
Citation: Hou, J.; Zhang, J.; Chen, Q.;

Xiang, S.; Meng, Y.; Wang, J.; Lu, C.;

Yang, C. POSS-CNN: An

Automatically Generated

Convolutional Neural Network with

Precision and Operation Separable

Structure Aiming at Target

Recognition and Detection.

Information 2023, 14, 604. https://

doi.org/10.3390/info14110604

Academic Editors: Nikolaos

Mitianoudis and Ilias

Theodorakopoulos

Received: 22 September 2023

Revised: 17 October 2023

Accepted: 2 November 2023

Published: 7 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 information

Article

POSS-CNN: An Automatically Generated Convolutional Neural
Network with Precision and Operation Separable Structure
Aiming at Target Recognition and Detection
Jia Hou 1, Jingyu Zhang 1, Qi Chen 1, Siwei Xiang 1, Yishuo Meng 1, Jianfei Wang 1, Cimang Lu 2 and Chen Yang 1,*

1 School of Microelectronics, Xi’an Jiaotong University, Xi’an 710049, China; hjwst0314@stu.xjtu.edu.cn (J.H.);
zjingyu@stu.xjtu.edu.cn (J.Z.); qchen20134728@stu.xjtu.edu.cn (Q.C.); X1004312107@stu.xjtu.edu.cn (S.X.);
3121156027@stu.xjtu.edu.cn (Y.M.); jfwang@stu.xjtu.edu.cn (J.W.)

2 Shenzhen Xinrai Sinovoice Technology Co., Ltd., Shenzhen 518000, China; cimang.lu@xinrai.com
* Correspondence: chyang00@xjtu.edu.cn; Tel.: +86-13810103039

Abstract: Artificial intelligence is changing and influencing our world. As one of the main algorithms
in the field of artificial intelligence, convolutional neural networks (CNNs) have developed rapidly
in recent years. Especially after the emergence of NASNet, CNNs have gradually pushed the idea of
AutoML to the public’s attention, and large numbers of new structures designed by automatic searches
are appearing. These networks are usually based on reinforcement learning and evolutionary learning
algorithms. However, sometimes, the blocks of these networks are complex, and there is no small model
for simpler tasks. Therefore, this paper proposes POSS-CNN aiming at target recognition and detection,
which employs a multi-branch CNN structure with PSNC and a method of automatic parallel selection
for super parameters based on a multi-branch CNN structure. Moreover, POSS-CNN can be broken
up. By choosing a single branch or the combination of two branches as the “benchmark”, as well as
the overall POSS-CNN, we can achieve seven models with different precision and operations. The
test accuracy of POSS-CNN for a recognition task tested on a CIFAR10 dataset can reach 86.4%, which
is equivalent to AlexNet and VggNet, but the operation and parameters of the whole model in this
paper are 45.9% and 45.8% of AlexNet, and 29.5% and 29.4% of VggNet. The mAP of POSS-CNN for a
detection task tested on the LSVH dataset is 45.8, inferior to the 62.3 of YOLOv3. However, compared
with YOLOv3, the operation and parameters of the model in this paper are reduced by 57.4% and 15.6%,
respectively. After being accelerated by WRA, POSS-CNN for a detection task tested on an LSVH dataset
can achieve 27 fps, and the energy efficiency is 0.42 J/f, which is 5 times and 96.6 times better than GPU
2080Ti in performance and energy efficiency, respectively.

Keywords: target recognition; target detection; precision and operation separable structure; multi-branch;
automatic search for super parameters

1. Introduction

As one of the significant algorithms in the field of artificial intelligence, convolutional
neural networks (CNNs) combined with the application of target recognition and detection
are in the ascendant, such as NASNet [1], FractalNet [2], CFP [3], FEDNet [4], MCRF-
ResNets [5], EfficientNet [6], VIT [7], NFNet [8], AmoebaNet [9], ENASNet [10], etc. [11–13].

EfficientNet [6] is a novel network architecture proposed by Google in 2019, which
scales the depth, width, and resolution using a simple yet highly effective compound
coefficient, thereby balancing these three dimensions to lead to better performance. Ex-
perimental results indicate that EfficientNet achieves better accuracy on various datasets,
including ImageNet, CIFAR-100, Flowers, and three other transfer learning datasets. Vision
Transformer (VIT) [7] is proposed for computer vision tasks by applying the principles of
the Transformer model. The design method of VIT is by splitting images into patches of
fixed size, linearly embedding each of them, and then feeding the resulting sequence of

Information 2023, 14, 604. https://doi.org/10.3390/info14110604 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14110604
https://doi.org/10.3390/info14110604
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-8221-7670
https://doi.org/10.3390/info14110604
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14110604?type=check_update&version=1

Information 2023, 14, 604 2 of 21

vectors into a transformer structure. Experiments show that VIT attains excellent perfor-
mance when pre-trained on ImageNet, CIFAR-100, and VTAB, while requiring substantially
fewer computational resources. Normalized Free Network (NFNet) [8] adapts an adaptive
gradient clipping technique instead of batch normalization, which is designed to address
the issue regarding the training of large neural networks. The evaluation results show that
the proposed model is up to 8.7× faster to train along with matching the test accuracy of
EfficientNet [6] on ImageNet. For target detection and recognition tasks, there are many
different research methods, among which, branch method is used to further improve the
accuracy of target recognition. In addition, after the appearance of NASNet [1], people
began to focus on AutoML and there are also more and more CNNs generated by AutoML
technology for target detection and recognition tasks. NASNet can automatically search for
blocks and generate a high-performance CNN structure based on specific datasets. Like
NASNet, most of the models generated from automatic searches are based on reinforcement
learning and evolutionary learning algorithms. AmoebaNet [9] acquired the models by
improving the evolutionary algorithm. ENASNet [10] and NAONet [14] obtained more effi-
cient neural search architecture by optimizing the neural network structure. For the branch
technology, FractalNet [2] adopted a branch structure and “nontrivial routing” technique,
which is a classical model based on an improved widening width method. Moreover, in
the field of target detection, Mask R-CNN [15] added a branch based on Faster R-CNN [16]
to achieve a multi-task mode for target detection and instance segmentation.

However, the blocks generated by AutoML technology are sometimes relatively com-
plex and there are no suitable small models for simple tasks, except for automatic searching.
Moreover, most of the models generated by a branch structure are aimed at pursuing
high precision, which may lead to an increase in parameters and operation. When im-
plemented on hardware architecture, the transmission delay of the data process and the
power consumption of memory access will rise. Meanwhile, an enormous operation will
significantly increase the inference time and energy consumption when the computing
power of hardware architecture is fixed. As shown in Figure 1, with the increase in energy
efficiency, the size of memory access increases gradually, which is almost 1000 times the
Multiple-Add operation [17], and, unfortunately, the proportion of memory access and
ALU-operation has increased in the recent years [18].

Information 2023, 14, x FOR PEER REVIEW 2 of 22

Transformer (VIT) [7] is proposed for computer vision tasks by applying the principles of
the Transformer model. The design method of VIT is by splitting images into patches of
fixed size, linearly embedding each of them, and then feeding the resulting sequence of
vectors into a transformer structure. Experiments show that VIT attains excellent perfor-
mance when pre-trained on ImageNet, CIFAR-100, and VTAB, while requiring substan-
tially fewer computational resources. Normalized Free Network (NFNet) [8] adapts an
adaptive gradient clipping technique instead of batch normalization, which is designed to
address the issue regarding the training of large neural networks. The evaluation results
show that the proposed model is up to 8.7× faster to train along with matching the test
accuracy of EfficientNet [6] on ImageNet. For target detection and recognition tasks, there
are many different research methods, among which, branch method is used to further
improve the accuracy of target recognition. In addition, after the appearance of NASNet
[1], people began to focus on AutoML and there are also more and more CNNs generated
by AutoML technology for target detection and recognition tasks. NASNet can automati-
cally search for blocks and generate a high-performance CNN structure based on specific
datasets. Like NASNet, most of the models generated from automatic searches are based
on reinforcement learning and evolutionary learning algorithms. AmoebaNet [9] acquired
the models by improving the evolutionary algorithm. ENASNet [10] and NAONet [14]
obtained more efficient neural search architecture by optimizing the neural network struc-
ture. For the branch technology, FractalNet [2] adopted a branch structure and “nontrivial
routing” technique, which is a classical model based on an improved widening width
method. Moreover, in the field of target detection, Mask R-CNN [15] added a branch
based on Faster R-CNN [16] to achieve a multi-task mode for target detection and instance
segmentation.

However, the blocks generated by AutoML technology are sometimes relatively com-
plex and there are no suitable small models for simple tasks, except for automatic search-
ing. Moreover, most of the models generated by a branch structure are aimed at pursuing
high precision, which may lead to an increase in parameters and operation. When imple-
mented on hardware architecture, the transmission delay of the data process and the
power consumption of memory access will rise. Meanwhile, an enormous operation will
significantly increase the inference time and energy consumption when the computing
power of hardware architecture is fixed. As shown in Figure 1, with the increase in energy
efficiency, the size of memory access increases gradually, which is almost 1000 times the
Multiple-Add operation [17], and, unfortunately, the proportion of memory access and
ALU-operation has increased in the recent years [18].

Figure 1. Memory access and memory operation.

To solve the aforementioned issues, this paper tries to find a balance between preci-
sion and operation. Combined with “branch” and “automatic searching” technologies, a
CNN architecture of “one network with multi-model” is designed, so that the multi-model
can be obtained by one training. Based on different recognition and detection tasks, firstly,
initialize a multi-branch CNN model with no layer. Secondly, train and search for build-
ing blocks automatically. Whenever the training iteration ends, select the building blocks
with excellent performance, and add to each branch in parallel and iteratively until POSS-

Figure 1. Memory access and memory operation.

To solve the aforementioned issues, this paper tries to find a balance between precision
and operation. Combined with “branch” and “automatic searching” technologies, a CNN
architecture of “one network with multi-model” is designed, so that the multi-model can
be obtained by one training. Based on different recognition and detection tasks, firstly,
initialize a multi-branch CNN model with no layer. Secondly, train and search for building
blocks automatically. Whenever the training iteration ends, select the building blocks with
excellent performance, and add to each branch in parallel and iteratively until POSS-CNN
is generated. POSS-CNN can be broken up; if we take a single branch or the combination of
two branches as the “benchmark”, as well as the complete POSS-CNN, we can generate a
total of seven CNN models with different precision and operations. Moreover, POSS-CNN
is convenient for hardware implementation and can be applied to different performance
hardware platforms at the same time. The contributions of this paper are as follows:

Information 2023, 14, 604 3 of 21

(1) A design method of a multi-branch CNN structure is proposed in this paper. As
mentioned above, we can obtain seven CNN models by one-time training with dif-
ferent branching modes. Compared with other schemes that only generate models
with a fixed precision, the method proposed in this paper can improve efficiency and
save time.

(2) A methodology of automatic parallel selection for super parameters based on a
multi-branch CNN structure is proposed, which makes the generation process of
a multi-branch CNN structure with separable precision and operation automatic
and procedural.

(3) POSS-CNN: An automatically generated convolutional neural network with a preci-
sion and operation separable structure aimed at recognition and detection. A parame-
ter tuning method named Parameters Substitution with Nodes Compensation (PSNC)
reduces the parameters of the network model.

The rest of this paper is organized as follows. After reviewing relevant literature
and stating the motivation in Section 2, Section 3 mainly introduces a new POSS-CNN
architecture. The design of a multi-branch CNN structure with separable precision and
operation is introduced in Section 3.1, the methodology of automatic parallel selection for
super parameters for a multi-branch CNN is described in Section 3.2, and an architecture
overview is shown in Section 3.3. Experimental results and discussions are included in
Section 4, followed by the Discussion and Conclusions in Sections 5 and 6, respectively.

2. Related Work and Motivation
2.1. Related Work

The development history of target recognition in recent years is mostly based on the
development track of CNN, as listed in Table 1. LeNet [19] is the cornerstone of 2D CNN.
AlexNet [20] improved the model structure of LeNet, which raised the recognition image
resolution to 224 × 224 × 3. AlexNet adopted five convolutional layers, while only adding
a pooling layer after the first, second, and fifth convolutional layers. VggNet [21] adopted
a 3 × 3 kernel size to form 16-layer and 19-layer CNN structures. The error rates of Top-1
and Top-5 of VggNet tested on ImageNet are 24.4% and 7.1%, respectively. ResNet [22]
proposed residual blocks and skip connection methods to stack into a depth structure.
DenseNet [23] employed a technique in which each input layer receives all previous output
layers to obtain more characteristic information.

Table 1. Summary of CNN mainstream models.

CNN Top-1 Top-5 Parameters
(Million)

Operation
(MFlops)

AlexNet 37.5% 17% 60 720
VggNet 24.4% 7.1% 138 15,300

ResNet-152 21.43% 5.71% 62 23,000
DenseNet 20.8% 5.29% 34 12,000

Target detection tasks not only identify where the kind of target belongs but also detect
the relative position of the target in the image or video. In 2012, R-CNN [24] employed
CNN and a region extraction algorithm to achieve the supervised target detection tasks,
which is a milestone in the development of deep learning for target detection. In 2014,
SPPNet [25] proposed a “pyramid structure” of pooling layers based on R-CNN, which
improved the inference speed of R-CNN. In 2015, Fast R-CNN [26] used the minimum loss
function to finetune the “confidence value” and “bounding box” of all layers to improve
the inference speed of R-CNN. Faster R-CNN [16] directly proposed an RPN (Region
Extraction Network) and “anchor” mechanism based on R-CNN, which is equivalent to
achieving target detection by using two networks. Faster R-CNN obtained 73.2% mAP
and 7 fps on a Pascal VOC dataset. YOLO [27] achieved the fastest speed with only
one network, which obtained 63.4% mAP on an Ascal VOC dataset, but its speed was

Information 2023, 14, 604 4 of 21

only 45 fps. YOLO9000 [28] achieved 78.6% mAP and 40 fps on a Pascal VOC dataset.
YOLOv3 [29] achieved excellent performance in both accuracy and speed. Meanwhile,
models generated from automatic searching have also achieved good performance in the
application of target detection.

In general, the automatic design of CNN applied to simple tasks often depends on
the method of random search and grid search to select the super parameters. A Bayesian
optimization search algorithm [30] is more intelligent than the grid search and random
search methods. The Particle swarm optimization algorithm successfully applied a meta-
heuristic search algorithm [31], which designed a new structure search design method.
Y. Sun, et al. used an evolutionary learning algorithm to search and design a CNN [32].
Differential evolution [33] and harmonic search [34] are other meta-heuristic algorithms.
Reinforcement learning [35,36] can automatically generate a high-performance CNN archi-
tecture for a given task. NASNet [1] is a classical algorithm for automatic searches based
on reinforcement, which makes adjustments and optimization progress automatically. The
principle of NASNet is to provide search space, and use strategies to iteratively search out
the network structure with the best performance. NASNet finally used 500 Tesla P100 GPUs
to train for more than 4 days, and obtained a series of excellent network structures with
good performance, with only 2.4% test error rate on the CIFAR10 dataset, even surpassing
a series of excellent networks such as GooLeNet [37], ResNet [22], and MobileNet [38]. The
best structure of NASNet tested on the ImageNet dataset can obtain a respective 82.7%
and 96.2% of Top-1 and Top-5 in accuracy, which reduces the operation amount by 28%
compared with the most advanced prior model. Moreover, NASNet can reach 43.1% mAP
on a COCO dataset. Moreover, ENASNet [10] tested on a CIFAR10 dataset can obtain an
error rate of 2.89%. This performance is slightly higher than NASNet, but the search time is
only 11.2% of NASNet. As shown in Table 2, NAONet [14] tested on a CIFAR10 dataset
can obtain an error rate of 2.93%, which is slightly lower than NASNet, but it only needs
200 GPUs to train for 0.3 days. AmoebaNet [9] tested on a CIFAR10 dataset can obtain an
error rate of 3.34%, as shown in Table 2, but the parameters are only 11.6% of NASNet.
PNASNet [39] tested on a CIFAR10 dataset can obtain an error rate of 3.41%, as shown
in Table 2, but the parameters are only 11.6% of NASNet, and the operation is 21 times
less than NASNet. BlockQNN [40] tested on a CIFAR10 dataset can obtain an error rate
of 3.54%, which is lower than NASNet in Table 2, but it only takes 32 GPUs to search for
3 days.

Table 2. Summary of Automatic CNN models.

Network Test Error Parameters GPU Time (Days)

NasNet 2.4% 27.6 500 4
ENASNet 2.89% 4.6 1 0.45
NAONet 2.93% 2.5 200 0.3

AmoebaNet 3.34% 3.2 450 7
PNASNet 3.41% 3.2 100 -

BlockQNN 3.54% 39.8 32 3

2.2. Motivation

The first issue of the existing CNN models based on automatic searching is that
building blocks are always relatively complex. As shown in Figure 2, the network structures,
NASNet, NAONet, ENASNet, BlockQNN, etc., all contain a certain number of hidden
layers and other network layers, the structure of the network model is relatively complex,
and there are no suitable small models for simple tasks. ShuffleNet [41] structure utilizes
two new operations, pointwise group convolution and channel shuffle, to greatly reduce
computation cost while maintaining accuracy, but only five layers of the structure were
used before the activation function in this architecture, and the complexity of this structure
is less than 150 MFlops. Moreover, although these models achieve excellent performance,

Information 2023, 14, 604 5 of 21

their overall structure is relatively simple, with only one excellent depth structure being
obtained after training.

Information 2023, 14, x FOR PEER REVIEW 5 of 22

NASNet, NAONet, ENASNet, BlockQNN, etc., all contain a certain number of hidden
layers and other network layers, the structure of the network model is relatively complex,
and there are no suitable small models for simple tasks. ShuffleNet [41] structure utilizes
two new operations, pointwise group convolution and channel shuffle, to greatly reduce
computation cost while maintaining accuracy, but only five layers of the structure were
used before the activation function in this architecture, and the complexity of this struc-
ture is less than 150 MFlops. Moreover, although these models achieve excellent perfor-
mance, their overall structure is relatively simple, with only one excellent depth structure
being obtained after training.

(a) NASNet (b) NAONet

(c) ENASNet (d) NASNet

(e) AmoebaNet (f) PNASNet

Figure 2. Blocks of automatic models.

The other issue is that the networks mentioned in related works are all selected ac-
cording to the best precision performance except PNASNet. However, if only pursuing

Figure 2. Blocks of automatic models.

The other issue is that the networks mentioned in related works are all selected ac-
cording to the best precision performance except PNASNet. However, if only pursuing
high-precision performance, it may lead to enormous parameters and operation. Large
numbers of parameters may lead to an increase in the transmission delay of data processing
in hardware implementation, as well as power consumption. Moreover, a large number of
operations will increase inference time and energy consumption under the same computa-
tion of the hardware architecture. As shown in Figure 3, complex networks with excellent
precision performance may frequently lead to huge numbers of parameters and operations,
such as ResNet and ResNeXt. Even for simple models, ResNet-50 and ResNeXt-50, their
operation can reach billions of times, and their parameters can reach tens of millions. Thus,

Information 2023, 14, 604 6 of 21

it is very difficult to achieve model migration directly on hardware processing architecture
or embedded devices.

Information 2023, 14, x FOR PEER REVIEW 6 of 22

high-precision performance, it may lead to enormous parameters and operation. Large
numbers of parameters may lead to an increase in the transmission delay of data pro-
cessing in hardware implementation, as well as power consumption. Moreover, a large
number of operations will increase inference time and energy consumption under the
same computation of the hardware architecture. As shown in Figure 3, complex networks
with excellent precision performance may frequently lead to huge numbers of parameters
and operations, such as ResNet and ResNeXt. Even for simple models, ResNet-50 and
ResNeXt-50, their operation can reach billions of times, and their parameters can reach
tens of millions. Thus, it is very difficult to achieve model migration directly on hardware
processing architecture or embedded devices.

Figure 3. Parameters and Calculation amounts of CNN.

To solve the aforementioned issues, this paper tries to design a novel CNN model
that can find a balance between precision and operation. Combined with the technology
of “branch” and “automatic search”, we design a multi-branch CNN in order to obtain a
variety of CNN models. For different tasks, initialize the multi-branch CNN, train and
search for high-performance building blocks in an adaptive and automatical manner at
the same time, and then add them to each parallel branch, until a high-performance multi-
branch CNN is generated. This multi-branch CNN can be broken up; if we take a single
branch or the combination of two branches as the “benchmark”, as well as the entire CNN,
we can generate seven models with different precision and operations.

3. Materials and Methods
3.1. Multi-Branch Structure with Separable Precision and Operation

In the field of deep learning, researchers have made many attempts to explore the
design of network structures for excellent-performance CNN models, including the meth-
odology of deepening depth, widening width, and changing connection mode. In this
subsection, a method using branch technology is adopted to widen the width to design a
multi-branch CNN with separable precision and operation. This multi-branch CNN can
be broken up.

3.1.1. Basis of Branch Structure
In 2018, FractalNet [2] proposed a new strategy based on the technology of “branch”

and “nontrivial routing” algorithm. As shown in Figure 4, where z is the input vector, F4
(z) is the output vector, no signal in the whole network is the privileged signal, and each
input of the join connection layer is the output of the previous convolutional layer. Drop-
path makes each input of the connection layer reliable and independent, so that we can
choose a single column or several columns to compose high-performance sub-networks.
In these sub-networks, only one path is always in a dynamic state. FractalNet can achieve
4.60% error rate on CIFAR10 dataset, which is almost equivalent to ResNet (4.62%).

Figure 3. Parameters and Calculation amounts of CNN.

To solve the aforementioned issues, this paper tries to design a novel CNN model
that can find a balance between precision and operation. Combined with the technology
of “branch” and “automatic search”, we design a multi-branch CNN in order to obtain
a variety of CNN models. For different tasks, initialize the multi-branch CNN, train and
search for high-performance building blocks in an adaptive and automatical manner at
the same time, and then add them to each parallel branch, until a high-performance multi-
branch CNN is generated. This multi-branch CNN can be broken up; if we take a single
branch or the combination of two branches as the “benchmark”, as well as the entire CNN,
we can generate seven models with different precision and operations.

3. Materials and Methods
3.1. Multi-Branch Structure with Separable Precision and Operation

In the field of deep learning, researchers have made many attempts to explore the
design of network structures for excellent-performance CNN models, including the method-
ology of deepening depth, widening width, and changing connection mode. In this sub-
section, a method using branch technology is adopted to widen the width to design a
multi-branch CNN with separable precision and operation. This multi-branch CNN can be
broken up.

3.1.1. Basis of Branch Structure

In 2018, FractalNet [2] proposed a new strategy based on the technology of “branch”
and “nontrivial routing” algorithm. As shown in Figure 4, where z is the input vector, F4 (z)
is the output vector, no signal in the whole network is the privileged signal, and each input
of the join connection layer is the output of the previous convolutional layer. Drop-path
makes each input of the connection layer reliable and independent, so that we can choose a
single column or several columns to compose high-performance sub-networks. In these
sub-networks, only one path is always in a dynamic state. FractalNet can achieve 4.60%
error rate on CIFAR10 dataset, which is almost equivalent to ResNet (4.62%).

Referring to FractalNet, we proposed a design method of multi-branch CNN with
separable precision and operation. This multi-branch CNN can be divided into single
model or combined model according to different branch patterns, as well as the complete
multi-branch CNN, and we can generate a total of seven CNN models with different
precision and operations. When implemented on hardware architecture, it is convenient to
choose an appropriate model according to the performance of the hardware architecture
by itself.

Information 2023, 14, 604 7 of 21
Information 2023, 14, x FOR PEER REVIEW 7 of 22

Figure 4. FractalNet.

Referring to FractalNet, we proposed a design method of multi-branch CNN with
separable precision and operation. This multi-branch CNN can be divided into single
model or combined model according to different branch patterns, as well as the complete
multi-branch CNN, and we can generate a total of seven CNN models with different pre-
cision and operations. When implemented on hardware architecture, it is convenient to
choose an appropriate model according to the performance of the hardware architecture
by itself.

3.1.2. Multi-Branch CNN Structure
Generally, for specific and different target recognition and detection tasks, the size of

datasets with less classification and low resolution is about tens to hundreds of MB, while
that of those with more classification and high resolution is about tens to hundreds of GB.
Therefore, this paper lists two CNN architectures, each with three branches (branch tech-
nology can be easily extended to multi-branch or double branches). If the task dataset is
less than 100 MB, select “Branch architecture one”, as shown in Figure 5a, in which the
first branch is 1 convolutional layer, the second branch is 2 convolutional layers, and the
third branch is 3 convolutional layers. If the dataset is larger than 100 MB, select “Branch
architecture two”, as shown in Figure 5b, in which the first branch has 2 convolutional
layers, the second branch has 4 convolutional layers, and the third branch has 8 convolu-
tional layers. Both architectures have the convolutional kernel size of 3 × 3 with stride size
of 1, as well as the channel size of the feature maps. The first branch is 16, the second
branch is 32, and the third branch is 64. After each single convolutional layer, a 2 × 2 Max-
Pooling layer is added to reduce the dimension. The number of neural nodes in the fully
connected layer of the two architectures is also equal. The first branch is 256, 64, and the
output categories; the second branch is 512, 128, and the output categories; and the third
branch is 1024, 256, and the output categories.

Figure 4. FractalNet.

3.1.2. Multi-Branch CNN Structure

Generally, for specific and different target recognition and detection tasks, the size
of datasets with less classification and low resolution is about tens to hundreds of MB,
while that of those with more classification and high resolution is about tens to hundreds
of GB. Therefore, this paper lists two CNN architectures, each with three branches (branch
technology can be easily extended to multi-branch or double branches). If the task dataset
is less than 100 MB, select “Branch architecture one”, as shown in Figure 5a, in which the
first branch is 1 convolutional layer, the second branch is 2 convolutional layers, and the
third branch is 3 convolutional layers. If the dataset is larger than 100 MB, select “Branch
architecture two”, as shown in Figure 5b, in which the first branch has 2 convolutional layers,
the second branch has 4 convolutional layers, and the third branch has 8 convolutional
layers. Both architectures have the convolutional kernel size of 3 × 3 with stride size of 1, as
well as the channel size of the feature maps. The first branch is 16, the second branch is 32,
and the third branch is 64. After each single convolutional layer, a 2 × 2 Max-Pooling layer
is added to reduce the dimension. The number of neural nodes in the fully connected layer
of the two architectures is also equal. The first branch is 256, 64, and the output categories;
the second branch is 512, 128, and the output categories; and the third branch is 1024, 256,
and the output categories.

Therefore, multi-branch CNN structure with separable precision and operation mainly
focuses on widening the width to improve its performance. Firstly, the whole accuracy
performance is improved, and the convergence speed of network training is raised. Sec-
ondly, break up the multi-branch CNN. By choosing a single branch, or the combination of
two branches as the “benchmark”, as well as the complete multi-branch CNN, a total of
seven models with different precision and operations can be generated. Moreover, some
mobile and embedded systems from the field of “Internet of Things” or “Edge computing”
need to adopt deep learning algorithms to solve complex problems, which may lead to
some problems, such as energy consumption, on-chip cache, real-time operation, and short
delay response. In addition, the data processing and memory operation of CNN itself
account for more than 90% of the total operation [42–45]. Therefore, precision, parameters,
and operation should be considered when designing CNN architecture at the level of
the software algorithm. Our multi-branch CNN structure with separable precision and
operation is generated by one-time training, with a relatively simple block, and the overall
structure combines the evaluation of precision and operation.

Information 2023, 14, 604 8 of 21
Information 2023, 14, x FOR PEER REVIEW 8 of 22

(a) (b)

Figure 5. Multi-branch CNN structure: (a) Branch architecture one; (b) Branch architecture one.

Therefore, multi-branch CNN structure with separable precision and operation
mainly focuses on widening the width to improve its performance. Firstly, the whole ac-
curacy performance is improved, and the convergence speed of network training is raised.
Secondly, break up the multi-branch CNN. By choosing a single branch, or the combina-
tion of two branches as the “benchmark”, as well as the complete multi-branch CNN, a
total of seven models with different precision and operations can be generated. Moreover,
some mobile and embedded systems from the field of “Internet of Things” or “Edge com-
puting” need to adopt deep learning algorithms to solve complex problems, which may
lead to some problems, such as energy consumption, on-chip cache, real-time operation,
and short delay response. In addition, the data processing and memory operation of CNN
itself account for more than 90% of the total operation [42–45]. Therefore, precision, pa-
rameters, and operation should be considered when designing CNN architecture at the
level of the software algorithm. Our multi-branch CNN structure with separable precision
and operation is generated by one-time training, with a relatively simple block, and the
overall structure combines the evaluation of precision and operation.

3.1.3. Evaluation of Separable Precision and Operation
Multi-branch CNN with separable precision and operation is trained and tested on

MNIST dataset. According to Section 3.1.2, “Branch architecture one” is enough.
As shown in Table 3, the accuracy of LeNet trained and tested on MNIST dataset is

about 99.35% after 35,000 iterations. After employing multi-branch CNN structure with
separable precision and operation, test accuracy can reach 99.5% after only 25,000 itera-
tions. As shown in Figure 6, where Y1, Y2, and Y3 represent different branches and three
branches make up the seven branch models, the precision, parameters, and operation of
the models generated by different branch modes are different.

Table 3. Multi-branch CNN tested on MNIST dataset.

Network Accuracy Iteration
LeNet 99.35% 35,000

Multi-branch CNN 99.5% 25,000

Figure 5. Multi-branch CNN structure: (a) Branch architecture one; (b) Branch architecture one.

3.1.3. Evaluation of Separable Precision and Operation

Multi-branch CNN with separable precision and operation is trained and tested on
MNIST dataset. According to Section 3.1.2, “Branch architecture one” is enough.

As shown in Table 3, the accuracy of LeNet trained and tested on MNIST dataset is
about 99.35% after 35,000 iterations. After employing multi-branch CNN structure with
separable precision and operation, test accuracy can reach 99.5% after only 25,000 iterations.
As shown in Figure 6, where Y1, Y2, and Y3 represent different branches and three branches
make up the seven branch models, the precision, parameters, and operation of the models
generated by different branch modes are different.

Information 2023, 14, x FOR PEER REVIEW 9 of 22

Figure 6. Seven models with different precision and operations.

3.2. Automatic Parallel Selection for Super Parameters on Multi-Branch CNN Structure
This section puts forward a methodology of automatic parallel selection for super

parameters based on multi-branch CNN, which aims at making the generation process of
multi-branch CNN with separable precision and operation automatic and procedural,
with the ability to generalize and suit the remedy to the case.

3.2.1. Design Flow
For specific and different target recognition and detection tasks, first, initialize a

multi-branch CNN. This paper chooses a 3-branch based on experience, as shown in Fig-
ure 6. In addition, branch technology can be easily extended to a decision network with
two or more branches.

Second, utilize the parallel characteristics of the branch, search blocks automatically
as “Block 1”, which is usually composed of 1 convolutional layer and 1 Max-Pooling (2 ×
2) layer, and then add them to each branch on the 3-branch CNN architecture iteratively
during the training process until the 3-branch CNN architecture with the best perfor-
mance is found, as shown in Figure 6. The channel size of the first branch is 16, the second
branch is 32, and the third branch is 64. The super parameters of convolutional kernel size
are shown in Table 4. Table 4 also makes statistics of parameters and operation, where Ci
is the input channel size of the convolutional layer, Co is the output channel size of the
convolutional layer, and B is batch size.

Table 4. Super parameters of convolutional kernel size.

Kernel Parameters Operation
3 × 3 (Ci × 3 × 3 + 1) × Co = 9Ci × Co + Co 18 × Ci × Co × Fho × Fwo × B
5 × 5 (Ci × 5 × 5 + 1) × Co = 25Ci × Co + Co 50 × Ci × Co × Fho × Fwo × B
7 × 7 (Ci × 7 × 7 + 1) × Co = 49Ci × Co + Co 98 × Ci × Co × Fho × Fwo × B
9 × 9 (Ci × 9 × 9 + 1) × Co = 81Ci × Co + Co 168 × Ci × Co × Fho × Fwo × B
1 × 1 (Ci × 1 × 1 + 1) × Co = Ci × Co + Co 2 × Ci × Co × Fho × Fwo × B

Third, searching blocks “Blocks 2” and “Block 3” can be generated by using a similar
approach to “Block 1”, and the difference lies in the parameters and operation of the net-
work model. Obviously, 3-branch CNN architecture can also automatically adopt the
greedy strategy to continue adding convolutional layers according to the complexity of
the task, such as adding “Block 4” and “Block 5”. It should be noted that most of the blocks

Figure 6. Seven models with different precision and operations.

Table 3. Multi-branch CNN tested on MNIST dataset.

Network Accuracy Iteration

LeNet 99.35% 35,000
Multi-branch CNN 99.5% 25,000

Information 2023, 14, 604 9 of 21

3.2. Automatic Parallel Selection for Super Parameters on Multi-Branch CNN Structure

This section puts forward a methodology of automatic parallel selection for super
parameters based on multi-branch CNN, which aims at making the generation process of
multi-branch CNN with separable precision and operation automatic and procedural, with
the ability to generalize and suit the remedy to the case.

3.2.1. Design Flow

For specific and different target recognition and detection tasks, first, initialize a multi-
branch CNN. This paper chooses a 3-branch based on experience, as shown in Figure 6.
In addition, branch technology can be easily extended to a decision network with two or
more branches.

Second, utilize the parallel characteristics of the branch, search blocks automatically as
“Block 1”, which is usually composed of 1 convolutional layer and 1 Max-Pooling (2 × 2)
layer, and then add them to each branch on the 3-branch CNN architecture iteratively
during the training process until the 3-branch CNN architecture with the best performance
is found, as shown in Figure 6. The channel size of the first branch is 16, the second branch
is 32, and the third branch is 64. The super parameters of convolutional kernel size are
shown in Table 4. Table 4 also makes statistics of parameters and operation, where Ci
is the input channel size of the convolutional layer, Co is the output channel size of the
convolutional layer, and B is batch size.

Table 4. Super parameters of convolutional kernel size.

Kernel Parameters Operation

3 × 3 (Ci × 3 × 3 + 1) × Co = 9Ci × Co + Co 18 × Ci × Co × Fho × Fwo × B
5 × 5 (Ci × 5 × 5 + 1) × Co = 25Ci × Co + Co 50 × Ci × Co × Fho × Fwo × B
7 × 7 (Ci × 7 × 7 + 1) × Co = 49Ci × Co + Co 98 × Ci × Co × Fho × Fwo × B
9 × 9 (Ci × 9 × 9 + 1) × Co = 81Ci × Co + Co 168 × Ci × Co × Fho × Fwo × B
1 × 1 (Ci × 1 × 1 + 1) × Co = Ci × Co + Co 2 × Ci × Co × Fho × Fwo × B

Third, searching blocks “Blocks 2” and “Block 3” can be generated by using a similar
approach to “Block 1”, and the difference lies in the parameters and operation of the
network model. Obviously, 3-branch CNN architecture can also automatically adopt the
greedy strategy to continue adding convolutional layers according to the complexity of
the task, such as adding “Block 4” and “Block 5”. It should be noted that most of the
blocks in multi-branch CNN are composed of 1 convolutional layer and 1 Max-Pooling
layer, and the overall architecture is relatively neat without complex blocks, so that the
first branch has 1 convolutional layer and 1 Max-Pooling layer, the second branch has
3 convolutional layers and 3 Max-Pooling layers, and the third branch has 5 convolutional
layers and 5 Max-Pooling layers. It is obvious that the operation in each branch is different.

Finally, the number of neural nodes in the full-connection hidden layers is also auto-
matically searched during the training process. The candidate set of neural nodes in the
fully connected hidden layers is as follows: the first branch is {8, 16, 32, 64}, the second
branch is {64, 128, 256}, and the third branch is {256, 512, 1024}.

The methodology of automatic parallel selection for super parameters for branch
structures enables the design process of multi-branch CNN with separable precision and
operation automatic and procedural. There are four advantages of this methodology: first,
the architecture of CNN is not established at the beginning, but initializes the multi-branch
architecture according to the specific and different application scenarios, and automatically
and iteratively searches for the sub-network of improving performance in the super param-
eters’ search space to generate a complete multi-branch CNN with separable precision and
operation. Second, the search space of super parameters can also be automatic according
to specific and different tasks. Third, the whole search process adopts the greedy strategy,
and utilizes the characteristics of a parallel multi-branch structure to obtain a complete

Information 2023, 14, 604 10 of 21

multi-branch CNN architecture. Finally, we can break up the multi-branch CNN and gener-
ate a total of seven models with different precision and operations by one-time training.
Moreover, seven models can be applied to different performance hardware platforms at the
same time.

3.2.2. Parameter Tuning of Model Optimization

A parameter tuning method named Parameters Substitution with Nodes Compensa-
tion (PSNC) [46] is proposed to reduce the parameters of the network model. The key idea
of PSNC is to substitute most parameters of a fully connected layer with few parameters
of a convolutional layer, and appropriately increase neuron nodes of the fully connected
layer to compensate for loss of accuracy. By increasing the size of the convolution kernel,
the resolution of the new output feature map will be significantly reduced compared to
the resolution of the original output feature map. In this way, the resolution of the output
feature map of each convolutional layer gradually decreases layer by layer when data flow
through these convolutional layers, which means that few input parameters are used for
the fully connected layer.

Taking LeNet tested on MINST as an example shown in Figure 7, the convolution
kernels of the original LeNet-5 are 5 × 5 × 6 and 5 × 5 × 16, respectively. According to the
PSNC method, the convolutional kernel sizes are increased to 7 × 7 × 6 and 7 × 7 × 16,
respectively. Meanwhile, the hidden layer nodes of the fully connection layer are slightly
up to 100 instead of 84. In this way, the PSNC method decreased the total parameters of
LeNet-5 by 42%, from 60,850 to 35,303. Moreover, there was almost no loss in the training
accuracy, from 97.6% to 97.5%.

Information 2023, 14, x FOR PEER REVIEW 11 of 22

Figure 7. The comparison for LeNet before and after PSNC.

Based on the designed multi-branch CNN structure for target recognition and target
detection, PSNC method is used to optimize the parameter of the network model. Table 5
lists the parameters for seven models of POSS-CNN on CIFAR10 before and after PSNC.
It can be seen that the parameters of almost all models using PSNC decrease significantly.
To intuitively show the advantage of PSNC, Figure 8 illustrates the percentage of param-
eter reduction. From this figure, compared with CNN structure before PSNC, the param-
eters reduce by 52.6% for model Y1 + Y2 + Y3, by 54.7 for model Y3 + Y2, by 47.6 for model
Y1 + Y3, by 38.7% for model Y1 + Y2, by 55.0% for model Y3, and by 52.3% for model Y2.
It is clear that it is beneficial for parameter optimization of PSNC POSS-CNN, thereby
speeding the training process on CIFAR10 and improving the performance for application
of target recognition.

Figure 8. The percentage of parameter reduction using PSNC method.

Table 5. The parameter for seven models of POSS-CNN on CIFAR10 before and after PSNC.

CNN Dataset Models
Parameters before

PSNC (Million)
Parameters after
PSNC (Million)

POSS-CNN CIFAR10
Y1 + Y2 + Y3 20.9 9.9

Y3 + Y2 20.1 9.1
Y1 + Y3 18.7 8.9

Figure 7. The comparison for LeNet before and after PSNC.

Based on the designed multi-branch CNN structure for target recognition and target
detection, PSNC method is used to optimize the parameter of the network model. Table 5
lists the parameters for seven models of POSS-CNN on CIFAR10 before and after PSNC. It
can be seen that the parameters of almost all models using PSNC decrease significantly. To
intuitively show the advantage of PSNC, Figure 8 illustrates the percentage of parameter
reduction. From this figure, compared with CNN structure before PSNC, the parameters
reduce by 52.6% for model Y1 + Y2 + Y3, by 54.7 for model Y3 + Y2, by 47.6 for model
Y1 + Y3, by 38.7% for model Y1 + Y2, by 55.0% for model Y3, and by 52.3% for model
Y2. It is clear that it is beneficial for parameter optimization of PSNC POSS-CNN, thereby
speeding the training process on CIFAR10 and improving the performance for application
of target recognition.

Information 2023, 14, 604 11 of 21

Information 2023, 14, x FOR PEER REVIEW 11 of 22

Figure 7. The comparison for LeNet before and after PSNC.

Based on the designed multi-branch CNN structure for target recognition and target
detection, PSNC method is used to optimize the parameter of the network model. Table 5
lists the parameters for seven models of POSS-CNN on CIFAR10 before and after PSNC.
It can be seen that the parameters of almost all models using PSNC decrease significantly.
To intuitively show the advantage of PSNC, Figure 8 illustrates the percentage of param-
eter reduction. From this figure, compared with CNN structure before PSNC, the param-
eters reduce by 52.6% for model Y1 + Y2 + Y3, by 54.7 for model Y3 + Y2, by 47.6 for model
Y1 + Y3, by 38.7% for model Y1 + Y2, by 55.0% for model Y3, and by 52.3% for model Y2.
It is clear that it is beneficial for parameter optimization of PSNC POSS-CNN, thereby
speeding the training process on CIFAR10 and improving the performance for application
of target recognition.

Figure 8. The percentage of parameter reduction using PSNC method.

Table 5. The parameter for seven models of POSS-CNN on CIFAR10 before and after PSNC.

CNN Dataset Models
Parameters before

PSNC (Million)
Parameters after
PSNC (Million)

POSS-CNN CIFAR10
Y1 + Y2 + Y3 20.9 9.9

Y3 + Y2 20.1 9.1
Y1 + Y3 18.7 8.9

Figure 8. The percentage of parameter reduction using PSNC method.

Table 5. The parameter for seven models of POSS-CNN on CIFAR10 before and after PSNC.

CNN Dataset Models Parameters before
PSNC (Million)

Parameters after
PSNC (Million)

POSS-CNN CIFAR10

Y1 + Y2 + Y3 20.9 9.9
Y3 + Y2 20.1 9.1
Y1 + Y3 18.7 8.9
Y1 + Y2 3.03 1.86

Y3 17.9 8.07
Y2 2.2 1.05
Y1 0.81 0.81

3.2.3. Evaluation of Training Time and Accuracy

The methodology of automatic parallel selection for super parameters for the branch
structure proposed in this paper is experimented on MNIST dataset. The experimental
results are shown in Table 6. The accuracy of the whole architecture is 98.7%, the parameters
are 231,190, and the operations are 461,334, but it only takes one hour. Compared with other
search methods in Table 6, the time is just 50%, 33%, and 83% for the grid search method,
random search method, and Bayesian optimization search method, respectively. The accu-
racy is higher than the grid search method and random search method, but slightly lower
than 99% of the Bayesian optimization search method because the Bayesian optimization
search method can search the model regardless of the parameters and operation, including
21 Conv-layer, with 8 layers having double branches. Therefore, the total parameters
and operation of 3-branch CNN architecture are only 6.6% and 4.3% of the Bayesian opti-
mization method, respectively. Moreover, the structure of grid search and random search
methods should be determined in advance. Therefore, both search methods configured in
this paper include 3 Conv-layer and 1 full-connection hidden layer. Three-branch CNN
architecture’s super parameter candidate set of convolutional kernel size is still selected
from Table 4, and the neural node candidate set of full-connection hidden layer is {8, 16,
32, 64, 128}; for grid search, see Tables 3 and 4 for the structure generated by the random
search method.

Table 6. Experiments for different searching methods on MNIST dataset.

MNIST Time (Hours) Precision

Ours 1 98.7%
Grid Search 2 98.67%

Random Search 1.3 98.49%
Bayesian Search 6 99%

Information 2023, 14, 604 12 of 21

It should be noted that the methodology of automatic parallel selection for super
parameters for the branch structure proposed in this paper is a dynamic and automatic
search process. It is equivalent to grid search and random search methods trained for
searching seven networks, so it saves a lot of time and cost. Moreover, it breaks up the
3-branch architecture by choosing a single branch, or the combination of two branches as
the “benchmark”, as well as the complete multi-branch CNN, and a total of seven models
with different precision and operations can be generated, as we can see in Table 7.

Table 7. Seven models with different precision and operations.

CNN Models Precision Operation Parameters

Y1 + Y2 + Y3 98.5% 799,010 400,958
Y2 + Y3 98.2% 728,156 365,140
Y1 + Y3 96.3% 499,278 250,932
Y1 + Y2 88.3% 370,586 185,844

Y3 95.9% 428,244 215,114
Y2 70.1% 299,732 150,026
Y1 20.5% 70,854 35,818

3.3. POSS-CNN for Target Recognition and Detection
3.3.1. Multi-Branch Architecture for Target Recognition

In this subsection, the overall architecture of POSS-CNN is obtained, which employs a
design method of multi-branch CNN structure and a method of automatic parallel selection
for super parameters based on multi-branch CNN structure. The generation process of
POSS-CNN applied for target recognition is as follows.

First, set up the precision subsection and initialize multi-branch CNN, the purpose is
to stop training if the verification accuracy falls into the precision subsection after some
iterations of training. The precision subsection in this paper includes four intervals with
the total range of 0.6 to 1, which is (0.6, 0.7], (0.7, 0.8], (0.8, 0.9], and (0.9, 1]. In addition,
the specific number of branches is 3 and the number of branches can be set to 2 or 4, 5, etc.
Second, set up the super parameters’ search space. The setting methodology can be decided
by the developer according to experience (or refer to Table 4). Each search result adds a
2 × 2 Max-Pooling layer as a block. The block is gradually added to the overall 3-branch
CNN architecture. Third, start to search and train the model automatically. Specifically,
exploit the parallel characteristics of 3-branch CNN architecture and the greedy strategy.
Fourth, as shown in Figure 9, search for the convolutional kernel size automatically from
Table 4 as “Block 1”. After adding a 2 × 2 Max-Pooling layer, put “Block 1” to each branch of
the 3-branch CNN architecture for iterative training. Record the selected super parameters
results, precision, and operation of each mode after each iterative training. Retain the
models until the precision reaches 5% of the maximum precision. Select the model with the
lowest operation value as the optimal result of Block 1. “Blocks 2” and “Block 3” can be
generated by using a similar approach to “Block 1”, and the difference lies in the parameters
of the network model.

In this paper, Block 3 is temporarily stopped from searching, so that after automatic
search, the first branch of the 3-branch CNN architecture has 1 convolutional layer and
1 Max-Pooling layer, the second branch has 3 convolutional layers and 3 Max-Pooling
layers, and the third branch has 5 convolutional layers and 5 Max-Pooling layers. For
different branches, the difference lies in operation and parameters. In addition, the depth of
the block is variable, which depends on specific and different requirements, such as setting
it to 3, 4, 5, etc.

In addition, as shown in Figure 9, the number of neural nodes in fully connected
hidden layers and the channel size of feature maps of each branch are also set in this
paper. The first branch is {8, 16, 32, 64}, the second branch is {64, 128, 256}, and the third
branch is {256, 512, 1024}. The fully connected layer of each branch in the 3-branch CNN
architecture is composed of two hidden layers and one output category. Meanwhile, only

Information 2023, 14, 604 13 of 21

through one-time training, the 3-branch CNN architecture can be broken up into different
branch modes to generate a total of seven models with different precision and operations.
Moreover, seven models can be applied to different performance hardware platforms at
the same time. The complete multi-branch CNN structure (also called the POSS-CNN) is
shown in the lower right corner in Figure 9.

Information 2023, 14, x FOR PEER REVIEW 14 of 22

Figure 9. Generation process of POSS-CNN overall architecture.

3.3.2. Multi-Branch Architecture for Target Detection
The generation process of POSS-CNN applied for target detection is as follows.
The “Convolutional structures” of POSS-CNN for target recognition through auto-

matic searching can be regarded as a whole block to be embedded into the existing target
detection network, such as YOLOv3. As shown in Figure 10, the embedded block is shown
in the red frame, and the first half of the YOLOv3 structure is simplified in this paper.
Thus, we can obtain POSS-CNN for target detection tasks. As shown in Table 8, the total
parameters of YOLOv3 are 61.95 million, and the operation of YOLOv3 is 65.8 Gops. But
the total parameters of POSS-CNN for target detection are 53.56 million, and the operation
of POSS-CNN for target detection is 41.8 Gops, which is almost 86% and 63.5% of
YOLOv3, respectively. The embedded structure of the POSS-CNN for target detection is
composed of three branches. The first branch has 2 convolutional layers with the kernel
size of 3 × 3, the second branch has 4 convolutional layers with the kernel size of 3 × 3, and

Figure 9. Generation process of POSS-CNN overall architecture.

3.3.2. Multi-Branch Architecture for Target Detection

The generation process of POSS-CNN applied for target detection is as follows.
The “Convolutional structures” of POSS-CNN for target recognition through automatic

searching can be regarded as a whole block to be embedded into the existing target detection
network, such as YOLOv3. As shown in Figure 10, the embedded block is shown in the
red frame, and the first half of the YOLOv3 structure is simplified in this paper. Thus, we
can obtain POSS-CNN for target detection tasks. As shown in Table 8, the total parameters
of YOLOv3 are 61.95 million, and the operation of YOLOv3 is 65.8 Gops. But the total
parameters of POSS-CNN for target detection are 53.56 million, and the operation of
POSS-CNN for target detection is 41.8 Gops, which is almost 86% and 63.5% of YOLOv3,

Information 2023, 14, 604 14 of 21

respectively. The embedded structure of the POSS-CNN for target detection is composed
of three branches. The first branch has 2 convolutional layers with the kernel size of 3 × 3,
the second branch has 4 convolutional layers with the kernel size of 3 × 3, and the third
branch has 8 convolutional layers with the kernel size of 3 × 3. Any Max-pooling layers
should not be added.

Table 8. Comparison of YOLOv3 and POSS-CNN for target detection.

CNN Parameters (Million) Operation (Gops)

YOLOv3 61.95 65.8
POSS-CNN for target detection 53.56 41.8

Information 2023, 14, x FOR PEER REVIEW 15 of 22

the third branch has 8 convolutional layers with the kernel size of 3 × 3. Any Max-pooling
layers should not be added.

Table 8. Comparison of YOLOv3 and POSS-CNN for target detection.

CNN Parameters (Million) Operation (Gops)
YOLOv3 61.95 65.8

POSS-CNN for target detection 53.56 41.8

Figure 10. POSS-CNN embedded in target detection model.

4. Results
This section firstly introduces the experimental platform and dataset used in this pa-

per. Secondly, we experiment and verify the overall architecture of target recognition and

Figure 10. POSS-CNN embedded in target detection model.

Information 2023, 14, 604 15 of 21

4. Results

This section firstly introduces the experimental platform and dataset used in this
paper. Secondly, we experiment and verify the overall architecture of target recognition
and detection based on the CIFAR10 and LSVH datasets [47]. Finally, we adopt the WRA
hardware accelerator to accelerate the core convolutional operation of POSS-CNN, and the
relevant experimental results are analyzed.

4.1. Experimental Platform and Datasets

The experimental platform used in this paper is an Intel Xeon silver 4110 CPU (2.1 GHz)
server. This server has an NVIDIA RTX 2080Ti v100 GPU. The memory of this GPU is
about 10 G, and the power of this GPU is 250 W. The operating system of the server is
Ubuntu 16.04. Moreover, this paper uses the Python 3.6 programming language and the
open-source framework, Tensorflow, and Keras.

The dataset of this paper includes the MNIST (50 MB) dataset, which was mentioned
above, as well as the CIFAR10 dataset with a resolution of 32 × 32 × 3. The Python version
of the CIFAR10 dataset is about 163 MB, including 50,000 training images and 10,000 test
images. In addition, the LSVH dataset is used to test POSS-CNN for the target detection
task. As shown in Figure 11, the LSVH dataset is about 3.53 GB, containing more than
14,000 pictures.

Information 2023, 14, x FOR PEER REVIEW 16 of 22

detection based on the CIFAR10 and LSVH datasets [47]. Finally, we adopt the WRA hard-
ware accelerator to accelerate the core convolutional operation of POSS-CNN, and the rel-
evant experimental results are analyzed.

4.1. Experimental Platform and Datasets
The experimental platform used in this paper is an Intel Xeon silver 4110 CPU (2.1

GHz) server. This server has an NVIDIA RTX 2080Ti v100 GPU. The memory of this GPU
is about 10 G, and the power of this GPU is 250 W. The operating system of the server is
Ubuntu 16.04. Moreover, this paper uses the Python 3.6 programming language and the
open-source framework, Tensorflow, and Keras.

The dataset of this paper includes the MNIST (50 MB) dataset, which was mentioned
above, as well as the CIFAR10 dataset with a resolution of 32 × 32 × 3. The Python version
of the CIFAR10 dataset is about 163 MB, including 50,000 training images and 10,000 test
images. In addition, the LSVH dataset is used to test POSS-CNN for the target detection
task. As shown in Figure 11, the LSVH dataset is about 3.53 GB, containing more than
14,000 pictures.

Figure 11. LSVH dataset.

4.2. Target Recognition
The POSS-CNN for target recognition proposed in this paper is trained and tested on

the CIFAR10 dataset. The depth of all blocks is two, which means the block is composed
of two Conv-layer without an additional Max-Pooling layer.

The experimental results are shown in Table 9. The precision of POSS-CNN for target
recognition proposed in this paper is 86.4%, which is higher than VggNet, but lower than
AlexNet. However, the operation and parameters of POSS-CNN for target recognition are
reduced by 54.1% and 54.2% of AlexNet, and 71.5% and 71.6% of VggNet, respectively, as
illustrated in Figure 12. At the same time, only through one-time training can POSS-CNN
be broken up for target recognition. By choosing a single branch, or the combination of
two branches as the “benchmark”, as well as the complete architecture, and a total of seven
models with different precision and operations can be generated. Moreover, seven models
with different precision and operations can be applied to different performance hardware
platforms at the same time. As shown in Table 9, seven models like Y1, Y2, Y3, Y1 + Y2, Y1
+ Y3, Y2 + Y3, and Y1 + Y2 + Y3 have different parameters and operation.

Figure 11. LSVH dataset.

4.2. Target Recognition

The POSS-CNN for target recognition proposed in this paper is trained and tested on
the CIFAR10 dataset. The depth of all blocks is two, which means the block is composed of
two Conv-layer without an additional Max-Pooling layer.

The experimental results are shown in Table 9. The precision of POSS-CNN for target
recognition proposed in this paper is 86.4%, which is higher than VggNet, but lower than
AlexNet. However, the operation and parameters of POSS-CNN for target recognition are
reduced by 54.1% and 54.2% of AlexNet, and 71.5% and 71.6% of VggNet, respectively, as
illustrated in Figure 12. At the same time, only through one-time training can POSS-CNN
be broken up for target recognition. By choosing a single branch, or the combination of two
branches as the “benchmark”, as well as the complete architecture, and a total of seven
models with different precision and operations can be generated. Moreover, seven models

Information 2023, 14, 604 16 of 21

with different precision and operations can be applied to different performance hardware
platforms at the same time. As shown in Table 9, seven models like Y1, Y2, Y3, Y1 + Y2, Y1
+ Y3, Y2 + Y3, and Y1 + Y2 + Y3 have different parameters and operation.

Table 9. Overall architecture of target recognition tested on CIFAR10 dataset.

CNN Models Accuracy Operation (Ops) Parameters
(Million)

AlexNet Original 89% [20] 43,225,160 21.62
VggNet VGG + BN 82.6% [48,49] 67,251,600 33.64

POSS-CNN for target
recognition

Y1 + Y2 + Y3 86.4% 19,848,513 9.9
Y3 + Y2 86.6% 18,232,666 9.1
Y1 + Y3 78.9% 17,754,486 8.9
Y1 + Y2 73.4% 3,709,874 1.86

Y3 69% 16,138,639 8.07
Y2 73.6% 2,094,027 1.05
Y1 23% 1,615,847 0.81

Information 2023, 14, x FOR PEER REVIEW 17 of 22

Figure 12. Reduction in operation and parameters normalized to AlexNet and VggNet.

Table 9. Overall architecture of target recognition tested on CIFAR10 dataset.

CNN Models Accuracy Operation (Ops)
Parameters
(Million)

AlexNet Original 89% [20] 43,225,160 21.62
VggNet VGG + BN 82.6% [48,49] 67,251,600 33.64

POSS-CNN for tar-
get recognition

Y1 + Y2 + Y3 86.4% 19,848,513 9.9
Y3 + Y2 86.6% 18,232,666 9.1
Y1 + Y3 78.9% 17,754,486 8.9
Y1 + Y2 73.4% 3,709,874 1.86

Y3 69% 16,138,639 8.07
Y2 73.6% 2,094,027 1.05
Y1 23% 1,615,847 0.81

4.3. Target Detection
POSS-CNN for target detection proposed in this paper is trained and tested on the

LSVH dataset. As shown in Table 10, first, in terms of precision performance, POSS-CNN
for target detection can achieve 45.8% mAP, in which the Sparse mAP is 56.8%, and the
Crowded mAP is 51.3%. Compared with YOLOv3, Faster R-CNN, and YOLOv2, the over-
all precision performance of POSS-CNN for target detection is slightly lower than
YOLOv3, because the Crowded mAP is lower than YOLOv3. The overall mAP of the
POSS-CNN for target detection is slightly lower than Faster R-CNN. However, the overall
mAP of POSS-CNN for target detection is higher than YOLOv2.

Table 10. Overall architecture of target recognition tested on LVSH dataset.

LSVH MAP Sparse mAP Crowded mAP Operation (Gops) Parameters (Million)
Ours 45.8 56.8 51.3 41.8 53.56

YOLOv3 62.3 51.8 75.5 65.8 61.95
Faster R-CNN 59.5 58 61.1 46.7 58.19

YOLOv2 32.4 42.1 31.3 57.4 50.59

Secondly, in terms of operation and parameter performance, POSS-CNN for target
detection has the lowest amount of operation, which is 41.8 Gops. Figure 13 shows the
comparison of operations and parameters. Compared with YOLOv3, the operation and
parameters of the POSS-CNN for target detection are reduced by 57.4% and 15.6%, re-
spectively. Compared with Fast R-CNN, the operation and parameters of the POSS-CNN
for target detection are reduced by 11.7% and 8.6%, respectively. Compared with
YOLOv2, the operation of POSS-CNN for target detection is reduced by 37.2%, while the
parameter is almost equivalent to YOLOv2.

Figure 12. Reduction in operation and parameters normalized to AlexNet and VggNet.

4.3. Target Detection

POSS-CNN for target detection proposed in this paper is trained and tested on the
LSVH dataset. As shown in Table 10, first, in terms of precision performance, POSS-CNN
for target detection can achieve 45.8% mAP, in which the Sparse mAP is 56.8%, and the
Crowded mAP is 51.3%. Compared with YOLOv3, Faster R-CNN, and YOLOv2, the overall
precision performance of POSS-CNN for target detection is slightly lower than YOLOv3,
because the Crowded mAP is lower than YOLOv3. The overall mAP of the POSS-CNN
for target detection is slightly lower than Faster R-CNN. However, the overall mAP of
POSS-CNN for target detection is higher than YOLOv2.

Table 10. Overall architecture of target recognition tested on LVSH dataset.

LSVH MAP Sparse
mAP

Crowded
mAP

Operation
(Gops)

Parameters
(Million)

Ours 45.8 56.8 51.3 41.8 53.56
YOLOv3 62.3 51.8 75.5 65.8 61.95

Faster R-CNN 59.5 58 61.1 46.7 58.19
YOLOv2 32.4 42.1 31.3 57.4 50.59

Secondly, in terms of operation and parameter performance, POSS-CNN for target
detection has the lowest amount of operation, which is 41.8 Gops. Figure 13 shows the
comparison of operations and parameters. Compared with YOLOv3, the operation and

Information 2023, 14, 604 17 of 21

parameters of the POSS-CNN for target detection are reduced by 57.4% and 15.6%, respec-
tively. Compared with Fast R-CNN, the operation and parameters of the POSS-CNN for
target detection are reduced by 11.7% and 8.6%, respectively. Compared with YOLOv2, the
operation of POSS-CNN for target detection is reduced by 37.2%, while the parameter is
almost equivalent to YOLOv2.

Information 2023, 14, x FOR PEER REVIEW 18 of 22

Figure 13. Reduction in operation and parameters normalized to YOLOv3, Fast R-CNN, and
YOLOv2.

4.4. FPGA Acceleration and Comparison
The core convolutional operation of the POSS-CNN proposed in this paper is accel-

erated by a Winograd-based highly efficient and dynamically Reconfigurable Accelerator
(WRA). WRA is designed for quickly evolving CNN models, and we proposed a cost-
effective convolutional decomposition method (CDW) to extend the application of the fast
Winograd algorithm. Based on CDW, a high-throughput and reconfigurable processing
element (PE) array was designed to exploit the parallelism of Winograd. Moreover, a
highly compact memory structure employing four levels of data reuse schemes was pro-
posed, which can achieve maximum data reuse and minimize external bandwidth re-
quirements. Provided with dynamically reconfigurable capability, WRA implements
CDW and other convolutions (e.g., standard convolution, depthwise separable convolu-
tion, and group convolution) on a unified hardware architecture.

As shown in Table 11, POSS-CNN for target recognition tested on GPU RTX2080Ti
can reach 1919 fps. After accelerating the core convolutional operation by the WRA accel-
erator, this performance can reach 2392 fps, which is 1.3 times higher than the platform of
GPU RTX2080Ti.

Table 11. Experimental results of acceleration by WRA on target recognition.

CNN Hardware Platform Performance (fps)

POSS-CNN for recognition
WRA [48,49] 2392

GPU 1919

The total operation of POSS-CNN for target detection based on the LSVH dataset is
41.8 Gops. As shown in Table 12, the inference performance of the GPU RTX2080Ti plat-
form is about 6 fps, and the energy efficiency is 41 J/f. The inference performance of the
CPU i7-8570H platform is about 1 fps, and the energy efficiency is 45 J/f. After accelerating
the core convolutional operation by the WRA accelerator, the inference performance can
reach 27 fps, and the energy efficiency is 0.42 J/f. Compared with the platforms of GPU
RTX2080Ti and CPU i7-8570H, the performance of the WRA platform is increased by 5
times and 27 times, respectively. The energy efficiency is increased by 96.6 times and 106.1
times, respectively.

Table 12. Experimental results of acceleration by WRA on target detection.

CNN Hardware Platform Frequency (Hz) Power (W) Speed (fps) Energy Efficiency (J/f)

POSS-CNN for
detection

WRA [48,49] 330 M 35 27 0.42
GPU 1.545 G 250 6 41
CPU 2.20 G 45 1 45

Figure 13. Reduction in operation and parameters normalized to YOLOv3, Fast R-CNN, and YOLOv2.

4.4. FPGA Acceleration and Comparison

The core convolutional operation of the POSS-CNN proposed in this paper is accel-
erated by a Winograd-based highly efficient and dynamically Reconfigurable Accelerator
(WRA). WRA is designed for quickly evolving CNN models, and we proposed a cost-
effective convolutional decomposition method (CDW) to extend the application of the fast
Winograd algorithm. Based on CDW, a high-throughput and reconfigurable processing
element (PE) array was designed to exploit the parallelism of Winograd. Moreover, a highly
compact memory structure employing four levels of data reuse schemes was proposed,
which can achieve maximum data reuse and minimize external bandwidth requirements.
Provided with dynamically reconfigurable capability, WRA implements CDW and other
convolutions (e.g., standard convolution, depthwise separable convolution, and group
convolution) on a unified hardware architecture.

As shown in Table 11, POSS-CNN for target recognition tested on GPU RTX2080Ti can
reach 1919 fps. After accelerating the core convolutional operation by the WRA accelerator,
this performance can reach 2392 fps, which is 1.3 times higher than the platform of GPU
RTX2080Ti.

Table 11. Experimental results of acceleration by WRA on target recognition.

CNN Hardware Platform Performance (fps)

POSS-CNN for recognition WRA [48,49] 2392
GPU 1919

The total operation of POSS-CNN for target detection based on the LSVH dataset
is 41.8 Gops. As shown in Table 12, the inference performance of the GPU RTX2080Ti
platform is about 6 fps, and the energy efficiency is 41 J/f. The inference performance of the
CPU i7-8570H platform is about 1 fps, and the energy efficiency is 45 J/f. After accelerating
the core convolutional operation by the WRA accelerator, the inference performance can
reach 27 fps, and the energy efficiency is 0.42 J/f. Compared with the platforms of GPU
RTX2080Ti and CPU i7-8570H, the performance of the WRA platform is increased by
5 times and 27 times, respectively. The energy efficiency is increased by 96.6 times and
106.1 times, respectively.

Information 2023, 14, 604 18 of 21

Table 12. Experimental results of acceleration by WRA on target detection.

CNN Hardware Platform Frequency (Hz) Power (W) Speed (fps) Energy Efficiency (J/f)

POSS-CNN for
detection

WRA [48,49] 330 M 35 27 0.42
GPU 1.545 G 250 6 41
CPU 2.20 G 45 1 45

5. Discussion

This paper discussed a new CNN architecture for the application of target recognition
and target detection. On the one hand, a multi-branch CNN structure is conducted with
separable precision and operation. For the networks with less classification and low
resolution, the size of the datasets is about tens to hundreds of MB. Whereas those networks
with more classification and high resolution need datasets of tens to hundreds of GB.
Therefore, the branch architecture shown in Figure 5a is selected for target recognition and
detection tasks whose datasets are less than 100 MB. On the other hand, a methodology of
automatic parallel selection for super parameters is put forward based on a multi-branch
CNN structure. Referring to FractalNet [2] and the combined experience, the 3-branch is
chosen as the branch number. Actually, it is not necessarily the 3-branch; it can be easily
changed to two or more branches. Generally, the search block automatically is used as
“Block 1”, and added to each branch of the 3-branch CNN architecture when the best
performance is found by training. Similarly, “Blocks 2” and “Block 3” can be generated,
and the difference lies in the parameters and operation of the network model. Actually, it
is scalable to continue adding convolutional layers, such as “Block 4” and “Block 5”. The
measure results indicate that the accuracy is equivalent to AlexNet and VggNet tested on
the CIFAR10 dataset, and YOLOv3 tested on the LSVH dataset, respectively. Moreover, the
operation and parameters of the whole model are far less than those of AlexNet, VggNet,
and YOLOv3.

The superiority of our work is balancing the accuracy of models and computational
burden; that is, the proposed CNN structure has fewer operations and parameters along
with equivalent performance. The reduction in operations and parameters is because the
PSNC method is used for optimization of the network structure. The PSNC method is
to substitute most parameters of the fully connected layer with a few parameters of the
convolutional layer. Furthermore, this does not cause any degradation in performance.
One reason for this is that neuron nodes of a fully connected layer are appropriately
increased to compensate for the loss of accuracy. Another is that when targeted for target
recognition or detection tasks, the multi-branch architecture is initialized, and further
iterated by adaptively searching for building blocks with excellent performance, and then
adding these blocks to the three different branches. Actually, the proposed method still
has some limitations, which mainly lie in the following two aspects. The first aspect is
that the constructed network model is evaluated only on a few certain datasets, and not
experimentally trained and tested on more datasets, such as ImageNet. The other aspect is
that for a single branch model, such as Y1, the accuracy is significantly inadequate with the
compared network models.

Therefore, future research studies will focus on improving and optimizing the models
by iteratively conducting the training process and testing process. Combining the ad-
vantages of state-of-the-art network models, future research will explore more advanced
multi-branch CNN structures, thereby achieving higher accuracy and fewer operations and
parameters on various datasets, such as ImageNet, CIFAR-100, and VTAB. The details lie
in the following three aspects. The first aspect is to carry out batch sampling experiments
and iteratively train these samples, thereby gaining a good usable model. The second
aspect is to continue using branch architecture efficiently so that different branches can
understand or detect different types of targets in complex scenarios. The last aspect is to
further divide the depth of the building blocks in detail to explore more suitable adaptive
and automated networks.

Information 2023, 14, 604 19 of 21

6. Conclusions

In this paper, based on the application of target recognition and target detection, we
propose a new POSS-CNN architecture. First, we propose a multi-branch CNN structure
with separable precision and operation. Only through one-time training can the CNN
structure be broken up into different branch modes to generate a total of seven models with
different precision and operations. Second, a methodology of automatic parallel selection
for super parameters based on a multi-branch CNN structure is put forward, which can
make the generation process of a multi-branch CNN structure automatic and procedural.
Finally, we obtained POSS-CNN for target recognition and detection, and it was tested
on the CIFAR10 dataset, where the test accuracy can reach 86.4%, which is equivalent to
AlexNet and VggNet, but the operation and parameters of the whole model are 45.9% and
45.8% of AlexNet, and 29.5% and 29.4% of VggNet, respectively. The mAP of POSS-CNN
for a detection task tested on the LSVH dataset is 45.8, which is inferior to the 62.3 of
YOLOv3. Compared with YOLOv3, the operation and parameters of the model in this
paper are reduced by 57.4% and 15.6%, respectively. After being accelerated by WRA,
POSS-CNN for a detection task tested on the LSVH dataset can achieve 27 fps, and the
energy efficiency is 0.42 J/f, which is a respective 5 times and 96.6 times better than GPU
2080Ti in performance and energy efficiency.

Author Contributions: Conceptualization, C.Y., J.Z. and J.H.; methodology, J.H. and J.Z.; software,
J.Z. and J.H.; validation, J.H. and Q.C.; formal analysis, Q.C.; investigation, S.X. and J.W.; writing—
original draft preparation, J.H. and J.Z.; writing—review and editing, J.H. and C.L.; data curation,
C.L.; visualization, Y.M.; supervision, C.Y. and C.L.; project administration, C.Y.; funding acquisition,
C.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded in part by the National Natural Science Foundation of China
under Grant 62176206, and in part by Shenzhen Park of Hetao Shenzhen–Hong Kong Science and
Technology Innovation Cooperation Zone Program under Grant HTHZQSWS-KCCYB-2023040.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Separable Image Recognition. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 8697–8710. [CrossRef]

2. Larsson, G.; Maire, M.; Shakhnarovich, G. FractalNet: Ultra-Deep Neural Networks without Residuals. International Conference
on Neural Information. arXiv 2017, arXiv:1605.07648. [CrossRef]

3. Quan, Y.; Zhang, D.; Zhang, L.; Tang, J. Centralized Feature Pyramid for Object Detection. IEEE Trans. Image Process. 2023, 32,
4341–4354. [CrossRef] [PubMed]

4. Pan, J.; Li, Z.; Wei, Y.; Chen, Z.; Nong, Y.; Zhou, B.; Huan, W.; Zou, J.; Pan, Z.; Liu, W. FEDNet: A real-time deep-learning
framework for object detection. In Proceedings of the 2023 IEEE 3rd International Conference on Electronic Technology,
Communication and Information (ICETCI), Changchun, China, 26–28 May 2023; pp. 1020–1025. [CrossRef]

5. Zhang, X.; Liu, W.; Wu, G. Multi-Branch Cascade Receptive Field Residual Network. IEEE Access 2023, 11, 82613–82623. [CrossRef]
6. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2019, arXiv:1905.11946.
7. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An Image is Worth 16×6 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.
[CrossRef]

8. Brock, A.; De, S.; Smith, S.L.; Simonyan, K. High-Performance Large-Scale Image Recognition Without Normalization. arXiv 2021,
arXiv:2102.06171. [CrossRef]

9. Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized evolution for image classifier architecture search. Conf. Artif. Intell. (AAAI)
2019, 33, 4780–4789. [CrossRef]

10. Kang, M.-G.; Kim, H.-H.; Kang, D.-J. Finding a High Accuracy Neural Network for the Welding Defects Classification Using Effi-
cient Neural Architecture Search via Parameter Sharing. In Proceedings of the International Conference on Control, Automation
and Systems (ICCAS), PyeongChang, Republic of Korea, 17–20 October 2018; pp. 402–405.

https://doi.org/10.1109/CVPR.2018.00907
https://doi.org/10.48550/arXiv.1605.07648
https://doi.org/10.1109/TIP.2023.3297408
https://www.ncbi.nlm.nih.gov/pubmed/37490376
https://doi.org/10.1109/ICETCI57876.2023.10176539
https://doi.org/10.1109/ACCESS.2023.3302279
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/arXiv.2102.06171
https://doi.org/10.1609/aaai.v33i01.33014780

Information 2023, 14, 604 20 of 21

11. Zhao, H.; Yan, K.; Cao, M. Multi-branch Attention Fusion Network for Aspect Sentiment Classification. In Proceedings of the 2023
8th International Conference on Intelligent Computing and Signal Processing (ICSP), Xi’an, China, 21–23 April 2023; pp. 892–896.
[CrossRef]

12. Talemi, N.A.; Kashiani, H.; Malakshan, S.R.; Saadabadi, M.S.E. AAFACE: Attribute-Aware Attentional Network for Face
Recognition. In Proceedings of the 2023 IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia,
8–11 October 2023; pp. 1940–1944. [CrossRef]

13. Chi, W.; Liu, J.; Wang, X.; Feng, R.; Cui, J. DBGNet: Dual-Branch Gate-Aware Network for Infrared Small Target Detection. IEEE
Trans. Geosci. Remote Sens. 2023, 61, 1–14. [CrossRef]

14. Luo, R.; Tian, F.; Qin, T.; Lin, T.-Y. Neural Architecture Optimization. arXiv 2018, arXiv:1808.07233. [CrossRef]
15. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 386–397. [CrossRef]
16. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE

Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]
17. Canny, J.; Zhao, H.; Jaros, B.; Chen, Y.; Mao, J. Machine learning at the limit. In Proceedings of the IEEE International Conference

on Big Data, Santa Clara, CA, USA, 29 October–1 November 2015; pp. 233–242. [CrossRef]
18. Kang, M.; Kim, Y.; Patil, A.D.; Shanbhag, N.R. Deep In-Memory Architectures for Machine Learning Accuracy Versus Efficiency

Trade-Offs. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 1627–1639. [CrossRef]
19. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. IEEE 1998, 86, 2278–2324.

[CrossRef]
20. Krizhevsky, A. Imagenet classification with deep convolutional neural networks. IEEE Adv. Neural Inf. Process. Syst. 2012, 60,

1097–1105. [CrossRef]
21. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.

[CrossRef]
22. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
23. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 2261–2269. [CrossRef]
24. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587. [CrossRef]

25. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

26. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13
December 2015; pp. 1440–1448. [CrossRef]

27. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [CrossRef]

28. Redmon, J.; Farhadi, A. Yolo9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [CrossRef]

29. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [CrossRef]
30. Lévesque, J.C.; Gagné, C.; Sabourin, R. Bayesian Hyperparameter Optimization for Ensemble Learning. In Proceedings of the

Conference on Uncertainty in Artificial Intelligence, New York, NY, USA, 25–29 June 2016. [CrossRef]
31. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G. A particle swarm optimization based flexible convolutional autoencoder for image

classification. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 2295–2309. [CrossRef]
32. Fielding, B.; Lawrence, T.; Zhang, L. Evolving and Ensembling Deep CNN Architectures for Image Classification. In Proceedings

of the International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [CrossRef]
33. Wang, B.; Sun, Y.; Xue, B.; Zhang, M. A hybrid differential evolution approach to designing deep convolutional neural networks

for image classification. In Australasian Joint Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 237–250. [CrossRef]

34. Lee, W.Y.; Park, S.M.; Sim, K.B. Optimal hyperparameter tuning of convolutional neural networks based on the parameter-setting-
free harmony search algorithm. Optik 2018, 172, 359–367. [CrossRef]

35. Baker, B.; Gupta, O.; Naik, N.; Raskar, R. Designing neural network architectures using reinforcement learning. arXiv 2016,
arXiv:1611.02167. [CrossRef]

36. Neary, P. Automatic hyperparameter tuning in deep convolutional neural networks using asynchronous reinforcement learning.
In Proceedings of the 2018 IEEE International Conference on Cognitive Computing (ICCC), San Francisco, CA, USA, 2–7 July
2018; pp. 73–77. [CrossRef]

37. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [CrossRef]

38. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [CrossRef]

https://doi.org/10.1109/ICSP58490.2023.10248925
https://doi.org/10.1109/ICIP49359.2023.10222666
https://doi.org/10.1109/TGRS.2023.3309952
https://doi.org/10.48550/arXiv.1808.07233
https://doi.org/10.1109/TPAMI.2018.2844175
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650
https://doi.org/10.1109/BigData.2015.7363760
https://doi.org/10.1109/TCSI.2019.2960841
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/3065386
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.48550/arXiv.1605.06394
https://doi.org/10.1109/TNNLS.2018.2881143
https://doi.org/10.1109/IJCNN.2019.8852369
https://doi.org/10.48550/arXiv.1808.06661
https://doi.org/10.1016/j.ijleo.2018.07.044
https://doi.org/10.48550/arXiv.1611.02167
https://doi.org/10.1109/ICCC.2018.00017
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.48550/arXiv.1704.04861

Information 2023, 14, 604 21 of 21

39. Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.J.; Li, F.F.; Yuille, A.; Huang, J.; Murphy, K. Progressive Neural
Architecture Search. arXiv 2017, arXiv:1712.00559. [CrossRef]

40. Zhong, Z.; Yan, J.; Wu, W.; Shao, J.; Liu, C.L. Practical Block-wise Neural Network Architecture Generation. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2423–2432.
[CrossRef]

41. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856. [CrossRef]

42. Chen, Y.H.; Krishna, T.; Emer, J.S.; Sze, V. Eyeriss: An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE J. Solid-State Circuits 2017, 52, 127–138. [CrossRef]

43. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.
[CrossRef]

44. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. Int. Conf.
Mach. Learn. 2015, 37, 448–456. [CrossRef]

45. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning.
In Proceedings of the Conference on Artificial Intelligence (AAAI), San Francisco, CA, USA, 4–9 February 2017; pp. 1–12.
[CrossRef]

46. Yang, C.; Zhang, J.; Chen, Q.; Xu, Y.; Lu, C. UL-CNN: An Ultra-Lightweight Convolutional Neural Network aiming at Flash-based
Computing-In-Memory Architecture for Pedestrian Recognition. J. Circuits Syst. Comput. (JCSC) 2021, 30, 2150022. [CrossRef]

47. Hu, X.; Xu, X.; Xiao, Y.; Chen, H.; He, S.; Qin, J.; Heng, P. SINet: A Scale-Insensitive Convolutional Neural Network for Fast
Vehicle Detection. IEEE Trans. Intell. Transp. Syst. 2019, 20, 1010–1019. [CrossRef]

48. Yang, C.; Wang, Y.; Wang, X.; Geng, L. WRA: A 2.2-to-6.3 TOPS Highly Unified Dynamically Reconfigurable Accelerator Using a
Novel Winograd Decomposition Algorithm for Convolutional Neural Networks. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66,
3480–3493. [CrossRef]

49. Yang, C.; Wang, Y.; Wang, X.; Geng, L. A Stride-based Convolution Decomposition Method to Stretch CNN Acceleration
Algorithms for Efficient and Flexible Hardware Implementation. IEEE Trans. Circuits Syst. I Regul. Pap. 2020, 67, 3007–3020.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.48550/arXiv.1712.00559
https://doi.org/10.1109/CVPR.2018.00257
https://doi.org/10.1109/CVPR.2018.00716
https://doi.org/10.1109/JSSC.2016.2616357
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.48550/arXiv.1602.07261
https://doi.org/10.1142/S0218126621500225
https://doi.org/10.1109/TITS.2018.2838132
https://doi.org/10.1109/TCSI.2019.2928682
https://doi.org/10.1109/TCSI.2020.2985727

	Introduction
	Related Work and Motivation
	Related Work
	Motivation

	Materials and Methods
	Multi-Branch Structure with Separable Precision and Operation
	Basis of Branch Structure
	Multi-Branch CNN Structure
	Evaluation of Separable Precision and Operation

	Automatic Parallel Selection for Super Parameters on Multi-Branch CNN Structure
	Design Flow
	Parameter Tuning of Model Optimization
	Evaluation of Training Time and Accuracy

	POSS-CNN for Target Recognition and Detection
	Multi-Branch Architecture for Target Recognition
	Multi-Branch Architecture for Target Detection

	Results
	Experimental Platform and Datasets
	Target Recognition
	Target Detection
	FPGA Acceleration and Comparison

	Discussion
	Conclusions
	References

