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Abstract: This study presents a novel approach for kernel selection based on Kullback–Leibler
divergence in variational autoencoders using features generated by the convolutional encoder. The
proposed methodology focuses on identifying the most relevant subset of latent variables to reduce
the model’s parameters. Each latent variable is sampled from the distribution associated with a
single kernel of the last encoder’s convolutional layer, resulting in an individual distribution for each
kernel. Relevant features are selected from the sampled latent variables to perform kernel selection,
which filters out uninformative features and, consequently, unnecessary kernels. Both the proposed
filter method and the sequential feature selection (standard wrapper method) were examined for
feature selection. Particularly, the filter method evaluates the Kullback–Leibler divergence between
all kernels’ distributions and hypothesizes that similar kernels can be discarded as they do not
convey relevant information. This hypothesis was confirmed through the experiments performed on
four standard datasets, where it was observed that the number of kernels can be reduced without
meaningfully affecting the performance. This analysis was based on the accuracy of the model when
the selected kernels fed a probabilistic classifier and the feature-based similarity index to appraise the
quality of the reconstructed images when the variational autoencoder only uses the selected kernels.
Therefore, the proposed methodology guides the reduction of the number of parameters of the model,
making it suitable for developing applications for resource-constrained devices.

Keywords: convolutional neural network; feature selection; latent variables; probabilistic classifier;
variational autoencoder

1. Introduction

Generative modeling, as produced by Variational AutoEncoders (VAEs) [1] or Generative
Adversarial Networks (GANs), is used to solve the problem of learning a joint distribution
over all the variables. As a result, these models can simulate how data are created, contrary
to discriminative modeling, which learns a predictor given the observations [2]. Hence,
multiple applications have been developed using generative modeling, while GANs and
VAEs are usually employed for image analysis [3,4].

VAE is a deep generative model [5] that can be viewed as a combination of coupled
encoder and decoder Bayesian networks that were independently parameterized. The first
network (encoder) is the recognition model responsible for mapping the input data to a
latent vector, delivering an estimate of its posterior over latent random variables. The result
is a model capable of providing an amortized inference procedure for the computation of
latent representations. In contrast, the second network (decoder) is the generative model
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that reverses the process. At the same time, the decoder can estimate an implicit density
model given the data. Therefore, according to the Bayes rule, the recognition model is the
approximate inverse of the generative model [2,6].

Conversely, VAEs [2,6] are associated with several prominent challenges. These
encompass the susceptibility of the models to suffer from the curse of dimensionality
and the inherent absence of interpretable meaning in their latent representations. This
work primarily concentrates on mitigating these problems, focusing principally on the
latter issue.

Particularly, the main goal of this work is to provide an interpretable model that can
then be used in feature creation for probabilistic models. The rationale behind the proposed
solution is to provide a methodology capable of filtering uninformative features. To address
this challenge, the proposed solution uses Convolutional Neural Networks (CNNs) for both
recognition and generative models, producing an individual representation for each kernel
of the last convolution layer of the recognition model. As a result, a different set of latent
random variables was assessed for each of these kernels. The VAE was trained using the
standard unsupervised learning methodology. Afterward, the encoder was employed as
a feature creation layer (with frozen weights) for the probabilistic model, trained using
supervised learning.

Two approaches were examined to select which latent variables are more relevant
for the probabilistic classifier. It is worth noting that each latent variable was sampled
from a distribution associated with a kernel of the last convolution layer of the encoder.
A distribution was created for each kernel; hence, each latent variable represents one of
the kernels, and these variables were used as features for the classification procedure. As a
result, using feature selection on the sampled latent variables leads to the kernel selection
of the last convolution layer of the encoder.

The first feature selection approach used a wrapper method, employing Sequential
Forward Selection (SFS) to choose the most important kernels. In contrast, the second used a
filter method to determine the relevance of each kernel, ranked according to which are the
most dissimilar kernels. This second proposed method follows the main hypothesis of this
work that an interpretation of the latent representation can be performed by examining
the shape of the created distributions, suggesting that the least relevant distributions can
be identified by how similar they are to the other distributions. As a result, it is possible
to filter the uninformative features (when the encoder is used for feature creation) by
removing the irrelevant distributions. In this view, SFS was used as a benchmark for the
proposed second method, which has the main advantage of only requiring a number of
examinations that is equal to the number of kernels k to be selected (while SFS will produce
k (k + 1)/2 sets to be examined), thus being a much faster algorithm (especially for larger k)
that is also classifier independent (filter method).

Therefore, the main contributions of the work are:

• The proposal of a technique for assessing the distribution created by each kernel of
the VAE last convolution layer.

• The proposal of a methodology for feature selection in VAEs based on the filter method that
examines the shape of the created distributions for assessing the uninformative features.

The proposed technique follows the rationale of model pruning, which is essential
for building applications for resource-constrained devices frequently used in the Internet
of Things (IoT) [7,8]. The phenomenon of variational pruning in VAEs occurs when latent
variables are unused in the model, resulting in the posterior matching the prior distribution
(posterior collapse) [9]. However, our proposed approach diverges from this concept as
we propose selecting a subset of latent variables from a pre-trained model with fixed
weights without addressing the posterior collapse problem, which was already studied in
state-of-the-art models. For example, Yeung et al. [10] introduced the concept of epitomic
variational autoencoders, which generate sets of mutually exclusive latent factors that
compete to explain the data. Another approach was proposed by Razavi et al. [11] using
the δ-VAE, which, instead of going for the standard approach for preventing the posterior
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collapse (that either requires altering the training objective or weakening the capacity of
the decoder), imposes a constraint on the variational family for the posterior, ensuring it
maintains a minimum distance from the prior. On the other hand, Tomczak and Welling [12]
used a type of prior named variational mixture of posteriors.

Our proposal focuses on post-training pruning to fed features for a subsequent model.
Although several works have previously used VAEs for classification and regressions
tasks [13–15], to the best of the authors’ knowledge, no prior state-of-the-art research has
introduced the concept presented in this work, which involves combining the proposed
feature pruning for selecting the kernels of a VAE and, subsequently, utilizing the derived
features to feed a machine-learning model.

The following sections present the developed methods, followed by the results and
discussion. This paper is then concluded by presenting the main conclusions.

2. Developed Methods

The developed methodology is composed of two main steps: The first refers to produc-
ing a VAE that can create an individual representation for each kernel of the last convolution
layer of the recognition model. This model maps x to posterior distributions Q(z|x) in
the encoder while the likelihood P(x|z) is parametrized by the decoder. The second step
involved using the encoder model as feature creation (with frozen weights), employing a
feature selection procedure to filter features from uninformative kernels. This produced
a subset u that fed the probabilistic classifier to make a forecast of the labels y. Figure 1
presents a simplified overview of the proposed methodology. All of the code was developed
in Python 3 using TensorFlow.
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Figure 1. Simplified overview of the proposed methodology, composed of two main steps: The
first step develops the VAE, whose encoder was then used for feature creation that fed the classifier
created in the second step.

2.1. Variational Autoencoders

The standard VAE is a latent variable model where the decoder assumes a Gaussian
probability distribution whose parameters (mean and variance) are provided by the latent
vectors. This assumed normal probability distribution could be described as [16]:

P(x|z) = N
(

x|Gµ(z), Gσ(z)
2 × I

)
(1)

where the first and second terms of the distribution are the mean and the variance of
the latent vector, respectively. I is an identity matrix of a suitable size. Through the
reparameterization process, z can be estimated by

z = µ(x) + σ(x)× ε; ε ∼ N(0, 1). (2)

This process allows the differentiation of functions that involve z concerning the
parameters of its distribution (in this case, mean and variance), enabling backpropagation.
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During training, the optimization objective is usually related to the Evidence Lower Bound
(ELBO), which uses the Kullback–Leibler Divergence (KLD) to measure closeness from the
distribution Q to a target distribution. Maximizing the ELBO will maximize the log-
marginal likelihood of the decoder. However, it is generally preferred to minimize the
negative ELBO defined by [16,17]:

−ELBO = KLD[Q(z|x)||P(z)]− Ez∼Q(z|x)[log[P(x|z)]]. (3)

This cost function comprises two parts, a regularization term and a reconstruction loss.
The first is a KLD regularizer, a distance function that leads the optimization procedure
to search for solutions whose densities are close to the prior on the latent representation,
defined by P(z). The second part evaluates the probability of the data given the model
and can be assessed by the cross-entropy of the VAE input and the output data. As the
reparameterization trick is used, when the model is based on Gaussian distributions, the
first part of the computation can be carried out by [6]:

KLD[N(µ(x), σ(x))||N(0, 1)] = −1
2∑

[
1 + log(σ(x))− µ(x)2 − eσ(x)

]
. (4)

It is important to notice that a standard Gaussian is a typical choice for the prior as
it encourages the encoder encodings to be evenly distributed around the center of the
latent space.

2.2. Implemented Variational Autoencoder Architecture

The CNN is an excellent base model for the encoder since its local connectivity char-
acteristics allow the network to recognize local patterns in the input data. This network
usually employs a combination of convolution and pooling layers to implement a trans-
formation of the inputs while reducing redundancy [18]. The decoder must carry out
the opposite operation, which can still use a CNN but with deconvolutional layers that
associate a single input activation to various outputs. Unpooling can also be used to help
in the procedure. As a result, the network output is enlarged compared to the compressed
input latent vector [19].

A standard architecture was used as a proof of concept in this work. In particular,
a variation of LeNet-5 was employed for the encoder, composed of a convolution layer,
followed by a pooling layer which, in turn, was followed by a convolution layer. Each
kernel output of this last layer was flattened and fed to the sampling layer. This sampling
layer estimates the two parameters of the Gaussian distribution and samples one value
which is part of the array that defines the output latent vector. As a result, a Gaussian
distribution is produced for each of the last convolution layer’s kernels, and a value is
sampled from this distribution.

The decoder output shape should match the encoder input data. Hence, the latent
vector fed the decoder’s dense layer (a standard fully connected layer frequently used in
feedforward neural networks). The number of neurons used in this dense layer was chosen
in a way to avoid the need to use unpooling layers, simplifying the model architecture. The
output of this dense layer was then reshaped and fed a sequence of three deconvolutional
layers that generated the desired output shape (equal to the encoder input shape).

The implemented VAE architecture is presented in Figure 2. The layer activation
function was selected to be the Rectified Linear Unit (ReLU) to improve the network training
time. Likewise, during training, the reconstruction loss was the tracked metric, and the
model stopped early, with a patient of 5 epochs from the possible 100 epochs, if a minimum
improvement of 1 in the tracked metric was not met.
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their produced output shape are also presented.

2.3. Kernel Selection Methods

The standard VAE implementation uses one dense layer to learn each parameter of
the employed distribution. Hence, two dense layers are usually used since two parameters
define the Gaussian distribution. The number of neurons on these layers is the same and
defines the latent space. All neurons of the two dense layers are connected to all kernels of
the previous convolutional layer, so they all learn distributions from the same feature data.

The proposed approach of this work goes in the opposite direction, using two dense
layers (with just one output neuron in each) connected to each kernel from the convolutional
layer that provides the features to the distributions. This way, each distribution learns from
a single kernel (instead of learning from all kernels), allowing the possibility of assessing
which are the most relevant kernels (latent space interpretation) for classification. This can
confirm the basic assumption of this work that the sampled features (from each individual
kernel) produce dissimilar output distributions (by the sampling layer) for input data from
different classes.

Two methodologies were studied to select the most relevant set of latent variables. The
first was the benchmark and depended on the classifier, using the standard wrapper SFS
method. Particularly, two vectors were produced, one containing all latent variables and a
second that was empty. The goal was to create a feature vector to provide the maximum
Accuracy (Acc) for the intended classification. In the first iteration, all features of the first
vector were used one by one alone, and the most relevant feature (the one that, when
used alone, led to the highest Acc) was identified, being moved to the second vector. In
the subsequent iterations, the algorithm looked for the features in the first vector that,
when combined with the features in the second vector, provide the highest Acc, being
sequentially moved to the second vector. This iterative process was repeated until the first
vector was empty.

The first methodology is usable when the number of latent variables (denoting the
number of kernels) to be evaluated is considerably small since it requires numerous simula-



Information 2023, 14, 571 6 of 15

tions. This problem is addressed by the second methodology proposed in this work, which
uses a filter method to assess the relevance of the features. The second method was named
KLD selection (KLDS), and its pseudocode is presented in Algorithm 1.

The premise was that a kernel with a lower relevance was more similar to all other
kernels; hence, it was less relevant as it conveyed less unique information. Therefore, the
created features could be ranked according to the kernel relevance measure, sorting them
in a vector from more to less dissimilar (i.e., first was the feature with the highest kernel
relevance, then the feature with the second highest kernel relevance, and successively until
we reach the feature with the lowest kernel relevance).

The second methodology’s algorithm is composed of three parts: In detail, in the
first part of KLDS, several Monte Carlo samples were performed. For each class, the
training dataset samples fed the encoder, and the latent space features were stored. As
each feature represents one of the kernels in a known sequence, it was then possible to
produce the distribution of that kernel for each dataset class. Therefore, number_of_kernels
defines the number of distributions (one for each kernel) to be assessed for each dataset
class (number_of_classes).

Afterward, for the second part, the distributions assessed for all kernels of one class
were examined, calculating for each kernel distribution the KLD between their distribution
and the distribution of all other kernels (in pairs). These calculations were then used
to determine the mean value of all KLD estimations of each kernel. This process was
repeated for all dataset classes, leading to number_of_kernels average KLD estimations (one
per kernel), indicated by KLD_measures, for each class. Finally, each kernel’s assessed
KLD_measures were averaged (resulting in KLD_kernels) for all classes in the third. The
resulting value (for each kernel) was named kernel relevance.

Algorithm 1: Pseudocode for the KLDS algorithm, presenting the required inputs, the produced
outputs, and the procedures.

inputs: number_of_classes, number_of_kernels, train_data, train_labels, encoder
output: kernel_relevance
for class← 1 to number_of_classes do
| samples← encoder(train_data(train_labels equal to class))
| kernels_distributions← distribution(samples)
| for testing_kernel← 1 to number_of_kernels do
| | for comparing_kernel← 1 to number_of_kernels do
| | | KLD_measures(testing_kernel, comparing_kernel)← KLD(testing_kernel,
comparing_kernel)
| | KLD_kernels(testing_kernel, class)←mean(KLD_measures(testing_kernel, all))
for testing_kernel← 1 to number_of_kernels do
| kernel_relevance(testing_kernel)←mean(KLD_kernels(testing_kernel, all))
kernel_relevance(testing_kernel)← sort_descending(kernel_relevance)

The rationale for checking these two methodologies is to verify if a classifier-independent
method (the second proposed methodology) can perform similarly to a classifier-dependent
method (the first proposed methodology).

Frequently, a classifier-dependent method can produce a better performance but
require the selection to be redone when the classifier changes and takes much more time to
perform the selection [20]. Hence, when the number of kernels is too high, the classifier-
dependent methods become unfeasible, leading to the need for the proposed classifier-
independent approach.

2.4. Classification Procedure

After training the VAE, the encoder was used to produce features, and feature selection
was employed to choose the most relevant features to feed a classification procedure.

This classifier, whose structure is presented in Figure 3, was composed of three dense
layers following the LeNet-5 architecture. However, these layers were probabilistic to
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express the uncertainty that arises from inherent data noise and the uncertainty associated
with the incompleteness of the model. These two uncertainties are named aleatoric and
epistemic, respectively [21].
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Figure 3. Structure of the classifier used for the classification analysis. The feature extraction part
comprises the encoder developed by the VAE, and the weights of this part were frozen (non-trainable).
A feature selection procedure was employed for the classification, and the classifier’s weights were
optimized using supervised learning.

The probabilistic classifier was developed using Variational Inference (VI) to train the
dense layers’ weights while the encoder weights were frozen. These dense layers employ
the flipout estimator to decorrelate the gradients within a mini-batch, resolving a central
problem associated with VI weight perturbation techniques, where there is a high variance
in the gradient estimates as all mini-batch samples share the same perturbation. Therefore,
the output of the dense layer forward pass is given by [22]

Y = Φ
[
XW +

[
(X ◦ B) ˆ∆W

]
◦ A
]
, (5)

where ◦ is the element-wise multiplication, Φ is the employed activation function (selected
to be ReLU except for the output layer, which used softmax), X are the samples, W are the
average weights, ∆Ws is a stochastic perturbation, and two random vectors (A and B) were
sampled uniformly from the −1 to 1 range. The VI was also used to solve the ELBO, and
the ADAM algorithm was employed to train the model.
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2.5. Performance Metrics

The performance of the classifier was assessed using Acc since the standard dataset
(MNIST) has a balanced number of samples per class. The main goal is to observe if this
metric changes as the number of used features vary. This metric’s 95% Confidence Interval
(CI) was also assessed.

The quality of the reconstructed images was also examined as the number of selected
features that feeds the decoder varies. For this purpose, the Feature-based SIMilarity index
(FSIM) was employed to compare the structural and feature similarity between the restored
and original images. This metric is based on the gradient magnitude and phase congruency.
The optimal similarity occurs when the FSIM is 1 [23].

3. Results and Discussion

This section first presents the procedure for validating the proposed methodologies
and then further discusses the results. This study employed standard publicly available
datasets that are well-documented and have been widely utilized for machine-learning
and computer vision research. These datasets act as established benchmarks for baseline
comparisons, facilitating the evaluation of the proposed methodology against existing
state-of-the-art techniques.

The models were examined over multiple runs with random initializations, and similar
outcomes were attained in each run. However, it is important to emphasize that each
training session for the VAE begins with random weight initialization, potentially resulting
in different distributions produced by the samples of the kernel of the last convolution
layer of the encoder. Nevertheless, the primary objective of this study is to demonstrate
the capacity to reduce the model’s parameter by removing uninformative features while
constructing a probabilistic model. To achieve this objective, we show the full process
of one run, wherein we train the variational autoencoder through unsupervised learning
and, subsequently, as an example, utilize this trained model as a feature generator for a
probabilistic classifier (implementing a downstream task of image classification).

3.1. Experimental Procedure

In the first experiment, the model shown in Figure 2 was implemented and provided
with data from the MNIST dataset, in which the data provider previously established
training and testing datasets. Afterward, the model depicted in Figure 3 was employed to
perform the feature-based analysis with a classifier.

During the training of the models, an early-stopping procedure was employed to
avoid overfitting, considering 20% of the training dataset as validation and a patience
value of 10. The model with all kernels was further examined for the second experiment
to perform uncertainty and classification analysis. The last experiment used the model
presented in Figure 2. However, the number of features fed to the decoder varied, allowing
the FSIM between the input and produced images to be assessed for different settings.

3.2. Kernel Examination and Selection

The model presented in Figure 2 was initially trained, and the goal was to evaluate the
distribution of the 16 features (produced by the encoder) when only samples of one of the
classes (in the test dataset) were presented. These features correspond to the distributions
created by evaluating the kernels (one feature per kernel). The boxplots of the samples
generated by each feature’s distribution for each dataset class are shown in Figure 4.
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Figure 4. Distributions produced by the samples of the kernel of the last convolution layer of the
encoder, for classes (a) 1, (b) 2, (c) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, (i) 9, and (j) 10, showing the 16 kernels
in sequence, from left (kernel 1) to the right (kernel 16). The left figure shows the shape of each
distribution produced from the samples, whose amplitude was gradually reduced (from the first to
the last kernel) to allow the visualization of all distributions. In contrast, the right figure shows the
box plot of the samples.



Information 2023, 14, 571 10 of 15

By examining Figure 4, it is notorious that several distributions exhibit almost no
alteration for all dataset classes, as visible in the eight distributions to the left in Figure 4a–j.
This is likely due to the posterior collapse. Therefore, this work hypothesizes that these
kernels can be removed from the model, leading to a pruning concept. On the other hand,
it is proposed that the kernels that change the most (as visible in the eight distributions to
the right in Figure 4a–j) can be the most relevant for a classification task.

The next step was the creation of the classifier, using the encoder (with frozen weights)
as the feature creation layers and training only the probabilistic layers, using the architecture
presented in Figure 3. The Acc attained through the iterations of the evaluated feature
selection algorithms is shown in Figure 5. It was observed that both algorithms attained a
similar performance, choosing the same seven kernels as the least relevant, with an almost
identical order. However, the nine most relevant differ in the selected order. Nevertheless,
it is possible to observe that the last five selected kernels have a small contribution to the
performance improvement, with only a 1% variation.
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algorithms. The total number of parameters of the model, as the number of kernels varies, is
also presented.

As a result, the two main hypotheses of this work were confirmed, as the kernels with
the lowest alteration in the kernel distributions from the dataset classes were identified as
less relevant by both SFS and KLDS. The opposite was true for the kernels’ distributions
that varied the most among the dataset classes. However, it is essential to observe that
KLDS only required one examination per iteration, leading to 16 examinations. At the
same time, SFS made 136 examinations over the 16 iterations. Hence, KLDS only made 12%
of the simulations performed by SFS while achieving the same performance, supporting
the relevance of this method, especially for models with a large number of kernels to
be assessed.

Another relevant aspect is the total number of parameters of the model. As presented
in Figure 5, by increasing the number of kernels, the total number of parameters used by
the model also increases in a linear progression. Therefore, it is clear that keeping only the
most relevant kernels in the classification can help build models with a high relevance for
low-computational-resource devices, such as the ones used for IoT.

In this work, if we remove the five least relevant kernels, the total number of parame-
ters of the model is reduced by 4% (1200 parameters) compared to using all 16 kernels. This
reduction can be substantial for more complex models that employ millions of parameters.

As an example, using TensorFlow Lite to convert the model (with deterministic layers
in the classification) without changing the quantization but removing the five less relevant
kernels can lead to a reduction of almost 25 KB in a microcontroller program, a value that
can be relevant for resource-constrained devices, where the program will include multiple
programming modules in addition to the machine-learning model.
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3.3. Uncertainty and Classification Analysis

A relevant aspect of the employed probabilistic classifier is that it can express epistemic
and aleatoric uncertainties. Epistemic uncertainty pertains to the inherent uncertainty
within the model itself, while aleatoric uncertainty captures the inherent randomness in the
data. These two forms of uncertainty are of significant interest in various machine-learning
applications, particularly in cases where model reliability and robustness are crucial.

A Monte Carlo sample was used to measure this uncertainty, sampling the forecasts of
the model multiple times for each example of the test dataset. An example of the variation
in the models’ forecast (the softmax output) from a specific example that was misclassified
is presented in Figure 6. This visual representation highlights the challenge of selecting the
correct class as the output since both classes 1 and 5 seem to be plausible choices, thereby
casting doubt on the reliability of the model’s prediction for this specific instance. It is
important to note that this variation in the output is produced by the probabilistic layers of
the model, generating a different forecast every time the sample is presented to the already
trained model. The higher the variations of the model’s forecasts, the more uncertain the
model is about them. This behavior is not present in the trained deterministic models
where the output will be the same every time the same sample is fed, thus not showing the
model uncertainty.
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Furthermore, we conducted a comparative analysis of the probabilistic classifier’s
performance against a variant employing deterministic layers instead of probabilistic ones.
It was observed that the probabilistic model attained an accuracy (in the test dataset) of 97%,
while the performance was 1% lower for the deterministic model. These results suggest
that combining probabilistic layers with the VAE’s encoder can result in it better learning
the relevant patterns than a deterministic model.

Another important aspect is the performance comparison with a classifier whose en-
coder was developed using the standard VAE model. This traditional VAE model employs
two dense layers to estimate Gaussian distribution parameters, and all distributions are
connected to all kernels. The proposed methodology outperformed this standard VAE-
based classifier by 2% in terms of average accuracy. This outcome underscores the efficacy
and relevance of our proposed methodology in achieving superior classification results.

3.4. Reconstruction Appraisal

To further corroborate the idea that the kernels found to be less relevant (kernels
whose distribution varies less among the dataset classes) can be removed, the sequence
chosen by KLDS was examined using the FSIM to assess the quality of the reconstructed
images. The results of this analysis are presented in Figure 7, which shows the FSIM for
all dataset samples. A particular sample was also displayed as an example showing the
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progress in the reconstruction as the number of used kernels increases (adding the sequence
from most to less relevant).
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Figure 7. Variation of the FSIM as the kernels selected by KLDS is progressively used (one by one),
from more to less relevant. The image also displays the FSIM variation for a specific example (original
image) and the progression in the reconstructed images as the number of used kernels increases.

By examining Figure 7, it is possible to conclude that the seven least relevant kernels
did not contribute to a relevant improvement in the FSIM, and that, for some samples, an
even lower number of kernels could be used (as in the example presented in the figure).
These results substantiate the previous analysis.

3.5. Further Validation in Other Datasets

Three more datasets were examined to validate the proposed approach further. These
datasets were Fashion-MNIST, Canadian Institute For Advanced Research with ten classes
(CIFAR-10), and the Street View House Numbers (SVHN). These datasets were selected
since they have ten classes and a similar number of samples, allowing a fair comparison of
the results.

KLDS was used in the three new datasets and selected the relevance of the kernels.
Afterward, using the found kernel sequence, and the Acc and FSIM were assessed. The
attained results are presented in Figure 8 as the number of parameters of the model (linked
to the number of used kernels as shown in Figure 5) increases. The three-channel datasets
were converted to a single-channel one.

The asterisk in Figure 8 shows when the increase in the Acc and FSIM becomes
irrelevant (less than 1% variation in both metrics). By examining the figure, it is clear
that the number of kernels can be reduced in all analyzed datasets without meaningfully
affecting the performance, supporting the previous examinations. Specifically, on average,
the models used 10 of the 16 kernels in the four examined datasets, denoting a reduction
of 37.5%.
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Figure 8. Variation of the Acc and FSIM as the used kernels, whose sequence was selected by KLDS,
is progressively increased (leading to an increase in the number of parameters of the model) for the
four examined datasets. The asterisk indicates when variation in both metrics is lower than 1%.

4. Conclusions

Kernel selection approaches for classifiers based on the VAE’s encoder are presented
in this work, following the rationale of model pruning. The proposed techniques were able
to explore the VAE latent space with an interpretation based on the produced kernels’ dis-
tributions.

The main hypothesis of this work was confirmed as it was observed that some kernels
do not convey relevant information and can be removed. Notably, the proposed KLDS
algorithm showed that the kernels with dissimilar distributions are likely the most relevant.

Regarding performance, the examined classifier with probabilistic layers was found
to be superior to a model with the same architecture but using deterministic layers. This
result is of the utmost relevance as probabilistic models can express epistemic uncertainty,
which can be useful in areas such as clinical diagnosis [24].

As a result, the proposed methodology can be used for building applications for
resource-constrained devices in multiple IoT areas, such as human activity analysis [25],
where there is a need to address the bottleneck in memory usage of the devices to allow the
machine-learning models to be implemented on small microcontroller units [26]. Therefore,
the next steps of this research should further validate the attained results in real-world data.

Conversely, several main problems are associated with VAEs [2,6], which are also
present in this work. Particularly, the sampling procedure will induce noise in the gradients
required, and generated data, in the case of images, tend to look blurry with a high prob-
ability of looking unrealistic. Furthermore, the usual approach of employing a Gaussian
distribution as the prior typically limits the model to learning unimodal representations
without allowing dissimilar or mixed data distributions. This work is intended as a proof
of concept, employing conventional machine-learning datasets and models. Consequently,
it is important to substantiate the proposal through additional experimentation involving
diverse model architectures and real-world application datasets.
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