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Abstract: Modern developments in machine learning methodology have produced effective ap-
proaches to speech emotion recognition. The field of data mining is widely employed in numerous
situations where it is possible to predict future outcomes by using the input sequence from previous
training data. Since the input feature space and data distribution are the same for both training
and testing data in conventional machine learning approaches, they are drawn from the same pool.
However, because so many applications require a difference in the distribution of training and testing
data, the gathering of training data is becoming more and more expensive. High performance
learners that have been trained using similar, already-existing data are needed in these situations. To
increase a model’s capacity for learning, transfer learning involves transferring knowledge from one
domain to another related domain. To address this scenario, we have extracted ten multi-dimensional
features from speech signals using OpenSmile and a transfer learning method to classify the features
of various datasets. In this paper, we emphasize the importance of a novel transfer learning system
called Task-based Unification and Adaptation (TUA), which bridges the disparity between extensive
upstream training and downstream customization. We take advantage of the two components of the
TUA, task-challenging unification and task-specific adaptation. Our algorithm is studied using the fol-
lowing speech datasets: the Arabic Emirati-accented speech dataset (ESD), the English Speech Under
Simulated and Actual Stress (SUSAS) dataset and the Ryerson Audio-Visual Database of Emotional
Speech and Song dataset (RAVDESS). Using the multidimensional features and transfer learning
method on the given datasets, we were able to achieve an average speech emotion recognition rate of
91.2% on the ESD, 84.7% on the RAVDESS and 88.5% on the SUSAS datasets, respectively.

Keywords: deep learning; emotion recognition; speech processing; transfer learning

1. Introduction

There is a considerable difference between robots and humans in this age of rising
artificial intelligence. Machines are incapable of understanding or expressing emotion,
unlike humans. Speech emotion recognition, which examines emotions from spoken
utterances, is given much attention. As more human–machine interactions use voice as an
input, the importance of emotion identification from speech grows. Automated call centers,
human–robotic interfaces and onboard computer systems in cars that use virtual assistants
analyze the speaker’s emotional state to increase safety and deliver a prompt answer. The
speaker could exhibit any of the following emotions: neutral, happy, sad, anger, disgust,
excitement and boredom. Emotion Recognition can be employed in criminal investigations
by police and military to observe the mental and emotional state of a suspect, to tackle
telephone extortion and personal attacks, in civil cases involving recorded conversations, in
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calls to insurance companies, by media to identify prank calls, in blended classroom training
and in many other situations [1]. Speaker recognition from emotion becomes crucial in
affective computing, where machines interact with humans effectively by recognizing,
interpreting and expressing human emotions. Apart from Speaker Identification (SI), there
is another wing called Speaker Verification (SV), which aims to accept or reject a speaker for
their claimed activity. Telephone banking, credit card transactions, access to confidential
government facilities and services, server access, biometric authentication and many more
services rely on SV technology [2]. Traditionally, emotion recognition was accomplished
using different kinds of emotional features such as keywords, facial expressions, speech
signals, etc. Conventional methods that use keywords from spoken sentences suffer from
uncertainty in emotional keyword interpretation and the lack of ability to understand
sentences with no emotion-based keywords [3].

Speech signals are the most favoured and intelligible feature. Many research works
suggest acoustic or prosodic features, namely, pitch, intensity, frequency, energy and speak-
ing rate, be used for emotion recognition. Recent speech emotion recognition techniques
have three fundamental phases: signal pre-processing followed by feature extraction and
emotion classification. The primary stage of signal processing involves the denoising of a
speech signal to remove corrupted noise from the signal. This is a critical step to reinforce
the input data and elevate chances of more accurate results in further stages. The second
phase has two parts, namely, feature extraction and feature selection. Extraction and selec-
tion of relevant features from the segmented signal takes place in the first stage. Mapping
of these features to the right emotions using classifiers is the final stage. Classifiers, also
called pattern recognizers, are broadly of two types: linear classifiers and non-linear clas-
sifiers. A few of the linear classifiers used are the Bayes Classifier, Linear Support Vector
Machine, and discriminative classifiers such as Logistic regression, Least square methods
and Perceptron classifiers. Common non-linear classifiers include the Gaussian Mixture
Model (GMM), Hidden Markov Model (HMM), Decision trees, Polynomial classifiers and
Artificial Neural Networks. Deep learning has picked up steam as a research field in ma-
chine learning. Deep learning methods compute on a parallel basis, with deeper layers of
architecture constructed in order to overcome the limitations of existing methods. The use
of advanced technologies such as Deep Boltzmann Machine (DBM), Deep Belief Network
(DBN), Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) can
enhance the comprehensive performance of designed system.

We have devised an advanced transfer learning system for speech emotion recognition
called the Task based Unification and Adaptation (TUA) system. It primarily intends to
bridge the gap between two of the crucial techniques, such as downstream customization
and large-scale upstream training. The system could be used for a variety of specialized
solutions in places of diversified demands such as well-prepared pre-trained weights
and task-specific architectures. For datasets with very few datapoints, TUA can work
alongside them to collect relevant data. Through this method, we aim to bring forth an
intergrated system to scientists in the sphere of emotion recognition. Task-challenging
unification and task-specific adaptation are the two major elements of TUA. Data are
used in the task-agnostic unification process, followed by the system architecture. Inputs
from numerous sources are gathered to create a data bank with a unified label space.
This information is then used to determine the extent to which a given transfer learning
method can be employed in speech emotion recognition. Incorporating a large amount of
categories enables data to enhance the performance of a system and ensures task-specific
adaptation. We employ the weight-sharing scheme [4–7] in our system to coherently train
models with different widths and depths on a huge amount of upstream data. In methods
such as task-specific adaptation, TUA is required to find the right model architectures
for its specified tasks. [R2,1] The rationale for designing a transfer learning system for
bilingual emotion recognition from audio signals lies in the potential benefits of using
pre-trained models and knowledge transfer between languages to refine the accuracy
and efficiency of the emotion recognition system. Transfer learning is a machine learning
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approach that involves leveraging knowledge gained from training on one task to boost
performance on a related but different task. In connection with emotion recognition,
transfer learning can be applied to improve the performance of the system by leveraging
pre-existing knowledge and resources from other languages. The complex and varied
nature of emotional expression across multiple languages and cultures makes bilingual
emotion recognition a much strenuous task at hand. However, by using transfer learning
techniques, the system can learn from the emotional characteristics of one language and
apply that knowledge to another language, improving its accuracy and generalization
capabilities. By designing a transfer learning system for bilingual emotion recognition, the
researchers can capitalize on pre-existing knowledge and resources from one language
to enhance the performance of the system in another language, while also lowering the
amount of training data required. This can be particularly useful in scenarios where the
amount of training data available is limited, or where it is difficult to obtain labeled data
for a particular language. Overall, the rationale for designing a transfer learning system for
bilingual emotion recognition from audio signals is to capitalize on pre-existing knowledge
and resources to enhance the accuracy and performance of the system, while also reducing
the amount of training data required. This approach has the potential to revamp the
performance of emotion recognition systems in multilingual and cross-cultural contexts,
with wide-ranging applications in areas such as speech therapy, affective computing and
human-computer interaction. This research work contributes towards the following criteria:

• Our work explicitly exhibits how a weight-sharing scheme and transfer learning
can be integrated into a frame powerful pre-trained prototype over a diverse set of
architectures at once.

• According to the information we have, this is the first work utilizing a task-specific
adaptation-based transfer learning approach for emotion recognition from speech.

• A huge data pool is compiled with a unified label for emotion classes available in the
Arabic and English languages.

This paper is designed as follows: First, a literature review is put forth in Section 2.
Then, the system description is provided in Section 3. This section presents the Feature
Extraction and Selection in the first part followed by the Proposed TUA Model. The results
along with supporting experiments are illustrated in Section 4. Lastly, the conclusion is
presented in Section 5.

2. Literature Review

Communication through speech is the foremost medium of interaction among humans.
Body language, heart rate, voice modulation, facial mien and blood pressure can divulge
more information on the emotional state of a person. Comprehending these factors can help
detect the emotional intensity behind the words spoken by a person. Speech signals are
the most constructive signals, with linguistic and acoustic features such as intensity, pitch,
vowel and tonal factors embedded in the signals, which make comprehension more feasible.
Training a machine to establish the link between spoken sentences and the sentiments
behind those spoken sentences is still a challenge, especially with the amount of training
data being relatively small. Shahin [8] implemented and tested a new method using HMM
classifiers for speaker identification in his paper. The experiment was completed using a
speech database created by 20 male and 20 female adults uttering four sentences with an
American accent. Each sentence was uttered while articulating emotions of anger, sadness,
disgust, happiness, fear and neutral state. Speech signals were converted and sampled
to undergo the Hamming window every 5 ms to extract Linear Prediction Coefficients
(LPCs). These LPCs were then reconstructed to Linear Prediction Cepstral Coefficients
(LPCC) to equate for vectors in HMMs. The average speaker identification rate was 78.8%,
which is evidently a high performance rate at that time. The best speaker identification
was obtained from the neutral state, whereas the worst speaker identification was obtained
from the angry emotional state. Rong et al. [9] exploited the basic acoustic features from
raw speech signals by applying Discrete Fourier Transform (DFT) and Mel-Frequency
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Cepstral Coefficients (MFCC) to focus on a novel algorithm named Ensemble Random
Forest to Trees (ERFTrees) to effectively select features from the available small dataset [9].
With the undesirable data removed, training sets turn more capable and intelligible. This
work used two speech corpora from common sources: acted speech corpora and natural
speech corpora in Chinese (Mandarin). The K-NN algorithm processed data to recognize
emotions, and an emotion recognition rate of 72.3% was observed on the given speech
datasets using Random Forest classifier. The emotions in the dataset were angry, happy,
sad, fear and neutral.

Shahin [10] employed a two-stage recognizer approach that combines both HMM and
Suprasegmental Hidden Markov Models (SPHMMs) as classifiers. MFCCs were extracted
to give higher estimates of human auditory perception. Eight sentences were uttered
nine times by 25 male and female speakers each, with a native American accent used for
all six emotions: sad, disgust, happy, neutral, angry and fear. Here, the total number
of utterances amount to 21,600. The average speaker identification rate obtained by a
one-stage recognizer was 71.6%, while the performance improved to 79.9% by a two-stage
recognizer using SPHMMs. In his research [11] on emotion recognition under stressful
and emotional talking environments, Shahin experimented with three different classifiers:
HMM, Second-order Circular Hidden Markov Model (CHMM2) and SPHMM classifiers.
The speech database was gathered from 30 speakers under both talking environments.
Observation vectors in both talking environments for the classifiers were obtained from
MFCCs. SPHMM achieved the highest emotion recognition rates, 72.0% and 69.7%, in
stressful and emotional environments, respectively. The results of SPHMMs surpassed
both HMMs and CHMM2s under similar talking conditions. Additionally, the outcomes of
stressful talking recognition were more true than the emotional talking recognition rate.
The emotional talking environment had neutral, angry, sad, happy, fear and disgust states,
whereas the stressful talking environment had loud, soft, neutral, shouted, slow and fast
talking conditions. In a similar work [12], Shahin illustrated how the proposed system of
combining both gender and emotion cues offer higher results than emotion or gender cues
independently. Gender identification was computed by HMM on the dataset to categorize
into male and female emotion groups. The second stage, called gender-specific emotion
identification, used SPHMM to deduce the unknown emotion. The third stage was speaker
identification. The first stage furnished a gender identification performance rate of 96.9%
and the gender-dependent emotion identification stage on SPHMMs gave an average rate
of 89.3%, which was higher than the rate in previous studies. The emotions used by the
Collected Speech Database (CSD) are angry, neutral, sad, happy, fear and disgust.

Sun et al. [13] suggested that the distribution of energy on a spectogram would differ
considerably for each emotion type. Weighted spectral features with Local Hu moments
(HuWSF) have the potential to distinguish between energy concentrations of different
emotion types on a spectogram. The results of speaker-independent emotion recognition
experiments indicated 74.7% classification rates with the Berlin German Emotional Voice Li-
brary (EmoDB) [14], 45.4% with the Surrey Audio-Visual Expressed Emotion (SAVEE) [15]
database and 41.9% with the speech emotion database of Institute of Automation, Chinese
Academy of Sciences (CASIA) [16] using HuWSF. Speaker-dependent emotion recognition
demonstration produced rates of 84.7%, 70.6% and 76.1% with EmoDB, SAVEE and CASIA,
respectively, while using HuWSF. Wang et al. [17] proposed a Fourier parameter model
using the permanent content of voice quality and speaker-independent speech emotion
recognition. They enhanced the recognition rates using MFCC features and Support Vector
Machine (SVM) [18] classifiers on the EmoDB of 73.3%. Shahin and Ba-Hutair [19] drew
our attention to the results obtained using Second-Order Circular Suprasegmental Hidden
Markov Model (CSPHMM2) classifiers to identify emotions in emotional and stressful
talking environments. They substantiated that the performance of CSPHMM2s using
MFCCs surpasses all other contemporary models. Average emotion identification in stress-
ful talking environments using Speech Under Simulated and Actual Stress (SUSAS) [20]
datasets was evaluated as 64.4%, 68.5%, 72.4% and 76.3% with HMMs, CHMM2, SPHMMs
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and CSPHMM2s, respectively. When using the Emotional Prosody Speech and Transcripts
(EPST) database, the average performance was evaluated as 63.0%, 67.4%, 70.5% and 73.6%
with HMMs, CHMM2s, SPHMMs and CSPHMM2s, respectively. In [21], Deng et al. used
Semi-supervised autoencoders (SS-AE) to enhance emotion recognition. A revised form of
SS-AE known as SS-AE-Skip, which presented skip connections from lower layer to upper
layer, was introduced in this technique. In this model [21], SS-AE and SS-AE-Skip methods
demonstrated a higher margin compared to other supervised and semi-supervised methods.
Huang and Bao [22] proposed a Convolutional Neural Network (CNN) classifier-based
system for the Ryerson Audio-Visual Database of Emotional Speech and Song dataset
(RAVDESS) [23] to recognize four emotions. They used a 10-fold validation method, which
calculates the average recognition rate as 72.2%. The emotions considered were angry,
happy, neutral and sad. Zhao et al. [24] achieved emotion recognition accuracies of 95.3%
and 95.9% for EmoDB for speaker-dependent and speaker-independent experiments, re-
spectively, using a two-dimensional CNN “Long shortterm memory” (LSTM) [25] network.
Happiness, sadness, neutral, surprise, disgust, fear and anger were the six emotions recog-
nized in this model. Bhavan et al. [26] used MFCC, spectral centroid and MFCC derivative
features on RAVDESS dataset to obtain an accuracy of 75.69%. Bagged ensemble of SVM
was used as a classifier. Meng et al. [27] introduced a new architecture, ADRNN, expanded
with CNN and Bidirectional Long Short-Term Memory (BiLSTM) with the Interactive
Emotional Dyadic Motion Capture (IEMOCAP) [28] dataset and EmoDB datasets. They
attained 74.9% in speaker-dependent and 69.3% in speaker-independent environments with
the IEMOCAP dataset. Additionally, accuracy rates were 90.4% and 84.9% with EmoDB for
speaker-dependent and speaker-independent emotion recognition ex-periments. The Paral-
lelized Convolutional Recurent Neural Network (PCRN) [29] proposed by Jiang et al. [29]
extracts the frame-level features from each pronouncement. LSTM portrays these features
by each frame. The SoftMax classifier categorizes the emotions. The performance of the sys-
tem was higher than state-of-the-art works. The system attained a recognition rate of 58.3%
for CASIA, 86.4% with EmoDB, 61.6% with Airplane Behaviour Corpus (ABC) [30] and
62.5% with SAVEE. The highest classification rates accomplished were 75.0% for “anger”
with CASIA, 95.3% for “anger” with EmoDB, 86.3% for “aggressive” on ABC and 84.2% for
“neutral” on SAVEE datasets.

Hamsa et al. [31] proposed a system for emotion recognition. They used Wavelet
Packet Transform (WPT)-based cochlear filtering to extract MFCC features and Random
Forest Classifier to classify emotions. The system achieved an average emotion recognition
rate of 93.8% with RAVDESS when using five-fold validation and 98.0% when using
ten-fold validation. The emotions observed were angry, happy, neutral, sad, calm and
fearful. An average emotion recognition rate of 89.6% was recognized in the Arabic
Emirati-emphasized speech dataset (ESD) [32] for six emotions. They are neutral, angry,
sad, disgust, happy and fearful. In [32], Shahin et al. executed text-independent speaker
identification under emotional conditions using a cascaded Gaussian Mixture Model and
Deep Neural Network (GMM-DNN) as a classifier on the ESD and SUSAS datasets. The
average speaker identification rate for ESD using GMM-DNN was 81.7%, which is superior
to other existing methods, which were 77.2% for Deep Neural Network Bottleneck (DNN-
BN), 78.6% for Single DNN and 77.4% for DBN methods. In another work [33], Shahin et al.
validated the improved emotion recognition rate in normal and noisy talking conditions
using the GMM-DNN classifier. MFCC features were extracted during training phase
as it represents vectors closer to human voice. ESD dataset with six emotions such as
neutral, fearful, angry, happy, sad and disgusted emotions verified an average emotion
recognition of 83.97% using the GMM-DNN classifier as opposed to 80.3% with SVM and
69.8% with Multi-Layer Perceptron (MLP) classifiers. The hybrid classifier proved escalated
performance in a turbulent environment. Hamsa et al. [34] proposed a novel deep sparse
matrix representation (DSMR) approach for emotion recognition and reported an accuracy
of 89.75% using the RAVDESS dataset.
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Chen et al. [35] put forward a novel framework addressing the issue of unbalanced
data distribution in the existing datasets. The system employed a unified first-order atten-
tion network with data balance to increase and stabilize the training data. The accuracies
of emotion recognition obtained were 48.8%, 37.6% and 43.9% with the Bahçes¸ehir Uni-
versity Multimodal Affective Database-1 (BAUM-1s) [36], Acted Facial Expressions in
the Wild (AFEW5.0) [37] and CASIA Chinese Natural Emotional Audio-Visual Database
(CHEAVD2.0) [38], respectively. The results achieved by data balance were found to be
more accurate, as it refines the stability of trained deep models. Peng et al. [39] explored
the temporal modulations from the speech signals to design a model using Attention-based
Sliding Recurrent Neural Networks (ASRNNs) and 3D convolutions. Experiments con-
ducted with the IEMOCAP and Multimodal Signal Processing Improvisations databases
(MSP-IMPROV) [40] achieved emotion recognition rates of 62.6% and 55.7%, respectively, as
compared to earlier state-of the-art methods. Zhong et al. [41] advanced with a framework
wherein the performance of the system is calculated from empirically learned features
(ELFs) and automatically learned features (ALFs). The comparison methods involved fused
and independent training on each of the datasets used. Accuracy rates for the classification
of the whole test set and each emotion were attained. In this experiment, independent
training methods demonstrated a higher percentage as compared to fused training on all
of the three datasets used. The presented approach achieved emotion recognition rates
of 74.9% and 68.8% on the whole test set and each emotion sets, respectively, for the
IEMOCAP database. Similarly, the rates amounted to 85.8% and 86.1% for EmoDB. On
CASIA, this was observed to be 98.2% and 98.2% for the whole test set and each emotion
set, respectively. Zhang et al. [42] computed a strategy using binaural representations and
deep convolutional neural networks where a block-based temporal feature pooling method
is used to form fixed-length utterance-level features and SVM is adopted for emotion
classification. The system achieved 36.3% and 44.3% emotion recognition rates for the
AFEW5.0 and BAUM-1s databases, respectively, which happens to be the highest for similar
works with the same datasets. Shahin et al. [43] made advances in speech emotion recogni-
tion by using MFCC’s spectogram features with a dual-channel long short-term memory
compressed-CapsNet (DC-LSTM COMP-CapsNet) algorithm employed as the classifier.
The average emotion recognition accuracy attained using this model on the Arabic Emirati
dataset is 89.3%. The accuracies using the same dataset with various systems, such as
Capsule Network (CapsNet) [44], CNN, SVM and KNN, were 84.7%, 82.2%, 69.8% and
53.8%, respectively.

Transfer learning has been used as one of the most potent techniques for deep learning.
However, though it shows significant success with pre-training data, transfer learning is
stringent with choosing its model architectures. Different datasets need individual model
architectures, and different applications may demand new models of varying scales. As
suggested in the “no free lunch” theorem [45] by David and William, there is no algorithm
that is suited for distinguished application scenarios and datasets. In order to employ the
full functionality of transfer learning, the models need to be custom-made and must provide
training from scratch on the upstream datasets, which could be unreasonably overpriced.
Therefore, the demand for task-specific architecture adaptation is much stronger in emotion
recognition in various languages.

3. System Description

The basic schematic block of the proposed framework is shown in Figure 1. There
are three stages executed in speech emotion recognition in this work: speech processing,
features extraction and selection and, lastly, classification using a classifier. First, the
speech signals are processed to remove unwanted noise. Our system uses OpenSMILE [46]
software to extract desired features from the raw speech signal. SMILE stands for Speech
and Music Interpretation by Large-space Extraction. Scientists can benefit from both
the domains of music and speech signals when using OpenSMILE. It delivers an easy
application with which different components can be computed. The results from one feature
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separator can be internally exported as an input to other units. We have the advantage of
extracting Low-Level Descriptors (LLD) using OpenSMILE and can administer various
filters, functional and transformation equations to it. Transfer learning is used to categorize
the extracted signal components to predict emotion. Applications of transfer learning
include pattern recognition and cross-corpus problems in image and audio processing
systems [47]. People tend to exhibit similar attributes during speaking. Fear induces
reduced loudness while an angry person has powerful facial expressions and increased
loudness in their voice. Such robust traits of emotions are common among various available
emotional datasets. The idea behind transfer learning in speech emotion recognition
is to exploit these common characteristics. The source domain refers to a dataset with
innumerable high-quality labeled data, while a target domain may contain a limited amount
of data, either labeled or unlabeled [48]. Transfer learning is essentially the learning of a
target domain using the classification knowledge obtained from the source domain.
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3.1. Feature Extraction and Selection

The acoustic features used in this experiment are of two kinds: statistical functions,
also called functionals, and Low Level Descriptors (LLD). The most significant features
of the signal are determined by various feature-selection algorithms. This reduces the
calculation complexity of the high-dimensional feature sets. The commonly used feature
selection method is the greedy algorithm, which is also known by the name forward
selection algorithm. Initially it has an empty model, which adds features to the model by
gradual regression until the termination condition.

The features used in this project for speech emotion recognition comprise the 384
extracted features from the INTERSPEECH2009 Emotion Challenge feature set [49] and
988 features from Emo-DB analysis. The Naïve Bayes classifier and Sequential Minimal
Optimization algorithm (SMO) on SVM are the base models for training. The Naïve Bayes
classifier exhibits high speed, better accuracy, reliability, less complexity and is also easier
to work with in any domain. For an n dimensional feature space with random variables Y
and X1, X2, . . . , Xn; the feature vector components are given by x1, x2, . . . , xn.

For any variable y coupled with the feature vector components x1, x2, . . . , xn, the
probability is constructed as:

P (Y = y, X1 = x1, X2 = x2, . . . , Xn = xn) (1)

By using the Naïve Bayes theorem, we come to the conclusion [50]:

P (Y = y, X1 = x1, X2 = x2, . . . , Xn = xn) = P (Y = y)∏
n
P

i = 1
(X = x1 Y = y) (2)

Naïve Bayes classifiers are effectively used in many applications, such as text classifi-
cation, also known as text tagging or text categorization in Natural Language Processing.
SVMs are usually used as the classifiers in problems dealing with pattern recognition
and matching. A multiclass classification problem such as speech emotion recognition
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can be dealt with using the highly efficient SVM SMO classification method with linear
kernel type.

3.2. Proposed TUA Model

This project explores emotion recognition using English and Arabic databases. The
base model for speech emotion recognition is built from a huge data pool of English and
Arabic datasets. The Arabic data used in this work is a standard Emirati-accented Arabic
dataset [32]. The Machine Learning and Arabic Language Processing Research group at the
University of Sharjah collected the ESD database. Fifty actors provided emotion expressions
for the voiced communication in the Arabic language.

In this section, we present a modern transfer learning framework by the abbreviation
TUA and its implementation details. TUA primarily consists of two modules of operations:
task-challenging unification and task-specific adaptation. In the initial taskchallenging
unification module, data is stored from numerous references to construct a data pool with
a unified label space. Later, the models of different architectures are optimized together
by implementing a weight-sharing learning scheme. The task-specific adaptation module
selects the most suited architectures for any defined tasks, preps the network with the
weights yielded from the first module and refines it on the downstream data. Due to
the methods involved, this process is called task-specific architecture selection (TUA-AS).
Moreover, sometimes the tasks may have very scant data points. TUA is designed to
determine relevant data points from the data pool that are in tune with the specified tasks.
This potential of the TUA is called the task-specific data selection (TUA-DS) shown in
Figure 2.
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3.2.1. Unified Data and Label Space

Different datasets are restricted to specific domains and are independent of one another.
To advance the usefulness of an emotion identification system, we have combined datasets
of the English and Arabic languages into a sizable data pool with a common label space. In
our system, datasets D = d1, d2, . . . , dN and label spaces L = l1, l2, . . . , lN are represented.
Six emotional categories c1, c2, . . . , c6 related to dataset di make up each label space. The
initial unified label space UL = c1, c2, . . . , c6. was selected since it was the largest among
the available label spaces, L. Then, we map the rest of the label spaces to the superset UL.
While mapping, if there is no similarity found among the given categories, then we label
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it as a new category and add it to the UL. The mappings are then verified for credibility.
The unified label space is always distinctive and variable, since the TUA can intake more
datasets. The above-mentioned mapping process is repeated again whenever a new dataset
is incorporated into the unified label space. When a pre-trained network needs to be
appended into the label space, the terminal layers bestow new ways to connect while the
rest of the layers remain the same. By using this unified label space, we can reduce the
cost of integrating datasets, which lessens possible conflicts between redundant categories.
This permits TUA to support down-stream tasks more efficiently. Sometimes, unified label
space can bring in long-tail and partial annotation problems, which barely affects the fine
tuning procedures in our study.

3.2.2. Anchor Based Gradual Down-Sizing

We initiate a training strategy called anchor-based gradual down-sizing (ABGD) that
reduces multiple search dimensions steadily. We decide on a model anchor and create a
search space encompassing it, while the depth and input scales remain intact. We curtail the
model anchor after a few trainings and focus on refining the search space around the anchor.
The same process is repeated until the complete search space has a vast latency range.

3.2.3. Model Adaptation

We randomly pick a model anchor, divide the subnets into groups and study the
ranking to work efficiently. From each group, a set of models is evaluated in order to obtain
the best-performing model. This model is then fine tuned using a 1 scheduler followed by
a 0.2 “fast-fine tuning” to compare the ranking references. As the application of fast-fine
tune to such a huge set of models is quite an extravagant process, we scale down the search
space to a small but informative one. We then sample different models having varying
depths and input scales around a defined Floating-point operations per second (FLOPs)
and then execute fast-fine tuning to obtain the desired aspects. From the experiments,
it is observed that models having similar input scales and depths have near precisions,
while those with different inputs or depths have mixed precisions. Hence, in TUA, we
implement a two-step search scheme. First, we sample n models in each sub search space.
Then, the most efficient model from each group is selected and the top 50% of these models
are fast-fine tuned to choose the apt architecture.

3.3. Transfer Learning Classification for Emotion Recognition

Transfer learning is a method of transferring the knowledge obtained in one model to
process another model with a comparatively smaller set of data. This process is randomly
sorted into two groups on the basis of (i) number of source datasets and, (ii) utilization
of data in the target domain. Transfer learning methods may be single source transfer
learning with one dataset in the source domain, or multi-source transfer learning having
many datasets in the source domain. The second outlook on transfer learning results
in supervised transfer learning and unsupervised transfer learning. Supervised transfer
learning takes in labeled data from both source and target domains during training, while
unsupervised transfer learning takes in data from the source domain only. Statistical-based
transfer learning and deep transfer learning methods are the common learning practices
of classification in speech emotion recognition. Domain adaptation by deep learning
techniques deploy the layout of pre-trained models for transfer learning. In most cases, the
last layers are replaced by new layers by fine-tuning some of the parameters of the models.
By doing this, the attributes of the source task are forgotten. Progressive Neural Network
(PNN) overcomes this by forming a layer onto the source network during the training
phase. Most recent studies use the Geneva Minimalistic Acoustic Parameter Set (GeMAPS)
feature set, which contains frequency, spectral and dynamic information. In [51], Ghifary
et al. proposed a conventional deep learning model with adaptive layers where Maximum
Mean Discrepancy (MMD) could be utilized to tackle domain distribution difference.
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In [52], Sawada et al. adopted a transfer learning method using Multi-Prediction Deep
Boltzmann Machine (MPDBM). This method overwhelms the conventional methods of
Deep Boltzmann Machine (DBM). Latif et al. [53] also used DBNs for recognition of emotion
from speech. Since DBNs contain stacked Restricted Boltzmann Machines (RBMs), they
work in a greedy manner to create a probabilistic model. RBM consists of three layers:
visible layer, hidden layer and a bias unit. The bias unit is linked to each unit in both visible
and hidden layers, whereas each visible unit is linked to units in the hidden layer. DBNs
can be successfully trained to learn features and classify emotions, which can be exploited
in cross-corpus and cross-language emotion recognition.

The Faster Region-based Convolutional Neural Network (Faster R-CNN) [54] is a deep
convolutional network that is trained end-to end to form a single unified matrix. By using
simple Faster R-CNN with Feature Pyramid Network (FPN) [55] as the base framework
in our system, we can see a significant development in our efforts to design a state of the
art model in speech emotion recognition. In the work [55] by Lin et al., they used a similar
proposition in object detection. A Region of Interest (RoI) contains the extracted features
for the Faster R-CNN. For a resolution level k in an image pyramid Pk, an RoI is set with
width b and height h. Here, k is given by,

k = [k0 + log2(
√

bh)/224] (3)

In our work, the task-specific adaptation and task-agnostic unification are applied
to the Residual Network (ResNet) [56] prototype implemented in TUA. ResNet is chosen
since it is much closer to the real-world applications and is the most realistic backbone in a
similar field such as object detection. We selected three models during our training for the
anchor-based gradual down-sizing (ABGD) method. In each round of training, we picked
out a model at random that follows at least one of the stated guidelines of search space.
The guidelines include: models having a minimum prescribed width, a maximum defined
depth and other likeness.

4. Results and Discussion

[R3,3] We augmented the data by mixing it with noise in a 2:1 and 3:1 ratio to scale the
dataset and to enhance the noise susceptibility of the system. We used Adam optimizer
to schedule the learning rate. We prepared the model for 150 epochs with an initial
learning rate of 0.0005; after the 10th epoch, the learning rate is reduced by half every
ten epochs. Our work presents a novel method using Transfer Learning Classification
for speech emotion recognition using ESD, RAVDESS and SUSAS datasets. Figure 3
illustrates a high recognition rate for almost all the emotions in the Arabic dataset. The
below chart demonstrates the highest average emotion recognition rate of 90.2% using the
novel classifier on the ESD using the six emotions. The highest emotion recognition rate is
observed for neutral and happy emotions; 97.2% and 96.1%, respectively. A comparative
drop in the recognition rate is observed for the disgust emotion, with a rate of 79%. The
proposed method is compared with the earlier works using GMM-DNN, MLP and SVM
classifiers. The GMM-DNN is a hybrid classifier consisting of Gaussian mixture model and
deep neural network. The GMM classifier evaluates the vectors and assigns a binary digit
for each emotion, known as a GMM tag. The GMM tag is loaded into the DNN, which
yields a probability distribution for each emotion. A performance analysis of the proposed
systems, GMM-DNN, MLP and SVM, are graphically represented in Figure 4. The average
emotion recognition accuracy rate using ESD is 83.9%, 69.7% and 80.3% for GMM-DNN,
MLP and SVM, respectively. Compared to the existing methods, our proposed system
exhibits an inflated average accuracy rate of 90.2% using the ESD dataset.
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The statistical significance test is an analysis test to measure the existence of a rela-
tionship between two variables. This indicates whether the deviation emotion recognition
accuracy between the proposed system and each of the GMM-DNN, SVM and MLP are
likely to occur due to a random statistical variation or to an actual factor. The analysis is
prepared by stating the Null Hypothesis, wherein Student’s t Distribution test is employed.
The statistic t value to calculate the difference is given by [57],

t1,2 =

_
X1 −

_
X2

SDPooled
(4)

where,

SDPooled =

√
SD1

2 + SD2
2

2
(5)



Information 2023, 14, 236 12 of 19

with two samples of equal size n.
In the equation,

_
X1 and

_
X2 stand for the mean of the first and second sample, respec-

tively, with size n each. SDPooled is the pooled standard deviation for size n. The standard
error between the two means is calculated by (X1, X2). SD1 is the standard deviation of
the first sample, SD2 demonstrates the standard deviation of the second sample, each
having equal sample of size n. In this research, the assessed t values between the proposed
transfer learning system and each of GMM-DNN, SVM and MLP are shown in Table 1. It is
evident from Table 1 that the t values deliberated are higher than the critical threshold value
t0.05 = 1.654 at 0.05 level of significance. The measured t value with the proposed system
and GMM-DNN model is 1.70, which is higher than the threshold value t0.05. Hence, the
calculation is statistically stable. When analyzing the MLP model, the t value between the
proposed transfer learning system and the MLP model is 1.89, which is the highest among
the three models.

Table 1. Computed t values of the presented transfer learning method and GMM-DNN, SVMs and
MLP using ESD.

t1,2 Calculated t Value

tproposed, GMM-DNN 1.70

tproposed, SVM 1.81

tproposed, MLP 1.89

Two additional experiments were discreetly conducted to evaluate the performance of
the proposed system. The two experiments are:

Experiment 1: In this experiment, the RAVDEES dataset is used to test the classifier
to support the proposed system for emotion recognition. The “RAVDESS” is a well-
substantiated dynamic multimodal gender balanced database of emotional speech and
song. It consists of 24 players uttering lexically matched assertions in an unbiased North
American articulation [23]. This speech corpora includes happy, surprised, calm, sad,
angry, fearful and disgust expressions, and the song corpora contains happy, sad, angry,
calm and fearful emotions. All emotions are created at two levels of intensity: normal
and strong. Each actor accounts for 60 utterances and 44 song utterances, amounting to
104 utterances. There are three modalities designed using this data: audio-video, audio
and video. This produces 312 records per person and a total of 3036 song recordings and
4320 speech utterances. The illustration in Figure 5 demonstrates the evaluation based on
the proposed system using the RAVDESS dataset. The results indicate that the emotion
recognition rate is steady across all the sets of emotions when using the RAVDESS dataset.
The mean emotion recognition rate of the proposed system using the RAVDESS dataset
is 84.7%, which is closer to the results obtained using Random Forest Classifier [31]. The
results clearly specify that the highest emotion recognition rate of 96.3% is attained for
neutral utterance condition, while all the other emotion classes display a lucid recognition
rate higher than 80%.

Figure 6 illustrates a comparison of the proposed work and the state-of-the-art Random
Forest Classifier model. The figure shows that the recognition rate is steady over the
emotion sets when using the RAVDESS dataset. The graph demonstrates that there is an
enhanced recognition rate for talking conditions with angry, calm and surprised emotions.
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Tables 2 and 3 represent the comparison of the performance analysis of some of the
earlier research works. The efficacy of the proposed system is compared with existing
works using two different datasets: ESD and RAVDESS. The results of Table 2 show that
our present work provides a boost in the mean emotion recognition rate of 6.3%, 2.0% and
0.6% over the outcome obtained by Shahin et al. [33], Hamsa et al. [31] using Gradient
Boosting Classifier and Hamsa et al. [31] using Random Forest Classifier, respectively. The
Arabic ESD dataset is used in these experiments, where the emotion classes considered are
happy, neutral, sad, disgust, fearful and angry. Shahin et al. [33] reinforced his work with
MFCC feature extraction model and GMM-DNN classifier. Hamsa et al. [31] used ten-fold
cross validation to analyze the datasets while using both gradient boosting classifier and
random forest classifier. Table 3 outlines the performance of recent experiments using
the RAVDESS dataset. The results show that our proposed system attains increases in
emotion recognition rate of 12.5%, 5.4%, 5.0%, 3.0% and 1.1% over the research approach
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put forward by Huang et al. [22], Gao et al. [58], Biqiao et al. (St Hier) [59], Biqiao et al. (Mt
Hier) [59] and Shahin et al. [33], respectively.

Table 2. Performance analysis of various advanced methods using the ESD dataset.

Method Features Classifier Validation Accuracy (%)

I. Shahin [33] MFCC GMM-DNN hybrid classification 1:2 ratio 83.9

S. Hamsa [31] MFCC Gradient Boosting K-fold 88.2

S. Hamsa [31] MFCC Random Forest Classifier K-fold 89.6

S. Hamsa [34] DSMR Random Forest Classifier K-fold 90.9

Proposed Learned Transfer Learning K-fold 91.2

Table 3. Performance study of various methods employing the RAVDESS dataset.

Method Features Classifier Validation Accuracy

Y. Gao [58] MFCC, LSP, Pitch, ZCR SVM 10-fold 79.3

A. Huang [22] MFCC, STFT CNN 10-fold 72.2

I. Shahin [33] MFCC GMM-DNN 1:2 ratio 83.6

S. Hamsa [31] MFCC Random Forest 5-fold 86.4

Z. Biqiao [59] LLD (Mt Hier) SVM 5-fold 81.7

S. Hamsa [34] DSMR Random Forest 5-fold 93.8

Z. Biqiao [59] LLD (St Hier) SVM 5-fold 79.7

Proposed Learned Transfer Learning Cross validation 84.7

Experiment 2: The second experiment has been conducted to support the proposed
model, using the SUSAS dataset to accomplish the emotion recognition rate. The SUSAS
dataset encloses utterances of two varieties: actual and simulated speech under stress. We
use utterances from thirty-two speakers in six speaking-style classes. The six speaking styles
are angry, neutral, slow, loud, soft and fast. Figure 7 illustrates the emotion recognition rate
of the proposed algorithm using the SUSAS dataset. The results indicate a stable accuracy
rate, with neutral having the highest accuracy rate of 93.2%, whereas the accuracy rate of
angry utterances is relatively less than other utterances. The average emotion recognition
rate attained for this algorithm using the SUSAS dataset is 88.5%, which is on the higher
end compared to the existing state-of the-art algorithms.

A comparison between the proposed and recent algorithms using the SUSAS dataset
is depicted in Figure 8. The graph exhibits an emotion recognition rate that is fairly stable,
using the proposed algorithm as differentiated by the previous research works. The average
emotion recognition rate is 88.5%. An accuracy rate of 93.2% is obtained by the neutral
talking condition, whereas the lowest accuracy rate in the emotion classes used is as high
as 84.2% which is the highest of all the recognition rates for the angry talking condition in
recent research works. The differences in the recognition rate of the proposed system and
the earlier works are mentioned in the given graph. An advancement of 32.2%, 26.6%, 28.8%,
23.4% and 30.5% is observed when using the proposed algorithm over the HMMs model
in angry, slow, loud, soft and fast talking conditions, respectively. Similarly, compared
with the CHMM2s model, our system yields a 27.7%, 20.6%, 23.3%, 18.9% and 26.5% rise
in the emotion recognition rate for angry, slow, loud, soft and fast talking conditions,
respectively. Comparisons with the SPHMMs model bring forth a surge in the percentages.
The proposed system gives a 25.7%, 15.1%, 19.3%, 14.9% and 21% increase in recognition
rates in angry, slow, loud, soft and fast utterances when compared with the SPHMMs model.
Table 4 exemplifies the performance evaluation of the proposed feature extraction and
classifier methods with respect to the numerous feature extraction approaches employed in
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earlier works. The results from the table indicate that the proposed algorithm offers better
performance when compared with other commonly used techniques.
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As mentioned in Table 2, our proposed work offers an almost identical or even better
performance when using the Arabic ESD dataset as compared to other models. This is
because the proposed work was trained using the Arabic ESD dataset and is tested using
thhe RAVDESS and SUSAS datasets, as mentioned in Tables 3 and 4, respectively. While
the algorithms using the RAVDESS and SUSAS datasets yield superior performance than
the proposed algorithm, since these works are trained and tested on the same dataset for
emotion recognition.
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Table 4. Performance study of various methods utilizing the SUSAS dataset.

Method Features Classifier Validation Accuracy

Q.Y. Hong [60] MFCC GA - 68.7

I. Shahin [33] MFCC GMM-DNN 10-fold 86.6

S. Hamsa [31] MFCC Random Forest 10-fold 88.6

T. Kinnunen [61] MFCC VQ Not mentioned 68.4

S. Hamsa [62] DSMR Random Forest 10-fold 90.9

W.M. Campbell [63] MFCC SVM Not mentioned 72.8

Proposed Learned Proposed TUA Cross validation 88.5

Table 5 demonstrates the complexity of the recently proposed emotion recognition
models. The results show that the proposed transfer learning approach considerably
reduces the complexity of the SER algorithm. It required 69,331.1 s for training, versus
84,128.13 s for Random Forest and 95,921.45 for GMM-DNN hybrid classifier models.

Table 5. Analysis of the model in terms of computational complexity.

Model Training Testing

Random Forest 84,128.13 2.46

GMM-DNN 95,921.45 4.12

Proposed 69,331.1 2.01

Table 6 reports the accuracy, precision, recall and F1-score. The proposed framework
offers superior performance over GMM-DNN in terms of accuracy. However, the proposed
framework performance is less than the random forest classifier model in terms of accuracy,
though it outperforms the random forest classifier based on the F1-score. In terms of F1-
score and computational complexity, the proposed framework offers superior performance
over the random-forest-based SER model [34].

Table 6. Analysis in terms of performance evaluation matrices using the RAVDESS dataset.

Model Accuracy Precision Recall F1-Score

Proposed 0.84 0.83 0.84 0.84

Random Forest [31] 0.86 0.85 0.85 0.82

GMM-DNN [1] 0.83 0.83 0.82 0.83

5. Conclusions

[R6,3] In this work, we designed, implemented and evaluated a model for emotion
recognition. The proposed framework utilizes the benefits of a transfer learning approach
on a bilingual platform and obtained remarkable results in terms of performance without
repeating complex and time-consuming training procedures. Task-based unification and
adaptation is an approach that involves unifying and adapting multiple related tasks to
improve performance on each individual task. This approach can be applied to other feature
recognition problems in other domains where high performance transfer learning has
become an attractive solution. One instance is in computer vision, where transfer learning
is commonly used to improve performance on specific tasks such as object detection or
image classification. By unifying and adapting multiple related tasks, such as pedestrian
detection and vehicle detection, transfer learning can be used to improve performance
on each individual task. This can be particularly useful in domains such as autonomous
driving, where accurately detecting and classifying objects in the environment is critical for
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safety. Task-based unification and adaptation can help improve performance on individual
tasks while reducing the need for large amounts of labeled data. By leveraging related tasks
and adapting existing models, transfer learning can help reduce the cost and time required
for training new algorithms. This approach can be particularly valuable in domains where
the cost of producing new data for training is high, or where labeled data is scarce.

Our system uses a pragmatic key for the research and development of feature pyramids
where projections are made on each level. The obtained results in different experimenta-
tions ensure the model’s performance in both English and Arabic languages. Our model
achieves competitive results compared to previously published DSMR speech emotion
recognition models and state of-the-art hybrid models, with lower latency, higher perfor-
mance and fewer parameters. The limitations of this system are the amount of time and
heavy resources required to build an operable TUA. This leaves room for future work in
creating TUA frameworks much more efficiently. Our future work aims to incorporate
multiple languages in the data pool to facilitate a unified transfer-learning model suitable
for affective computing-based applications.
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