https://www.kernel.org/doc/html/v4.10/process/coding-style.html (accessed on
10 May 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.diin.2016.04.002
https://machinelearningmastery.com/fbeta-measure-for-machine-learning/
https://machinelearningmastery.com/fbeta-measure-for-machine-learning/
https://doi.org/10.1016/j.diin.2014.03.012
https://doi.org/10.1016/j.diin.2019.01.028
https://doi.org/10.1016/j.eswa.2023.119614
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245230
https://www.sciencedirect.com/science/article/abs/pii/S1566253516302032?via%3Dihub
https://doi.org/10.15622/sp.2019.18.3.741-765
https://doi.org/10.3390/sym12122044
https://doi.org/10.3390/fi14100287
https://codingcompetitions.withgoogle.com/codejam
https://docs.github.com/en/rest?apiVersion=2022-11-28
https://gcc.gnu.org
https://hex-rays.com/ida-pro/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.friedmanchisquare.html
https://scikit-posthocs.readthedocs.io/en/stable/generated/scikit_posthocs.posthoc_nemenyi_friedman/
https://scikit-posthocs.readthedocs.io/en/stable/generated/scikit_posthocs.posthoc_nemenyi_friedman/
https://scikit-learn.org/stable/modules/grid_search.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://pytorch.org/docs/stable/generated/torch.optim.Adadelta.html
https://fasttext.cc/docs/en/options.html
https://github.com/ryarnyah/AnalyseC
https://github.com/torvalds/linux
https://www.kernel.org/doc/html/v4.10/process/coding-style.html

	Introduction
	Literature Review
	Our Previous Research
	Dataset Description
	Experimental Setup
	Methodology Based on the Ensemble of Classifiers
	Testing of the Methodology for Identifying the Author of the Program
	Conclusions
	References

