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Abstract: Transfer learning is a technique utilized in deep learning applications to transmit learned
inference to a different target domain. The approach is mainly to solve the problem of a few training
datasets resulting in model overfitting, which affects model performance. The study was carried out
on publications retrieved from various digital libraries such as SCOPUS, ScienceDirect, IEEE Xplore,
ACM Digital Library, and Google Scholar, which formed the Primary studies. Secondary studies
were retrieved from Primary articles using the backward and forward snowballing approach. Based
on set inclusion and exclusion parameters, relevant publications were selected for review. The study
focused on transfer learning pretrained NLP models based on the deep transformer network. BERT
and GPT were the two elite pretrained models trained to classify global and local representations
based on larger unlabeled text datasets through self-supervised learning. Pretrained transformer
models offer numerous advantages to natural language processing models, such as knowledge
transfer to downstream tasks that deal with drawbacks associated with training a model from scratch.
This review gives a comprehensive view of transformer architecture, self-supervised learning and
pretraining concepts in language models, and their adaptation to downstream tasks. Finally, we
present future directions to further improvement in pretrained transformer-based language models.

Keywords: transformer network; transfer learning; pretraining; natural language processing;
language models

1. Introduction

The transformer network is a novel architecture that produces optimal performance
in language processing applications. Its success depends on its abstraction of long-range
dependencies from large datasets. This transformer network does not require hand-crafted
features, which is a bottleneck in machine-learning models. The advancements in com-
puter hardware, availability of larger datasets, and advanced word embedding algorithms
have increased the adaptation of DL models for vision tasks [1] and solving NLP prob-
lems [2]. Transfer learning techniques provide optimal results in NLP tasks through
pretraining. Some of these include language representation [3], natural language gen-
eration [4], language understanding [5–8], text reconstruction [9], and abstractive text
summarization [10,11]. The learning techniques require more labelled and annotated data
to yield good performance. It is a drawback because much time is required to generate these
annotated datasets. Transfer learning [12] is one technique used to address this drawback.
In transfer learning, models trained on larger datasets, such as ImageNet [13], are used
as the base model to train target models with few datasets. Classification and detection
problems in vision processing are mostly solved based on transfer learning [14–17] in vision
processing tasks. Transfer learning (TL) for image registration and segmentation cannot be
left out depending on the outstanding performance [18,19].

For example, a base model VGG-16 [20] extracts information for all tasks, and the
knowledge gained during the training is transferred to downstream tasks through fine-
tuning [21] with optimal performance [22–24]. The approach eliminates the problem of
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overfitting, which is common in deep learning applications when the training dataset is few.
Despite the outstanding performance of RNN and CNN models in sequential and vision
tasks, they suffer in modelling log–range dependencies and locality bias. The Transformer
network [25] deals with these drawbacks. Based on the encoder/decoder layers and
self-attention in the transformer network, this ensures the parallelization of a long-range
relationship. As mentioned earlier, the backbone of deep learning models is labelled data,
which are few in quantity. Notwithstanding, unlabeled datasets are available. Transformer
networks can learn from unlabeled datasets through a self-supervised learning approach
with pseudo-supervision. Through transfer learning, several models for NLP tasks have
emerged [8–10]. The application of transfer learning for NLP applications transcends
through multiple disciplines such as financial communication [26], public law [27,28],
task-oriented dialogue [29], academia [30–32], and the medical sector [33–35].

This study discusses the efficacy of pre-trained TL approaches for language processing
with the under-listed highlights.

• An overview of the transformer network architecture and its core concepts.
• Self-supervised learning based on unlabeled datasets for transformer-based

pretrained models.
• Explains the fundamental principles of pre-training techniques and activities for

downstream adaption.
• Future trends for pretrained transformer-based language models.

The study follows the below structure:
Retrieving publications for this study following PRISMA reporting standards are in

Section 2. The description of the core structure of the transformer network is in Section 3.
Self-supervised learning and its application in pretraining are explained in Section 4.
Section 5 discusses the various pretrained models proposed in the literature. Pretraining
downstream tasks with the transformer network are in Section 6. Challenges with future
directions for efficient pretrained models are in Section 7. Section 8 concludes the review.

2. Materials and Methods

This section describes methods and techniques employed in writing this paper, fol-
lowing PRISMA reporting standards.

2.1. Review Planning

This review was planned and executed by, first, formulating research questions that
address the set objectives of the study. Based on the research objectives, we set up a search
strategy and criteria, which served as a guide to include or reject papers or publications.

Objectives and Research Questions

Deep TL passes on knowledge gained from one domain and is transferred to another
target domain to deal with the problem of overfitting due to a few training datasets.
Pretraining is a transfer learning technique widely used in language processing (LP) tasks.
The BERT pretrained model has given birth to other variants to handle different language
tasks instead of the traditional deep learning algorithms such as RNN due to its efficacy in
dealing with long-range sequences. This review seeks to understand the various pretrained
language models proposed in the literature. The following research questions aid in
achieving the aim of this paper:

RQ1: What are the various transformer-based pretrained models available for NLP processing?
RQ2: What are the various pretraining techniques available?
RQ3: What datasets or corpora are used for pretraining language models?
RQ4: What are the challenges associated with transformer-based language model pretrain-
ing based on self-supervised learning?
RQ5: How and when to choose a pretraining model for an NLP task?
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2.2. Search Strategy

We searched for relevant publications or literature about NLP applications based
on transformer networks for pretrained language models. The search strings for article
retrieval were formulated based on study objectives and research questions. Three main
categories of keywords “transformer-based natural language processing”, “pretrained
language models”, and “transfer learning approaches for natural language processing”
were formulated. The selected set of keywords used in the publication search is in Table 1.

Table 1. Search keywords.

Category Keyword

Transformer-based natural language
processing

Transformer network for NLP application, natural
language processing, attention-based NLP models,

representation learning from transformers

Pretrained language models
BERT models for natural language processing,
intermediate fine tuning on language models,

pretraining text models.

Transfer learning approaches for NLP NLP-based self-supervised learning, transfer learning
for language tasks, deep transfer learning for NLP

The keywords were linked using Boolean operators such as “OR” and “AND” to com-
plete the search string for retrieving articles. The search strings had to be modified based
on individual database requirements without compromising the selected keywords. This
review considered publications on transformer networks proposed for NLP applications
from 2018 to 2022. Electronic databases such as SCOPUS, Google Scholar, SpringerLink
IEEE Xplore, ACM Digital Library, and ScienceDirect were the sources of articles used in
this study.

2.2.1. Snowballing Approach

The snowballing technique [36] was used in retrieving research articles in conjunc-
tion with database searches. Articles retrieved from the various digital databases (Pri-
mary studies) assisted in getting additional publications using the reference list (backwards
snowballing—BSB) and citations (forward snowballing—FSB). The approach helped in touch-
ing on all the relevant articles needed for this study without missing some key publications.

2.2.2. Screening Criteria

The retrieved publications from databases and also through snowballing approach for
this study were screened by two authors (Ramkumar T. and Evans Kotei). Only transformer-
based publications were considered during the screening process.

2.2.3. Exclusion Criteria

This review does not include publications with less than four pages, symposium
papers, conference keynotes, and tutorials. Publications downloaded multiple times due to
articles having multiple database indexing were identified and removed accordingly. Only
relevant articles were selected for the study to form the Primary studies. Figure 1 is the
PRISMA flow diagram to explain the search process.
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Figure 1. Article retrieval and selection process based on PRISMA reporting standard.

The selected 58 publications consist of 26 (46%) conference publications and 32 (54%)
journal articles published from 2018 to 2022. A summary of retrieved articles is in Figure 2.
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3. Transformer Network

The transformer network has two parts (the encoder and the decoder), with self-
attention for neural sequence transduction [37,38]. The encoder architecture in the trans-
former network handles symbolic relationships of an input categorization (x1, . . . , xn) to an
incessant relation, z = (z1, . . . , zn). On the other hand, the decoder part of the transformer
model engenders an output sequence (y1, . . . , ym) one after the other. Each stage is auto-
degenerating and exploits the earlier input as supplementary to the next word. Figure 3 is
the transformer network.
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Figure 3. Transformer model (An input sequence is converted into a series of continuous represen-
tations by the encoder component of the transformer’s architecture before being supplied to the
decoder. The decoder combines the encoder’s output with the decoder’s output from the preceding
time step to produce an output sequence).

3.1. Encoder and Decoder Stacks

A position-wise fully connected feed-forward network and multi-head self-attention
form part of the encoder/decoder layers. Additionally, there is a residual layer with a
normalization function to ensure the models’ optimal performance [25].

3.2. Attention

Attention models produce good results through their query (Q), key (K), and value-pairs
(V), which are in vector form. Predictions are based on these three variables, as shown in
Figure 3. Attention uses the scaled dot-attention function for value localization based on two
input pairs (queries and keys). The dimensions of the input pairs are denoted dk (dimensional
key) and dv (dimension value). Figure 4 is scaled dot-attention and multi-head attention.



Information 2023, 14, 187 6 of 25Information 2023, 14, x FOR PEER REVIEW 6 of 24 
 

 

 
Figure 4. (A,B) Attention mechanism in transformer network (This is performed in the multi-head 
attention mechanism, which concurrently implements several single attention functions by masking 
the output of the scaled multiplication of the Q and K matrices. The multi-head self-attention is 
comparable to the encoder’s first sublayer. This multi-head mechanism receives the keys and values 
from the encoder’s output and the queries from the preceding decoder sublayer on the decoder side. 
The decoder then focuses on every word in the input sequence). 

The weight value is the dot-product of Q and K/√dk and a SoftMax function. There 
are two kinds of attention (additive attention and dot-product attention) [39]. Compara-
tively, the dot-product attention mechanism is faster and more efficient because of the 
multiplication code in its architecture. When the dk value is small, the additive attention 
performs better than the dot product attention [40]. This is because an increase in the dk 
values due to dot product computation pushes SoftMax to a lesser gradient space. Masked 
Multi-Head Attention within the transformer architecture is defined by: 

hi = Attention (QWiQ, KWiK, VWiV), 

H = Concat (h1, h2,…, hn), 

O = HWh, where, WiQ ∈ Rdmodel×d, WiK ∈ Rdmodel×d, and WiV ∈ Rdmodel×dv. 

The output from the attention model is hi is concatenated together and projected to 
the same magnitude by multiplying it with Wh, such that Wh ∈ R(n×dv)× dmodel and O ∈ 
RL×dmodel. 

The attention mechanism is used in several tasks [41–43]. 

4. Self-Supervised Learning (SSL) 
This is a novel technique of acquiring collective information or knowledge based on 

unlabeled datasets through pseudo-supervision. Even though self-supervised learning is 
new, its patronage cuts across several disciplines, such as NLP, computer vision, speech 
recognition, and robotics [44–48] 

4.1. Why Self-Supervised Learning? 
Most deep learning applications are trained on supervised learning, which requires 

human-annotated instances to learn. Supervised learning depends on labelled data, but 
good and quality data are hard to come by, specifically for complex issues such as object 
detection [49,50] and image segmentation [51,52], where detailed information is required. 
Meanwhile, the unlabeled data are readily accessible in abundance. The advantage of a 
supervised learning application is that models perform very well on specific datasets. 
Generating human-annotated labels is a cumbersome process and requires a domain ex-
pert, who is scarce and not readily available, especially in the medical sector. Models 
trained through supervised learning suffer from generalization errors and fake 

Figure 4. (A,B) Attention mechanism in transformer network (This is performed in the multi-head
attention mechanism, which concurrently implements several single attention functions by masking
the output of the scaled multiplication of the Q and K matrices. The multi-head self-attention is
comparable to the encoder’s first sublayer. This multi-head mechanism receives the keys and values
from the encoder’s output and the queries from the preceding decoder sublayer on the decoder side.
The decoder then focuses on every word in the input sequence).

The weight value is the dot-product of Q and K/
√

dk and a SoftMax function. There
are two kinds of attention (additive attention and dot-product attention) [39]. Compar-
atively, the dot-product attention mechanism is faster and more efficient because of the
multiplication code in its architecture. When the dk value is small, the additive attention
performs better than the dot product attention [40]. This is because an increase in the dk
values due to dot product computation pushes SoftMax to a lesser gradient space. Masked
Multi-Head Attention within the transformer architecture is defined by:

hi = Attention (QWi
Q, KWi

K, VWi
V),

H = Concat (h1, h2, . . . , hn),

O = HWh, where, Wi
Q ∈ Rdmodel×d, Wi

K ∈ Rdmodel×d, and Wi
V ∈ Rdmodel×dv.

The output from the attention model is hi is concatenated together and projected
to the same magnitude by multiplying it with Wh, such that Wh ∈ R(n×dv)× dmodel and
O ∈ RL×dmodel.

The attention mechanism is used in several tasks [41–43].

4. Self-Supervised Learning (SSL)

This is a novel technique of acquiring collective information or knowledge based on
unlabeled datasets through pseudo-supervision. Even though self-supervised learning is
new, its patronage cuts across several disciplines, such as NLP, computer vision, speech
recognition, and robotics [44–48].

4.1. Why Self-Supervised Learning?

Most deep learning applications are trained on supervised learning, which requires
human-annotated instances to learn. Supervised learning depends on labelled data, but
good and quality data are hard to come by, specifically for complex issues such as object
detection [49,50] and image segmentation [51,52], where detailed information is required.
Meanwhile, the unlabeled data are readily accessible in abundance. The advantage of
a supervised learning application is that models perform very well on specific datasets.
Generating human-annotated labels is a cumbersome process and requires a domain expert,
who is scarce and not readily available, especially in the medical sector. Models trained
through supervised learning suffer from generalization errors and fake correlations because
the model only knows the training pattern and struggles with the unseen dataset. Despite
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the supervised learning approach being dominant in developing deep learning applications,
it has some drawbacks. Below is a summary of them:

• Supervised learning requires a human-annotated dataset, which is expensive to gener-
ate, especially a domain-specific dataset.

• Poor generalization because the model tries to memorize the training data and suffers
from unseen data during classification.

• Limitation of deep learning applications in domains where labelled data are less
example, in the medical health sector.

Based on these drawbacks, some solutions have been provided through extensive
research. One is self-supervised learning, which eliminates the requirement for human-
annotated labels. The labels are generated automatically by the algorithm. The intuition
behind self-supervised learning is to study representations from a given unlabeled dataset
using self-supervision and fine-tuned with a few labelled datasets for the supervised
downstream task such as classification, segmentation or object detection.

4.2. Self-Supervised Learning—Explained

In this type of learning, a model learns from part of the input dataset and evaluates
itself with the other part of the dataset. The basic idea for SSL is to transform the unsu-
pervised problem into a supervised problem by generating some auxiliary pre-text tasks
for the model from the input data such that while solving the problem, the model learns
the underlying structure of the data. Transformer models such as BERT [5], ELECTRA [9],
and T5 [11] produce optimal results in NLP tasks. The models are, first, trained on larger
datasets and later fine-tuned with a few labelled data examples.

Self-supervised learning for pretraining models comes in multiple forms. For example,
the models presented in [5,6] employed masked language modelling (MLM) with cross
entropy as a loss function and next sentence prediction (NSP) using sigmoid loss. Through
pretraining from the larger unlabeled dataset, the model extracts general language represen-
tations making downstream tasks to achieve better performance in a less labelled dataset.
Pretraining over larger unlabeled datasets through SSL provides low-level information or
background knowledge, which optimizes model performance even on lesser labelled data.

The paradigm of self-supervised learning shares similarities with supervised and un-
supervised learning. For example, SLL does not require human-annotated data for learning,
which is not the case with unsupervised learning with supervision. The variance between
SSL and SL is learning meaningful representations from the unlabeled dataset, whereas
unsupervised learning finds hidden patterns. On the other hand, SSL is synonymous with
supervised learning because both require supervision. SSL offers general language repre-
sentations for downstream models through transfer learning. It has better generalization
through learning from unlabeled text data.

4.3. Self-Supervised Applications in NLP Applications

This learning approach began with NLP tasks in language models such as document
processing applications, text suggestion, and sentence completion. The narrative changed
after the Word2Vec paper [53] was introduced. The BERT (Bidirectional Encoder Represen-
tations from the Transformers) [5] model and its variants are the widely used language
models based on SSL. Most of the variants of the BERT model were developed through
modification in the last layers to handle a variety of NLP scenarios.

5. Pretrained Language Models Based on Transformer Network

The intuition of TL has become a standard method in NLP applications. Typical
examples of NLP pretrained models include BERT [5], RoBERTa [6], ELECTRA [9], T5 [11],
and XLNet [7]. Pretrained models present several opportunities such as:

• Pretrained models extract low-level information from unlabeled text datasets to en-
hance downstream tasks for performance optimization.
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• The disadvantages of building models from scratch with minimal data sets are elimi-
nated via transfer learning.

• Fast convergence with optimized performance even on smaller datasets.
• Transfer learning mitigates the overfitting problem in deep learning applications due

to limited training datasets [54].

5.1. Transformer-Based Language Model Pretraining Process

In transferring knowledge from a pretrained model to a downstream application in
natural language processing, it follows the under-listed steps:

Corpus identification: Identifying the best corpus to train the model in any pretraining
model context is vital. A corpus is an unlabeled benchmark dataset, usually adopted to
train a model for better performance, similar to BERT [5], which is pretrained by English
Wikipedia and BooksCorpus. For a model to perform well, it must train on different text
corpora [6,7].

Create vocabulary: Creating or generating the vocabulary is the next step. The
step is mostly with varieties of tokenizers such as Google’s Neural Machine Translation
(GNMT) [55], byte pair encoding [56], and SentencePiece [57]. A tokenizer generates the
vocabulary based on a selected corpus. Table 2 is a list of the size and the vocabulary used

Table 2. Summary of dataset, type of vocabulary and tokenizer for pretrained models.

Reference Model Dataset (Corpus) Vocabulary Vocabulary Size Tokenizer

Lan et al., [3] ALBERT English Wikipedia and
Books Corpus [58] WordPiece 30,000 SentencePiece

[57]

Devlin et al., [5] BERT English Wikipedia and
Books Corpus [58] WordPiece 30,000 SentencePiece

[57]

Liu et al., [6] RoBERTa
Books Corpus [58],
English Wikipedia,

CC-news, Open webtext

Byte-Pair Encoding
(BPE) 50,000 -

Conneau and
Lample [59]

Cross-lingual
XLMs

Wikipedia, EUbookshop
corpus, OpenSubtitles,

GlobalVoices [60]
BPE 95,000 Kytea4 and

PyThaiNLP5

Liu et al., [61] mBART CCNet
Datasets [62] bi-texts 250,000 SentencePiece

Wang et al., [63] StuctBERT English Wikipedia and
Books Corpus WordPiece 30,000 WordPiece

Joshi et al., [64] SpanBERT English Wikipedia and
Books Corpus WordPiece 30,000 -

Pretrained models such as XLM [59] and mBART [61] had larger vocabulary sizes
because they modelled various languages. Pre-training a language model on big data
increases the model size but ensures optimal performance. CharacterBERT, CANINE, ByT5,
and Charformer [65–68]. The models do not use the WordPiece system; rather, a Character-
CNN module makes the model lighter and more efficient, especially in specialized domains
such as biomedical.

Construct the learning framework: The learning models learn by minimizing the loss
function for convergence. Pretrained models such as [3,6,63] extract sentence semantics
and should work on a downstream task for optimal performance. For example, the Span-
BERT [64] is a variant of BERT proposed for content-masked prediction without using
masked token representations, as performed in [69].

Pre-training approach: One approach to pretrain a language model is to start from
scratch. The method is good but computationally expensive and requires a larger dataset.
The drawback limits its application in language model training since it is unaffordable. The
authors in [70,71] proposed a pre-training framework known as “knowledge inheritance”
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(KI) that aids in the development of new pretrained models from already existing pretrained
models. Based on this framework, less computational power and lesser time are required
to pretrain the new model through self-supervised learning.

Parameter and hyperparameter settings: Model parameters and hyper-parameters
such as learning rate, batch size [72] mask, and input sequence must be carefully set for
quicker convergence and improved performance.

5.2. Dataset

Pretraining language models based on self-supervised learning require a larger unla-
beled training dataset. In dealing with NLP tasks, the training dataset can be general, social
media, language-based and domain-specific categories. Each category has different text
characteristics to make it suitable for a particular language task. The dataset belonging to
the general category is a clean text written by experts. The dataset obtained from the social
media category is noisy and unstructured because it came from the public, not experts.
Text datasets belonging to the domain-specific category, for example, biomedical, finance,
and law, have texts not used in the general domain category. Domain-specific datasets
are few in quantity, which makes it challenging when developing an NLP model for
domain-specific tasks such as BioBER [33], ClinicalBERT [34], BLUE [73], and DAPT [74].
Pretraining on a larger dataset offers performance optimization, with the BERT model
being an example. To affirm this point, the models developed in [6,7] with 32.89 B texts
produced good performances. Based on this notion, larger datasets emerged for pretraining
language models. A typical example is the CommonCrawl corpus [75]. Models such as
IndoNLG [76], MuRIL [77], IndicNLPSuite [78], mT5 [79], mT6 [80], XLM-R [81], XLM-
E [82], and INFOXLM [83] are multilingual pretrained models trained on larger datasets
producing optimal performance. A summary of pretraining models with their datasets is
in Table 3.

Table 3. A summary of dataset for pretraining models based on Transformer network.

Category Model Dataset Focus Evaluation Metrics

General

RoBERTa [6]

Books Corpus [58],
English Wikipedia,
Open webtext, and

Stories

Pretrain a model on a larger
dataset with bigger batch

sizes for optimal
performance.

GLUE [84], RACE, and
SQuAD

T2T Transformer [11]
Colossal Clean

Crawled Corpus (C4)
[11]

Developed a common
framework to convert a

variety of text-based
language problems into a

text-to-text format

GLUE and SQuAD

Social media

HateBERT [85] RAL-E
Developed to analyze

offensive language
singularities in English

Macro F1 Class—F1

SentiX [86] Amazon review [87]
and Yelp 2020 dataset

Analysis of consumer
sentiments from different

domains
Accuracy
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Table 3. Cont.

Category Model Dataset Focus Evaluation Metrics

Domain Specific

Biomedical

BioBERT [33]
BooksCorpus

PMC articles and
PubMedAbstracts

Question and answering
model for the biomedical

field
F1 score, MRR

BLUE [73] BC5CDR, MedSTS, and
BIOSSES [73]

Developed the BLUE
evaluation framework to
access the performance of

biomedical pretrained
models

Pearson, Accuracy, and
micro F1

ClinicalBERT [34] MIMIC-III v1.4
database [88]

Demonstrate that
clinical-specific contextual

embeddings improve
domain results

Accuracy, Exact F1

News and
academia DAPT [74] Amazon review [87]

and RealNews [89]

Developed an efficient model
to analyze small corpus with

improved performance
F1-Score

Language based

Monolingual

IndoNLG [76] Indo4B [76]
Developed the IndoNLU

model for complex sentence
classification

F1-Score

DATM [90] GermEval 2017 data
[90]

Developed a
transformer-based model to
explore model efficiency on

German customers

F1-Score

PTT5
[91]

BrWac [92] and ASSIN
2 [93]

Improved the T5 model to
translate the Portuguese

language to Brazilian
Portuguese

Precision, Pearson,
Recall, and F1

RoBERTa-tiny-clue [94] CLUECorpus2020 [94]
Developed the Chinese

CLUECorpus2020 to pretrain
Chinese language models

Accuracy

Chinese-Transformer-
XL
[95]

WuDaoCorpora [95]

Developed a 3 TB Chinese
Corpora for word
embedding model

pre-training

Per-word perplexity
(ppl)

Multi-lingual

IndoNLG [76] Indo4B-Plus

Introduced the IndoNLG
model to translate multiple

languages (Indonesian,
Sundanese, and Javanese)

BLEU, ROUGE, and F1
score

MuRIL [77] OSCAR [75] and
Wikipedia

Introduced the MuRIL
multilingual LM for Indian

languages translation
Accuracy

IndicNLPSuite [78] IndicGLUE benchmark
Developed a large-scale,

dataset for Indian language
translation

Accuracy
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Table 3. Cont.

Category Model Dataset Focus Evaluation Metrics

Multi-lingual

mT5 [79]
mC4 derived from

Common Crawl corpus
[75]

Introduced the mT5
multilingual variant of the
T5 model pretrained on the

Common Crawl dataset,
which covers 101 languages

Accuracy and F1 score

mT6 [80] CCNet [62]
The proposed MT6 is an

improved version of MT5 for
corruption analysis

Accuracy and F1 score

XLM-R [81] CommonCrawl Corpus
[75]

Developed a multilingual
model for a wide range of

cross-
lingual transfer tasks

Accuracy and F1 score

XLM-E [82] CommonCrawl Corpus
[75]

Developed two techniques
for token recognition and

replacement for cross-lingual
pre-training

Accuracy and F1 score

INFOXLM [83] CommonCrawl Corpus
[75]

Proposed an info-theoretic
model for cross-lingual
language modelling to
maximize the mutual
information between

multi-granularity texts

Accuracy

5.3. Transformer-Based Language Model Pretraining Techniques

This section introduces various pretraining techniques based on transformer networks
proposed in the literature for NLP tasks using SSL.

5.3.1. Pretraining from Scratch

Pretraining a language model from scratch was used in elite models such as BERT [5],
RoBERTa [6], and ELECTRA [9] for language processing tasks. The method is data driven
because the training process is through self-supervised learning based on a larger unlabeled
test dataset. Pretraining from scratch is computationally intensive and expensive because
computers with high processing power technologies, such as graphical processing units
(GPUs), are required.

5.3.2. Incessant Pretraining

In this method, a new language model is initialized from an existing pretrained
language model for further pretraining. The initialized weights are not learned from
scratch, as in pretraining from scratch models. Figure 5 illustrates the transmission of
preexisting weights or parameters from a base pretrained model to a target domain for
tuning. This approach is a common phenomenon in developing models for domain-
specific tasks. Transformer-based language models such as ALeaseBERT [27], BioBERT [33],
infoXLM [83], and TOD-BERT [29] are examples of models initialized on existing pretrained
models and later finetuned for specific NLP tasks. A key observation of this method of
pretraining is that it is cost-effective in terms of computational power since it is trained on
already pretrained parameters. Additionally, less training time is required compared to
training from scratch.
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Figure 5. Incessant pretraining process (in this case, the pre-training task is progressively constructed,
and the models are pre-trained and fine-tuned to respond to different language understanding tasks).

The BioBERT method was initialized using BERT’s weights, which were pre-trained with
general domain corpora (English Wikipedia and BooksCorpus). Next, BioBERT is finetuned
on corpora from the biomedical area (PubMed abstracts and PMC full-text articles).

5.3.3. Pretraining Based on Knowledge Inheritance

As previously indicated, pretraining a language model based on self-supervised
learning requires a larger dataset, which makes the method computationally expensive
and time-consuming. As knowledge acquisition from a people perspective is from human
experience, the same phenomenon is in language model training. The authors in [70]
proposed a model known as “knowledge inheritance pretrained transformer” (KIPT),
which is similar to knowledge distillation (KD). Refer to Figure 6 for the training process.
The model learns how knowledge distillation provides supervision during pre-training to
target models.
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Figure 6. Pretrained model based on knowledge transfer.

A new language model is pretrained using the knowledge from an existing pretrained
model. The equation below explains the learning process. LSSL and LKD are losses from
self-supervised learning and knowledge distillation, respectively, and LKIPT is the model’s
loss function.

LkIpT = σ× LssL + (1− σ)× LkD

The proposed knowledge inheritance model operates on the “teacher and student” sce-
nario, where the “student” learns from the “teacher” by encoding the knowledge acquired
from the “teacher”. The student model extracts knowledge through SSL and from the
“teacher” to enhance model efficiency. The approach requires less datasets, making it less
computationally expensive with minimal training time compared to only self-supervised
pretraining methods. The CPM-2 model introduced in [71] is a Chinese–English bilingual
model developed based on knowledge inheritance with optimized performance.

5.3.4. Multi-Task Pre-Training

With this technique, a model extracts relevant information across multiple tasks
concurrently to minimize the need for a labelled dataset in a specific target task. The
authors in [11] utilized a multi-task-pretraining approach to optimize model performance.
Multi-Task Deep Neural Network (MT-DNN) was used for learning representations across
several natural language understanding (NLU) tasks. The proposed model depends on
a significant quantity of cross-task data with a regularization effect that results in more
general representations to aid in adapting to new domains [96]. Two steps make up the
MT-DNN training process: pre-training and multi-task learning. The pre-training phase
is the same as the BERT model. The parameters of all shared task-specific layers were
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learned during the multi-task learning stage using mini-batch-based stochastic gradient
descent (SGD). Finding a single training dataset that includes all the necessary slot types,
such as domain classification, intents categorization, and slot tagging for named entity
identification, is challenging in the health domain. A multi-task transformer-based neural
architecture for slot tagging solves the issues [97]. As a multi-task learning problem, the
slot taggers were trained using many data sets encompassing various slot kinds. In terms
of time and memory and efficiency and effectiveness, the experimental findings in the
biomedical domain were superior to earlier state-of-the-art systems for slot tagging on
the various benchmark biomedical datasets. The multi-task approach was used in [98]
to extract eight different tasks in the biomedical field. The Clinical STS [99] dataset was
subjected to multi-task fine-tuning, and the authors repeatedly selected the optimal subset
of related datasets to produce the best results. To further improve the model’s performance
after multi-task fine-tuning, the model can be further fine-tuned on the target particular
dataset. The Multi-task Learning (MTL) [100] model’s outstanding performance represents
the pinnacle of the multi-task pre-training technique in NLP applications.

Table 4 is a summary of the various pretraining techniques employed in the develop-
ment of language models for different NLP tasks. Multi-task pretraining is appropriate for
domain-specific applications with outstanding performance. On the other hand, knowledge
inheritance is as good as the multi-task pretraining technique. Its adaptation is suitable for
edge scenario devices since it is computationally less expensive. The information and the
suggested literature support researchers in selecting the appropriate pretraining technique
for new applications.

Table 4. Summary of pretraining techniques employed for language modelling.

Method Model Focus Pros Limitations Model Evaluation

Pretraining
from

scratch

BERT [5]

Designed to
pretrain deep
bidirectional

representations
from unlabeled

text.

It is a straightforward
model to generate

cutting-edge models for
a variety of tasks,
including QA and

language inference, with
minimal architectural

adjustments.

The BERT model
was severely

undertrained and
may match or

outperform some
models published

after it.

GLUE score = 80.5%,
accuracy 86.7, F1

score = 93.2

RoBERTa [6]

Improvements to
the original BERT

architectural
design combined
with alternatives

and training
methods that

improve
downstream task

performance.

The architectural and
training advancements

demonstrate a
competitive advantage

of masked language
model pretraining, with
all other state-of-the-art

models.

Model is
computationally

expensive since the
training dataset is

large (160 GB
data).

SQuAD = 94.6/89.4,
MNLI-m = 90.2,

SST-2 = 96.4,
QNLI = 98.9%

ELECTRA [9]

Introduces
discriminative and
generator models

for prediction.

Outstanding
performance on

downstream tasks with
less computing power.

Requires high
computer power

for training

MNLI = 90.7,
CoLA = 68.1
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Table 4. Cont.

Method Model Focus Pros Limitations Model Evaluation

Incessant
pretraining

ALeaseBERT [27]

Introduced a new
benchmark dataset,

trained on the
ALeaseBERT

language model,
and generated

ground-breaking
outcomes.

The suggested model
detects two elements

(entities and red flags),
crucial in a contract

review with excellent
performance.

The precision at
high recall for the
red flag detection

requires
improvement for

end-user and
professional
satisfaction.

MAP = 0.5733,
Precision = 0.62,

Recall = 0.48,
F1 = 0.54

BioBERT [33]

Introduced model
for pre-trained

language
representation for

biomedical text
mining.

The first domain-specific
BERT-based model

pretrained on
biomedical corpora with
improved performance.

It is expensive to
generate

domain-specific
corpora because of
specific vocabulary

not found in
general corpora.

NER = (0.62% F1
score = 2.80%,
MRR = 12.24%

TOD-BERT [29]

Introduced a
task–conversation
model, trained on
nine human and

multi-turn
task-oriented

datasets, spanning
more than 60

domains.

Four tasks involving
dialogue that TOD-BERT

performs better than
BERT are answer

selection, dialogue act
prediction, dialogue
state tracking, and

intention categorization.

Implementation
can be

computationally
expensive.

MWOZ = 65.8%
1-to-100 accuracy

and 87.0% 3-to-100
accuracy

infoXLM [83]

Presents a
framework that

defines a
cross-linguistic

language model to
maximize

multilingual and
multi-granularity

texts.

A cross-lingual
comparative learning

task and a single
cross-lingual pretraining
are successful with the

model from an
information-theoretic

perspective

Due to specialized
vocabulary that is
absent from broad
corpora, creating
domain-specific
corpora is costly.

XNLI = 76.45,
MLQA = 67.87/49.58

Multi-task
pretraining

MT-DNN [97]

To integrate
multi-task learning

with language
model pretraining

for language
representation

learning.

MT-DNN has
remarkable

generalization
capabilities, archiving
outstanding results on

10 NLU tasks using
three well-known

benchmarks:
GLUE, SNLI, and

SciTail.

The model requires
improvement to

include the
linguistic structure

of the text more
clearly and

understandably.

MNLI = 87.1/86.7,
CoLa = 63.5,

Accuracy = 91.6%

MT-BioNER [98]

Present a slot
tagging neural

architecture based
on a multi-task

transformer
network for the
biomedical field.

The suggested strategy
outperforms the most

recent cutting-edge
techniques for slot
tagging on several

benchmark biomedical
datasets.

Investigate the
effects of dataset
overlap on the

model’s
performance on
larger unlabeled

datasets

Recall = 90.52,
Precision = 88.46,

F1 = 89.5
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Table 4. Cont.

Method Model Focus Pros Limitations Model Evaluation

Multi-task
pretraining

MT-Clinical BERT
[99]

Developed the
Multitask-Clinical
BERT, which uses

shared
representations to

carry out eight
clinical tasks.

The suggested approach
is resilient enough to

incorporate new
activities while

concurrently supporting
future information

extraction.

Adding larger
tasks may need

rigorous ablation
tests to determine

the overall benefits
of each such work.

Micro-F1 = 84.1
(+0.2)

Multi-task learning
[100]

Developed a
multi-task learning

model with
decoders for a

variety of
biological and

clinical NLP tasks.

The
MT-BERT-Fine-Tuned
model proposed eight
tasks from various text
genres that displayed

outstanding
performance.

Further
investigation is
required on task

relationship
characterization on

data qualities.

Accuracy = 83.6%

Knowledge
inheritance
pretraining

KIPM [70]

Present the KI
pretraining

architecture to
effectively learn

bigger pretrained
language models.

The proposed
architecture uses already
trained larger models to

teach smaller ones by
transferring information
across several language

models.

Selecting an
appropriate

teacher model for
KI can be difficult

sometimes,
limiting model
performance.

F1 = 84.5%

CPM-2 [71]

A cost-effective
pipeline for
large-scale
pre-trained

language models
based on KI.

The framework is
memory-efficient for

quick tuning, achieving
outstanding

performance on
full-model tuning.

The model needs
further

optimization.
Accuracy = 91.6%

NER—Named Entity Recognition, RE—Relation Extraction, IR—Information Retrieval, QA—Question Answering.

5.4. Word Embedding Types in Transformer-Based Pretraining Models

Word embedding converts character-based datasets into matrix format for a lan-
guage model to process. There are two major embedding types: primary embedding
and secondary embedding. Primary embeddings are characters or sub-words and word
embeddings to form a vocabulary fed as input to the NLP model for processing. Word em-
bedding vocabulary consists of every word selected in the pretraining dataset. Meanwhile,
the character-embedding vocabulary entails only the characters that form the pretraining
corpus. Secondary embeddings contain secondary information, such as the position and
language of the pretraining model. The model size and the vocabulary with primary and
secondary embeddings are equal [101].

5.4.1. Text/Character Embeddings

The input dataset for most NLP models is a sequence of characters, a combina-
tion of characters (sub-word), numbers, and symbols. The CharacterBERT [65], CHAR-
FORMER [68], and AlphaBERT [102] are typical examples of character-based embedding
pretrained models that utilize characters instead of words for pretraining. On the other
hand, the novel BERT model [5], BART [4], RoBERTa [6], and XLNet [7] are pretrained on
sub-word embeddings, even though they have varying tokenizers for vocabulary gener-
ation. The generated vocabulary consists of letters, symbols, punctuation, and numbers
mapped to a dense low-dimensional vector. The learning process is through the random
initialization of each character in the vocabulary.
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5.4.2. Code Embeddings

This type of embedding is domain-specific, for example, in the medical sector, where
special codes represent cases or concepts such as disease, drug prescription, prognosis,
therapy, and surgery. Patient information is stored in codes instead of plain text so that only
clinical professionals can interpret it. The authors in [103] proposed a transformer-based
bidirectional representation learning model on EHR sequences to diagnose depression. The
input dataset for the model was code embedding extracted from an electronic health record
(EHR). Med-BERT [104] and BeHRt [105] also uses code embeddings as input vocabulary
for pretraining through random initialization.

5.4.3. Sub-Word Embeddings

Byte Pair Encoding Byte Level BPE (bBPE), Unigram, and SentencePiece are employed
to generate the vocabulary, which serves as the input data for pretraining the language
model. A summary of tokenizers used in literature is in Table 2. It is very critical when
choosing the vocabulary size when using sub-word embeddings. A smaller-sized vocabu-
lary can generate long sequences because multiple sub-words will emerge. The case is a bit
different with models such as IndoNLG [76], MuRIL [77], and IndicNLPSuite [78], which
are developed for multilingual language processing because such models require a large
vocabulary to handle different kinds of languages.

5.5. Secondary Embeddings

Secondary embedding contains specific information with a purpose about the pre-
trained model. Positional embedding and sectional embedding are examples of secondary
embeddings used in general models to describe the position and also differentiate tokens
forming various sentences, especially in language models such as RoBERTa-tiny-clue [94],
Chinese-Transformer-XL [95], and XLM-E [82]. There are specific secondary embedding
types used in domain-specific transformer-based language models. A few are below.

5.5.1. Positional Embeddings

Transformer-based language models require positional information about the text
dataset to make predictions without regard to the text location in the vocabulary. The
situation varies with CNN and RNN models because predictions are consecutive to each
character following the other in RNN. Sequential processing does not use positional in-
formation. Transformer networks do not process information sequentially, hence the
need-to-know order and positional details of characters for prediction. The positional
information is sometimes learned together with other parameters during pretraining [5,9].

5.5.2. Sectional Embeddings

In sentence-pair models, both sentence tokens are taken as input simultaneously and
differentiated with sectional embedding. Positional embedding varies with tokens in the
input sentences, but sectional embedding remains constant.

5.5.3. Language Embeddings

This type of secondary embedding works in cross-lingual pretrained language mod-
els [106,107] to provide vivid information to the model on the input sentence language. For
instance, the XLM model is pretrained on MLM, which contains sentences in one language
on monolingual text data in 100 languages. MLM sentences come from one language where
the language embedding is constant for all the input sentence tokens.

6. Knowledge Transfer Techniques for Downstream Tasks

The techniques employed to transfer knowledge, parameters and pretrained corpus to
a downstream task for natural language processing include: (word feature-based transfer,
fine-tuning, and prompt-based tuning).



Information 2023, 14, 187 17 of 25

6.1. Word Feature Transfer

The input data to traditional natural language architectures such as RNN embedding
models such as Word2Vec [53] generate the input set (word features). Transformer-based
pretrained models such as BERT [5], generate contextual word vectors (word features)
similar to Word2Vec. The BERT model supports encoding more information in word
vectors due to the deepness of transformer architecture with stacked attention. Due to this,
downstream tasks benefit from the word vectors from any part of the network layer.

The process involves training the downstream model from the initial stages without
the labelled embedding instances. The innovative BERT model is improved upon by the
DeBERTa model suggested [108]. The variance between the two is that DeBERTa uses a
disentangled attention mechanism where the words are in two-vector form (content and
position). The second unique technique of DeBERTa is a mask decoder for prediction
during pretraining. All these combined make this model superior to BERT and RoBERTa.
The ConvBET model [105] is also an advancement of the BERT model because it uses less
memory and is computationally efficient.

6.2. Fine-Tuning

Current work has shown that fine-tuning a base model produces optimal performance
on target tasks to training with only target task data [109]. The advantage of pretraining
is that it provides universal inference of a language [110]. The work in [111] proved that
fine-tuning yields optimal performance by examining the English BERT variants. It is also
evident that fine-tuning does not change the representation but rather fine-tunes it to a
downstream task. Fine-tuning was used in [112] to understand how representation space
changes during fine-tuning for downstream tasks.

The study capitalized on three NLP tasks; dependency parsing, NLP inference, and
reading comprehension. Fine-tuning adds massive changes to domain instances but looks
out-of-domain similar to the pre-trained model. To evaluate fine-tuning effects on rep-
resentations learned by pretrained language models, the authors in [113] proposed a
sentence-level probing model to ascertain the changes. BERT was fine-tuned based on two
indicators [114]. The first indicator was to evaluate the attention mode in the transformer
network based on the Jensen–Shannon divergence during fine-tuning of the BERT model.
The second indicator measured feature extraction changes during model fine-tuning based
on Singular Vector Canonical Correlation Analysis (SVCCA) [115].

6.3. Intermediate-Task Transfer Learning

Compared with more established deep learning techniques such as RNN, the top
pretrained networks BERT and RoBERTa perform extraordinarily well. The current perfor-
mance of these models is optimized by further training the model on a curated dataset for
the intermediate task through fine-tuning. The work proposed in [116] employed an inter-
mediate fine-tuning approach to improving the performance of the RoBERTa pretrained
language model with 110 intermediate–target task combinations.

Intermediate fine tuning on a semi-supervised pretrained language model performs
well in domain-specific tasks such as medical question–answer pairs [117] to extract medical
question resemblances. Figure 7 depicts the training process. In dealing with medical
domain NLP applications, a model pretrained on a different problem in similar domain
beats models pre-trained on an analogous task in a dissimilar field. Pretraining a language
model based on a biomedical dataset produces optimal performance in domain-specific
languages [118]. For example, an optimized performance was achieved in the biomedical
question and answering (QA) task through the transfer of knowledge from BioBERT,
based on natural language inference (NLI) [119]. Fine-tuning works well when the source
and target datasets come from the same domain but in different tasks. In this case, fine-
tuning happens on domain datasets before transferring to in-domain datasets. In [118],
the authors showed that teaching a domain-specific language model on rich biological
corpora has a considerable impact. Training the model on larger NLI datasets such as
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MultiNLI [120] and SNLI [121] aids in efficient task-specific reasoning with optimized
performance. Fine-tuning is possible when the source and target datasets are from the
same task and domain. However, the target dataset is more specialized, whereas the source
dataset is more general [122]. Fine-tuning is also feasible for many tasks and domains
where source and target datasets come from different fields. The BioBERT model was
tuned on a generic MultiNLI database biomedical question and answer (QA) [119]. The
performance was outstanding in learning to reason at the phrase level for biomedical QA.
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Figure 7. Intermediate-task transfer learning and subsequent fine-tuning (a pre-trained model (BERT),
is fine-tuned on the target task for intermediate task training. The model is then fine-tuned separately
for each target and probing task. The target tasks offer great importance to NLP applications.).

7. Discussion, Open Challenges, and Future Directions

This section highlights findings from literature based on transfer learning techniques,
such as pretraining on transformer networks for natural language models. We also shed
light on some future directions that are vital to the progression of the field.

7.1. Optimized Pretraining Techniques

As there are billions of parameters involved, pretraining transformer-based language
models using unlabeled datasets over SSL is costly and makes it impractical to train a
language model from scratch. According to the literature, models such as [69,70] acquired
knowledge from language models that had already undergone pretraining using a knowl-
edge distillation technique. As compared to models created for equivalent tasks, the newly
designed KPIT’s efficiency was exceptional. The KPIT model possesses rich features such
as a faster convergence rate and less pretraining time requirements, making it appropriate
for downstream tasks.

7.2. Domain Specific Pretraining

Mixed-Domain Pretraining is a popular strategy frequently used in the literature to
produce domain-specific assignments.

The method relies on a larger domain-specific dataset, which unintentionally neces-
sitates more computing capacity. Despite its efficacy, pretraining is unaffordable due to
hardware requirements and energy usage. Task Adaptive Transfer Learning (TATL) was
proposed in [118] to address this. Another technique was through pseudo-labelling in-
domain data and iterative training [123], which keeps the distribution of pseudo-labelled
instances closer to that of the in-domain data to achieve optimal performance.

7.3. Dataset/Corpus

Pretrained models require a larger volume of labelled datasets or text corpus for
optimal performance. Labelled datasets are expensive to generate in larger quantities.
Self-supervised learning is one approach that utilizes the voluminous unlabeled dataset for
contemporary NLP tasks. Language models such as ALBERT [3], BER [5], and RoBERTa [6]
were pretrained on benchmark general corpora such as English Wikipedia and Books
Corpus [58]. On the other hand, developing task or domain-specific language models is
challenging since the dataset in specific domains are scanty for the transformer model
to produce good results. For example, training models for the biomedical field require
domain-specific datasets, which are not readily available in larger quantities.
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7.4. Model Efficacy

The cost of pretraining on unlabeled text data is expensive in terms of hardware and
dataset acquisition. The second issue is that datasets for domain-specific areas (biomed-
ical) are few, even though unlabeled datasets are abundantly available. The DeBERTa
model [108] and ConvBERT [124] are examples of models that produce good performance
compared to earlier pretrained models such as BERT [5], RoBERTa [6], and ELECTRA [9].
For instance, DeBERTa is pretrained on fewer datasets compared to BERT, reducing com-
putational power with improved performance as well. Moreover, the ConvNet model
created employing a mixed attention mechanism outperforms ELECTRA utilizing just a
quarter of the dataset used to pretrain the ELECTRA model. Modern pretrained language
models require such models to operate on edge devices with less processing power and
have optimal performance.

7.5. Model Adaptation

Through incessant pretraining, knowledge gained in general pretrained models was
adapted to specific domains such as biomedical and multilingual models. Despite the
success of incessant pretraining in domain-specific tasks, there are some performance
issues due to inadequate domain-specific datasets. Models such as ALeaseBERT [27],
BioBERT [33], infoXLM [83], and TOD-BERT [29] are examples of incessant pretrained
models whose main aim is to reduce computational cost and provide optimal performance
for domain-specific models. There is a need to research novel adaptation methods for
pretrained language models.

7.6. Benchmarks

Evaluating a transformer-based pretrained model is vital, as model efficacy is paramount
in its patronage. Some benchmarking frameworks have been proposed in this regard for
general [84] and specific domain models [35,73]. In [76,78], there is some benchmarks
to evaluate monolingual and multilingual language models. Despite these benchmarks
being available, they are not adequate to cover all domains. Most of these benchmarks are
developed for the performance of literature-based datasets, hence the need for other ones
for electronic health records and domain-specific corpus.

7.7. Security Concerns

Security is of much concern in pretrained transformer models since there are some
identified risks, such as data leakage occurring during pretraining. This usually happens
on datasets containing confidential information about people. Training a model over a long
period subjects it to retrieve vital information, such as personally identifiable information.
Due to this drawback, models pretrained on datasets containing confidential information
are not released into the public domain. A typical example is the model presented in [125],
which extracted precise text classifications of personal information from the GPT-2 model’s
training data. We recommend that the KART (Knowledge, Anonymization, Resource, and
Target) framework [126], which deals with real-world privacy leakages, be adapted and
improved for better performance.

8. Conclusions

This review follows the PRISMA reporting standards for review to retrieve relevant
publications to form the Primary studies. Additionally, backwards and forward snow-
balling was employed to retrieve additional publications from the Primary studies. This
study reviews transfer learning-based pretrained models for NLP based on deep trans-
former networks. The study shows the recent trends of transformer networks in solving
language problems compared to traditional deep learning algorithms such as RNN. The
paper explains the transformer model and the various core concepts behind its operation.
The work focused on self-supervised learning using labelled data for later tasks rather than
unlabeled datasets for model pretraining. The study also examined several benchmarking
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systems for assessing the effectiveness of pretrained models. Some challenges identified in
the literature from transformer-based pretrained models have been discussed, with possible
recommendations to deal with those challenges. We also provide future directions to help
researchers focus on developing improved NLP applications using transformer networks
and self-supervised learning.
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