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Abstract: Spot welding is a critical joining process which presents specific challenges in early defect
detection, has high rework costs, and consumes excessive amounts of materials, hindering effective,
sustainable production. Especially in automotive manufacturing, the welding source’s quality needs
to be controlled to increase the efficiency and sustainable performance of the production lines.
Using data analytics, manufacturing companies can control and predict the welding parameters
causing problems related to resource quality and process performance. In this study, we aimed to
define the root cause of welding defects and solve the welding input value range problem using
machine learning algorithms. In an automotive production line application, we analyzed real-time
IoT data and created variables regarding the best working range of welding input parameters
required in the inference analysis for expulsion reduction. The results will help to provide guidelines
and parameter selection approaches to model ML-based solutions for the optimization problems
associated with welding.

Keywords: spot welding; machine learning; tree algorithms; expulsion reduction; welding parameters

1. Introduction

In the digitalization of production lines, manufacturing companies are strongly ori-
ented toward minimizing defects in production processes by adopting intelligent solutions
enabled by digital tools. In this context, data connectivity, predictive analytics using ma-
chine learning models, intelligent manufacturing systems, and big data solutions act as
primary tools to improve production efficiency and profitability. In particular, intelligent
control systems, which include learning process and pattern recognition algorithms, offer
opportunities to detect rare quality defects in the automotive industry, acting as a leader
and first adopter of smart manufacturing worldwide [1,2]. Artificial intelligence and ma-
chine learning (ML) techniques for process simulation are enablers of “Time to Market”
and “Do It Right the First Time” expectations in the automotive industry [3]. Hence, the
quality of the welding process urgently needs to be improved to enable higher resource
efficiency and cost reduction [4]. In practice, weld quality checks are usually conducted
at the end of a welding operation. Hence, welding defects can only be identified after the
welding is completed, causing delays in defect identification and necessitating reworks
and excessive material usage, which hinder sustainable production [5].

In this context, the use of optimized parameter combinations significantly reduces
the possibility of scrap in the welding process. However, setting parameters from com-
plex welding parameter sets is a challenge in machine learning applications. Mechanical,
thermal, and metallurgical processes have severe effects on each other in expulsion; for
example, the electric current determines the heat input rate affecting the source’s tempera-
ture [6]. On the other hand, the estimation or control of expulsion is a complicated process
which requires the application of various techniques. The input parameters of the welding
process are the most critical factors affecting welding success. In this context, finding
the optimum values of these input parameters increases the welding process’s efficiency.
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Machine learning algorithms can be used to select the variables for machine learning appli-
cations in production systems. In a study by Gujre and Anand [7], which aimed to find the
input parameters’ optimum values, the welding input’s values and reference values were
determined by the experts in a production line. Although this application reduced the rate
of defective output from the welding process, high defective output rates remained in some
product types, which made the identification of the root cause of the problem challenging.

It is crucial to analyze production data and prepare it for ML to solve problems related
to quality. However, due to the lack of solutions in industry, there is a huge demand for
defect identification with multi-sensory system applications. As presented in Section 2,
many previous studies provided valuable examples of machine learning applications to
welding processes. However, few studies focused on precise welding process parameter
selection in expulsion prediction with the usage of a welding robot.

In addition, setting parameters requires a thorough understanding of the inter-relationships
between potential welding process parameters, reflected by their correlations. In this
context, this paper focuses on a machine learning application to define the welding process
quality parameters and predict the variables which cause expulsion defects in a case study
from the automobile production line of a major Turkish automotive producer. In this article,
we discuss the input parameters that may cause defective outputs and the methods that can
be applied to improve the process. A detailed literature review was conducted regarding
the welding parameters affecting process quality based on the theoretical background.
In addition, we revisited previous research regarding machine learning applications on
similar welding processes. After defining the parameters that cause expulsion, we examined
product types with parameter values that cause more defects. Accordingly, we revised the
values given to the welding robot for system adjustment.

In this paper, we also present a procedure for the identification of the best working
range of welding input parameters and the most probable set of variables that might cause
defect problems. To design a prediction model, the data domain knowledge regarding
machine welding parameters, multiple machine learning algorithms, and the welding
robot’s working principle were considered. The analysis was based on real-time data
exported from the factory production line’s process databases. Then, new and the most
practical variables were defined in the raw data set. With a tree-based machine learning
algorithm, model outputs provided data to the welding robot in the automotive production
line. The model was used to predict the expulsion per distance of welding parameters
from the reference value. The parameter values were measured instantaneously, and the
formation of expulsion with sudden breakages was detected.

2. Background

The utilization of AI to address challenges and problems in welding has been exten-
sively discussed in the literature [8]. Previous research focused on increasing production
line efficiency, which benefited from the application of many analytical approaches to
predict and detect problems regarding the maintenance time, defective products, welding
defects, and root cause analyses of the product and process quality problems. In all produc-
tion line processes, to produce a product with appropriate quality, precise combinations of
input process conditions are needed [9]. In welding processes, poorly controlled welding
parameters and weld geometry have been main topics of research regarding process fore-
casting precision for quality improvement [8]. KNN (k-Nearest Neighbor), ANNs (artificial
neural networks), backpropagation (BP) in neural networks, random forest algorithms,
SVMs (support vector machines), logistic regression and its regularized versions, AECs
(Auto-Encoder Classifiers), and sequence tagging are among the models applied to solve
problems regarding welding quality in the literature. In an initial study, Haapalainen
et al. [10] used processed and finalized output samples without defects to select the weld-
ing process parameters, using the KNN algorithm to compare each sample’s parameters
which entered the welding process with the previously concluded observations’ parameter
values without defects. They aimed to choose the most representative variables to find
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similarity between the observations and increase efficiency; however, the calculation of the
similarity in outlier observations was a limitation to the application of this method. In the
following publications, researchers applied ANN (artificial neural network) modeling to
predict the depth of penetration and weld bead width from the weld pool’s infrared thermal
image [11], the random forest algorithm and logistic regression for variable selection and
model building to predict low-weld-quality tubes [7], and J48 and random forest classifi-
cation to determine the root cause of weld defects associated with input parameters [12].
Gujre and Anand [7] concluded that process parameters’ safe operating ranges increase the
efficiency of the welding process.

In the following years, researchers also combined digital technologies with machine
learning applications. Rather than manual methods, intelligent systems began to be used
to more accurately detect the welding defects in production lines. During this period, CNN
algorithms and multiple classification approaches were used to classify defect images [13],
while the SURF (Speeded-up Robust Features) method could be used to distinguish the
weld defects most effectively, the AEC (Auto-Encoder Classifier) was used to solve the
classification problem [14], and tree-based machine learning methods such as XGBoost and
Random Forest algorithms detected potential failures using real-time data and predicted
signals for potential failures [15]. Focusing on the root cause of weld defects associated with
input parameters, which provide high precision regarding the welding process parameters’
values, and utilizing industrial image processing to automate quality controls and detect
abnormal products, Rahmatov et al. [16] used machine-learning-based approaches to detect
abnormal products through image classification. To determine the most effective variables,
Escobar et al. [1] achieved 100% accuracy by applying the L1-regularized logistic regression
learning algorithm and pattern recognition method to solve the problem of welding quality
using a binary classification method. They obtained 100% accuracy in the detection of de-
fective products. In other studies, the SVM algorithm was utilized to examine maintenance
times and find a cutting tool’s correct replacement time in the production line [17], and
Agglomerative Cluster Analysis methods were used to cluster undesired product states [18];
the backpropagation (BP) feature in neural networks was used to improve defect detection
accuracy [19]; sequence tagging and logistic regression were used on various artificially
created weld defects to generate various signals [5]; unsupervised methods such as PCA
(Principal Component Analysis) were used to reduce the dimensionality of the welding
process feature value data set, and k-means was used to classify subsets, which both outper-
formed the static BP neural network in the prediction of the quality of all types of welded
joints [2]. Pereverzev et al. [20] developed intelligent control algorithms to determine the
quality of welded joints and process performance by applying artificial intelligence to arc
welding processes and direct arc growth under disruptive conditions. Table 1 shows a
summary of a comparative analysis of these studies, including their problems, approaches,
and results. Additionally, Afroz et al. [21] developed a wearable speed monitoring device
(SMD) by fusing optical and inertial sensor data to measure the handheld device speed of
the welder, with the aim of tuning the parameters affecting the performance of the SMD
prototype in a real industrial environment. Czimmerman et al. [22] conducted a survey
among producers and concluded that neural networks represent a powerful technique
which is often employed in artificial image processing as they can be used to solve nearly
every classification problem; however, the main drawback is the large number of training
samples required and due to the lack of solutions in industry, there is a huge demand for
an increase in defect identification efficiency with multi-sensory system applications [22].
On the other hand, unsupervised learning methods which are used for density estimation,
dimensionality reduction, and clustering problems in manufacturing processes have lower
efficiencies than supervised learning methods [22].
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Table 1. Literature review regarding machine learning applications for weld quality.

Author Problem Definition Approach to Solve Problem Limitation Result

Haapalainen et al. (2006) [10]
Reducing welding feature

dimension space and selection of
welding parameters

Detecting similarity between
observations with KNN algorithm Detection of outlier observations Improvement in spot welding

process identification system

Chokkalingham et al. (2012) [11]

Predicting the depth of penetration
and weld bead width from the
infrared thermal image of the

weld pool

Using artificial neural
network modeling Manipulation of numeric data Predicting bead width and depth of

penetration with good accuracy

Sumesh et al. (2015) [12] Studying the root cause of
weld defects

Extracting features from sound
signals and using them as input in

the classification algorithm
Data governance

Using arc sound for effective
signature in weld quality

monitoring

Wuest et al. (2014) [18]
Clustering undesired product states,

increasing product quality in the
production line

VM for classification and
Agglomerative Cluster Analysis Desired accuracy via VM

Khumaidi et al. (2017) [13]

Examining the welding defect types
through image processing and

automation of the manual
examinations

CNN algorithm to classify
defect images Only one algorithm

Solved the welding defect problem
with a multiple classification

approach and achieved 95.83%
accuracy

Escobar et al. (2018) [1] Welding quality—defective
detection problem

L1-regularized logistic regression
learning algorithm and pattern

recognition method
- 100% accuracy in detecting

defective products

Gujre & Anand, (2019) [7] Predicting weak-weld-quality tubes Using model true negative outputs
via intelligent classifier algorithm Model adaptivity Finding safe operating ranges

Lee et al. (2019) [17]
Determining cutting tools’ correct

replacement time in the
production line.

SVM algorithm Only observed the
maintenance times

SVM could precisely predict the
correct replacement time

Chen et al. (2019) [19] Improving defect detection accuracy Backpropagation (BP) feature of
neural networks Only NNs applied Improved defect detection accuracy

Pereverzev et al. (2019) [20] The quality of welded joints and
process performance

Artificial intelligence to arc welding
processes and direct arc growth

under disruptive conditions.

The welding process’s non-linearity
and time-varying nature challenged

a clear mathematical relationship
between system’s input and

output parameters

Intelligent control algorithms on the
quality of welded joints and process

performance. Nature of welding
process required various approaches

Selvi et al. (2019) [14]

Reduction in welding defects with
image classification by selecting the

variables that can distinguish the
weld defects most effectively

SURF (Speeded-up Robust Features)
method; solving the classification

problem with AEC
(Auto-Encoder Classifier)

AEC classified the weld images
differentiating the number of

neurons in hidden layers at a rate of
98 per cent accuracy



Information 2023, 14, 50 5 of 25

Table 1. Cont.

Author Problem Definition Approach to Solve Problem Limitation Result

Rahmatov et al. (2019) [16] Detection of the abnormal products
through image classification Machine-learning-based approaches Obtained 92 % accuracy from the model

Ayvaz et al. (2020) [15] Detection and prediction of signals of
potential failures using real-time data

Tree-based machine learning methods
such as XGBoost and Random

Forest algorithm

The factory production line efficiency
can be increased by telling the operators

to take preventive actions

Asif et al. (2020) [5]

Acoustic emission (AE) system designed
to cover a wide range of frequencies as a

real-time monitoring method for gas
metal arc weld defects

Sequence tagging and logistic
regression algorithms

Integration among different
software systems

Deployment of real-time weld
quality monitoring

Chen et al. (2022) [2]

To examine the operating status of the
welding robot under the current

parameter settings and to assess the
welding quality of electrode caps under
different types of plates in real time with

large data sizes

PCA and K-means-based
dynamic classification

Proposal of an adaptive parallel machine
learning strategy for solder joint quality
prediction, relying on noise reduction
and classification of the weld process

feature value data set
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3. Methodology

This paper’s methodology is split into two sections regarding problem identification,
parameter selection, and the prediction of expulsion as a problem related to the quality
of the welding process. In the study, we focused on problems in the welding process in
the production line of a major Turkish Automotive Producer. Firstly, the Welding Process
Parameters and Data Explanation is provided to present a procedure for the identification of
the best working range of welding input parameters and the most probable set of variables
that might cause welding defect problems. Secondly, to design the prediction model, the
machine welding parameters, the machine learning algorithms, data domain knowledge,
and the welding robot’s working principle were defined. Six ML prediction models were
applied to real-time data exported from the factory database which provided the raw data
in the studied automotive production line.

The methodological process and ML Model Flowchart to predict spot welding quality
is provided in Figure 1.
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3.1. Welding Process Parameters and Data Explanation

Figure 2 presents the architecture of the expulsion prediction system and the studied
automotive production system’s data flow in the robot welding application. This is a
scalable process for the production line in which welding and tracking robots provide the
prediction models’ data sets.
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The manufacturing robot fed the IoT hub, and the system used IoT to collect data
online from the robot and this hub. The collected data were stored in a database, including
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the variables to be analyzed for spot welding resistance. After data modeling, the system
reflected the outputs on a dashboard with a user-friendly interface (Figure 2). The data set
covered 32,609 welding counts in which 30,192 had no expulsions.

“Spot Resistance Welding” is electrical resistance welding, which successfully fuses
materials to be combined [23]. This welding process mainly includes welding current,
welding time, electrode force, contact resistance, electrode material property, surface condi-
tion, etc., controlled by variables. The weld current, voltage, gas flow rate, heat input, and
the AE energy accumulation rate (extracted from time-driven AE) can be used as welding
parameters in an acoustic emission system [5].

By revisiting some basic definitions, we can provide better understanding of the
welding parameters:

(a) Concerning the welding current, the basic principle of spot resistance welding refers
to providing a large enough current in a sufficient time from the point to be welded.
A small electrical current may cause a point not to melt adequately and thus to not be
welded, while a large current can cause melting at the welding point and explosions
or electrode distortions. The current continuously increases until expulsion is formed
between the metal sheets. When determining the current to be used, the current
temporal changes should be taken into account, and a gradual increase in current
is preferred [23].

(b) Resistance welding processes are utilized to combine metals and contain spot welding
and seam welding, where resistance is a factor characteristic associated with the
material between the weld surfaces, with dynamic interaction with other parameters
such as current and force [24].

(c) Welding time is a directly proportional variable to heat generation. Generally, the
theoretical minimum current and time required for welding are insufficient to weld
materials due to various losses; thus, the determination of weld time is one of the
most challenging stages in the welding process [6]. As the welding time is related to
the welding point requirements, it is not easy to provide exact values for optimum
welding [25].

Afroz et al. [21] mentioned that heat input is used to ensure the quality of submerged
metal arc welding, one of the most common metal joining procedures in the manufacturing
industry. This heat parameter is dependent on the current and voltage, defined by the spe-
cific welding procedure, along with the welding speed, a feature that is strongly dependent
on the hand movement of the welding operator [21].

(d) The surface coating protects the material from corrosion or other reactions; however,
it makes the welding of the resistance more difficult and facilitates ordinarily tricky
processes in which separate electrode and welding parameter settings exist for each
coating type [26].

(e) Electrode force compresses the metal sheets to be joined. If the welding quality is low,
a large electrode force is required, causing other problems [6]. There is an inverse
relationship between heat energy and electrode force, meaning that higher electrode
strength requires a higher welding current [23].

(f) Holding time refers to the time for which the electrodes are applied to cool the source
after welding (the welding ingot must solidify, making the cooling time necessary
before releasing the welded parts). A long hold time and a higher proportion of
carbon content elements may result in the weld becoming brittle [23].

(g) Welding voltage is a parameter developed together with the heat development for-
mula and determines the phase mode of the welding process without significantly
affecting the heat [27].

In the welding process, weld current, weld resistance, weld time, surface coating,
electrode force, hold time, and welding voltage have severe effects on each other. Figure 3
shows an example of the appropriate welding range for a welding lobe due to the evaluation
of parameters such as welding time and welding current, as adapted from Hwang et al. [6].
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No expulsion occurs if a suitable welding time is applied while working at a lower
current. According to Wan et al. [26], the acceptable current range can behave more flexibly
under electrode force conditions; however, the current range is limited. The pulse-type
welding current waveform control could be used to reduce weld expulsion and increase
the acceptable welding current range. Many studies suggested the use of electrode forces
to solve the problem of expulsion reduction [26].

Spot welding is widely used to join low-carbon steel components for cars, furniture,
and similar products. Stainless steel, aluminum, and copper alloys are also spot-welded
materials [28,29].

On the other hand, resistance spot welding can be examined as a multi-input and
output process, because welding quality is directly affected by input parameters; in fact,
the aim of this study was to try to optimize these parameters [27].

3.2. Predicting the Expulsion in the Welding Process Outputs of Automotive Production Line

The material used in this study was welding robot data and process information from
the studied automotive production line. Figure 4 shows the analytical process including
the data collection, feature elimination, classification modeling via learning algorithms,
and evaluation of model results.
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Figure 4. ML analytical process.

In the case of an application in an automotive manufacturing line, the dependent
variable was defined as the “expulsion” in the welding process’s outputs. The values of
the variables used in the root-cause analysis were taken from the welding robot’s database.
The application also used the robots’ log data, including the observations logged to the
database on factory servers by the welding robots after each operation. This application
aimed to predict the classes of dependent variables belonging to observations with machine
learning methods.

3.2.1. Variable Setting and Feature Selection

First, the welding process inputs were examined, and the variables with a correlation
rate of over 70% were eliminated. Then, we attempted to obtain new variables via variable
transformation and evaluated the results using a machine learning model. The welding
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robot calculated the expulsion using a complex algorithm, resulting in classification with an
accuracy of 100% during the defined test period. The robot’s prediction results were used
as the dependent variable. In this model, we aimed to converge true negative (TN) and
true positive (TP) values to the values classified by the robot. After selecting the model and
variables with the most potent representation of the robot, we explored the problem’s root
cause. Table 2 shows the raw features taken from the welding machine database system.

Table 2. Raw variables as candidate features for spot welding parameter prediction.

Variables

Expulsion Act. Res. Energy Diff. Ref. Heat Spot

ac.pr.st Act. Volt. Energy Excd. Ref. Res. Time Diff.

Act. Curr. Act. Weld Time Product Type Ref. Volt. Time Exclusive

Act. Energy Date/Time Ref. Curr Ref. Weld Time Timer

Act. Heat Date/Time. 1 Ref. Energy ref.pr.st Wear

The explanations of these variables are presented below:

• ID: The values which are assigned for each row.
• Çapak (Expulsion): “Çapak” is actually a dependent variable which was to be related

throughout the project. In each observation, the categories of expulsion or not expul-
sion categories were assigned. Being assigned to the “expulsion” class meant that an
observation was a problematic observation. By using this model, we aimed to make
predictions and analyses on this variable (“Çapak”) by using independent variables
which had high explanation power over the dependent variables. The categories
were entirely assigned by the robot. The categorization of the robot was controlled,
concluding with the 100% correct prediction rate of the robot. The “Çapak” class was
assigned to the observations if a sudden change in resistance was seen, as can be seen
in Figure 5, which was taken from the robot education document.

• Timer: The name of robot that was used for the analysis.
• Date/Time: The exact time that the operation was carried out.
• Program: One of the categorical variables in which each program referred to a different

point where the welding occurred, meaning that each program represented a different
category. The difference between programs varied depending on factors such as where
the welding occurred, the thickness of the material, and the type of material, such
as aluminum.

1. Spot: Each different spot type actually corresponds to each program type which has
one spot number. Spot is also one of the categorical variables, like “program”.

2. Wear: In which order the spot welding is observed in each cycle. In time, the wear
variable increases as it indicates the number of point shots that the welding made in
that cycle.

3. Actual Voltage (Act. Volt.): The amount of voltage the robot provides during the
welding period for each observation unit. This is a parameter developed together
with the heat development formula and does not have a significant effect on heat.

4. Reference voltage (Ref. Volt.): Decided through previous studies, the reference voltage
value actually indicates the optimum voltage value for each observation, aiming to
complete the process without encountering any spatter problems. These reference
values are given to the robot to work with during the process.

5. Actual current (Act. Curr.): The amount of current the robot provides for the duration
of the welding for each observation unit. If a welding current is excessive, cracks may
occur due to difficulties in the flow of the current from the electrodes to the material.

6. Reference current (Ref. Curr.): Decided through previous studies, the reference current
value actually indicates the optimum current value for each observation, aiming to
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complete the process without encountering any expulsion-related problems. These
values are also given to the robot to work with during the process.

7. Actual welding time (Act. Weld time): The duration of the welding process for
each observation. Heat production is directly proportional to the welding time.
Determining the welding time is one of the most difficult stages of the welding process.

8. Reference weld time (Ref. Weld Time): Decided through previous studies, this value
actually indicates the optimum current value for each observation. The aim is to
complete the process without encountering any expulsion-related problems. These
values are also given to the robot to work with during the process.

9. Actual energy (Act. Energy): The amount of energy given during the process for each
observation. This value is taken from the welding robot with formulations based on
other variables.

10. Reference energy (Ref. Energy): Decided through previous studies, the reference
energy value actually indicates the optimum current value for each observation. The
aim is to complete the process without encountering any expulsion-related prob-
lems. These values are calculated using the formulations, and the energy values are
dependent on the other variables.

11. Actual heat (Act. Heat.): These heat values are given for each observation while
welding is carried out, aiming to bring these values as close to the optimum as possible.

12. Reference heat (Ref. Heat): Determined by the previous experiments, the reference
heat value actually indicates the optimum current value for each observation. The
aim is to complete the process without encountering any expulsion-related problems.

13. Actual resistance (Act. Res.): The resistance force that occurs when the electrodes join
together and perform the welding process. There is also a formulation connection
between actual resistance values and actual volt values.

14. Reference resistance (Ref. Res.): Determined by the previous experiments, the ref-
erence resistance value actually indicates the optimum current value for each ob-
servation. The aim is to complete the process without encountering any spatter-
related problems.
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Some of the features listed in Table 3 were transformed by using the raw variables
given in Table 2. These three variables show the effect of the actual and reference values
on the model. In the welding process, the robot was fed with the reference values, and it
converged to these reference values for each product type. The defect rate decreased as the
robot converged to the reference value. It was found that reducing the difference between
the actual and reference values is the most effective way to optimize the welding process.
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Table 3. Transformed features.

Variables

Expulsion Act. Res. Energy Diff. Ref. Heat Spot

ac.pr.st Act. Volt. Energy Excd. Ref. Res. Time Diff.

Act. Curr. Act. Weld Time Product Type Ref. Volt. Time Exclusive

Act. Energy Date/Time Ref. Curr Ref. Weld Time Timer

Act. Heat Date/Time. 1 Ref. Energy ref.pr.st Wear

At this stage, instead of using variables directly, the interaction of the reference and
actual values was used as variables to observe the effect of the reference values on them.
Table 4 shows a summary of the numerical variables in our data set.

Table 4. Summary of numerical variables in data set.

Count Mean std Min 25% 50% 75% Max

Time Diff 32,609 0.00035 0.00059 −0.004 0.000067 0.00015 0.000433 0.005017
Energy Diff 32,609 269.979985 323.483262 −639.5281 53.60913 177.9087 418.9768 2585.665
Act. Volt. 32,609 1.218594 0.112988 0.88 1.13 1.22 1,3 1.61
Ref. Volt. 32,609 1.21599 0.107169 1.04 1.1 1.2 1,3 1.56
Act. Curr. 32,609 7.782808 0.567765 5.96 7.42 7.84 8,14 9.62
Ref. Curr. 32,609 7.584849 0.421653 6.66 7.35 7.7 7,89 9
Act. Weld Time 32,609 445.757521 77.636114 260 377 450 497 749
Ref. Weld Time 32,609 424.754914 73.38584 260 370 440 460 700
Act. Energy 32,609 4232.302812 691.65053 2714.884 3811.024 4188.688 4518.706 8230.167
Ref. Energy 32,609 3962.322801 654.567956 2713.692 3584.036 3988.157 4215.521 6559.188
Act. Heat 32,609 9480.890787 1095.57221 6261.675 8887.01 9338.058 10,201.37 14,127.79
Ref. Heat 32,609 9260.637848 1038.939809 7263.215 8627.472 9063.936 10,314.32 12,918.02
Act. Res. 32,609 161.933209 17.734518 108 150 165 175 209
Ref. Res. 32,609 162.574228 14.739853 132 149 164 176 197
Act. Proc. Stab. 32,609 87.541722 9.052932 44 84 90 94 99
Ref. Proc. Stab. 32,609 100 0 100 100 100 100 100

Regarding the selected variables in Table 4, there were no null or missing values in
the process database. However, some negative values for the “Time Diff.” variable were
identified, possibly due to measurement errors. The process data also revealed an “energy”
loss due to expulsion, negatively affecting the machine efficiency. “Volt” values had a very
narrow range due to the regulator used in the welding machines, ensuring the efficiency
of the equipment. The “Current” value, which depends on volts and resistance, had a
narrow range as it was calculated by the spot point (material properties) and the volt. The
“Weld Time” variable had a very wide range and was a critical parameter. The chart below
(Figure 6a,b) shows that the process that normally takes place with a lower weld time,
which takes a longer time when expulsion occurs. The measured “Energy“ and “Heat”
values also had wide ranges, in which more energy was consumed than in the normal
process in the case of expulsion, but the amount of heat measured was lower because of the
loss of heat due to the expulsion.

The “Resistance” variable, which is one of the most important variables, was fixed
to a narrow range because it depended on the material. Our main purpose in expulsion
calculation was to detect sudden changes in resistance. The “Proc. Stabler.” variable varied
between 44 and 99 variables. The Figure 7 is tilted to the left (negative) for the “expulsion
(blue)” and “no-expulsion (orange)” values.
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Figure 6. Expulsion’s Relationship with other parameters.

As can be seen in Table 5, there was no missing data in these variables. We have
30,192 data points without expulsion out of the total of 32,609 data points. There was only
one “Timer” variable, as the measurements of a single robot were evaluated. Among the
61 programs in the database, most were “Program-7”. Among the 61 spots in the database,
most were “11693_00_1”. Additionally, this spot point matched “Program-7”. Among the
140 wear variables, most were “Wear-1”, with a frequency of 140. However, there were data
in which the same time was measured, meaning there was duplicated data for 144 rows.
Table 5 shows the number of expulsions in each program. There were 61 unique programs,
and each was assigned to each specific spot point. The programs with the most expulsions
in the 2417 expulsion points in our database were “19, 12, 15, 10, 18”. The total expulsion
ratio in these programs was 69.9%. Additionally, 11 programs showed no expulsion. From
Table 6, the average wear values for each program (program–wear relationship) and the
average wear values for each program, which are labeled as “expulsion” (program–wear
with expulsion), are also shown.
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Figure 7. Expulsion and heat relationship.

Table 5. Summary of categorical variables in data set.

Capak Timer Program Spot Wear

count 32,609 32,609 32,609 32,609 32,609
unique 2 1 61 61 140
top No Expulsion UNB0160WB02 7 11693_00_1 1
freq 30,192 32,609 2781 2781 276

Table 6. Program, wear, and expulsion relationships.

Program Mean Wear Capak Program Mean Wear Expulsion Program Capak

1 69.806729 0 1 20 1 8
2 50.836559 1 2 70.6 2 5
3 51.829023 2 3 63.428571 3 14
4 52.857245 3 4 67 4 15
7 54.302769 4 7 68.416667 7 36

As the wear–expulsion graphic (Figure 8) shows, expulsion was generally seen in the
first wear points. To solve this problem, the parameters in the programs may need to be
optimized. The graph shows that spot-welding-related problems can exist in the wear
variable. After discussions with the production line supervisors in the company, and based
on the literature research, the wear variable was labeled as “ineffective”.

Finally, to summarize, before the data preparation and the selection of the ML ap-
plication, the correlation values for the numeric actual features and reference features
of the data set were explored. As can be seen from Table 7, there was a highly positive
correlation between the actual energy and actual weld time variables, as expected and
referred to in the literature. More features correlated with each other, as can be seen in
Table 7. The actual heat and actual voltage and actual resistance and actual voltage had the
highest correlations.

In addition, Table 8 shows the reference values’ correlation table. The correlations
in this table were similar to the actual features’ correlations in Table 8, and it can be
concluded that the reference values matched with the actual values, providing guidelines
for feature selection.
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Figure 8. Wear–expulsion relationship.

Table 7. Correlation matrix for actual features.

Act. Volt. Act. Curr. Act. Weld Time Act. Energy Act. Heat Act. Res.

Act. Volt. 1 −0.0486259 −0.284968 0.1444119 0.798258 0.784336
Act. Curr. −0.0486259 1 −0.441936 −0.159323 0.560379 −0.5922
Act. Weld time −0.284968 −0.441936 1 0.840589 −0.494969 −0.00686755
Act. Energy 0.1444119 −0.159323 0.840589 1 0.0292443 0.155015
Act. Heat 0.798258 0.560379 −0.494969 0.0292443 1 0.289094
Act. Res. 0.784336 −0.5922 −0.00686755 0.155015 0.289094 1

Table 8. Correlation matrix for reference features.

Ref. Volt. Ref. Curr. Ref. Weld time Ref. Energy Ref. Heat Ref. Res.

Ref. Volt. 1 0.0584367 −0.205209 0.267899 0.870679 0.79766
Ref. Curr. 0.0584367 1 −0.522035 −0.310667 0.516001 −0.498392
Ref. Weld time −0.205209 −0.522035 1 0.831765 −0.410598 0.0584696
Ref. Energy 0.267899 −0.310667 0.831765 1 0.0918778 0.319594
Ref. Heat 0.870679 0.516001 −0.410598 0.0918778 1 0.412025
Ref. Res. 0.79766 −0.498392 0.0584696 0.319594 0.412025 1

3.2.2. Data Preparation and Selection for ML Application

As the heat and energy variables are dependent to each other (Heat = Volt (V) ∗ Current
(I); Energy = Heat ∗ V ∗ I ∗ T), the model excluded them, and these variables were used
in the model studies. Additionally, due to their high correlation, the volt and resistance
variables were not included in the model. In addition, the fact that each program had
a unique reference value had an impact on the features; hence, the program categorical
variable was also not used.

Before the model was trained, the data set was divided into a training set and a
test set using different methods [30]. After deciding on the new variable set, the data
set was divided using the stratifying method depending on the target and product type
variables. As a result, 70 percent of the data set was the training set, and the remainder was
the test set.

3.2.3. ML Application: Models Selection and Findings

Classical and frequently used, well-known prediction algorithms are k-NN (k- Nearest
Neighbor) and support vector machines (SVMs) [31]. SVM algorithm calculations are
complex and costly, while the k-NN algorithm is non-parametric. As the aim of our
study was to explain the root cause of the problem, these algorithms were not preferred.
On the other hand, logistic regression (LR) is often used in classification problems as it
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aids in parameter estimation based on the likelihood principle and its mathematical and
optimal properties [1]. Decision trees could also be favorable for use in similar classification
problems because they support the differences between classes and reveal similarities [32].
Asif et al. [5] provided prediction accuracy of 91.18% and 82.35% by using sequence
tagging and logistic regression algorithms in welding defect detection. Logistic regression
predicted each data point separately. The adversarial sequence tagging method predicted
four weld states’ presence as good, excessive penetration, burn-through, porosity, and
porosity–excessive penetration.

The random forest method is often used for extensive data [33]. For this reason, in this
study, the random forest algorithm was also used for the comparison of the results. Natekin
and Knoll [34] claimed that it is difficult to interpret the Gradient Boosting Machine (GBM)
model built from thousands of trees instead of a simple decision tree. However, various
tools have been designed to solve the GBM with appropriate tools. As a result, models
created in the GBM can provide us with the necessary information about variables. In
particular, visualizing important variables is an important method of interpretation. Wan
et al. [26] reported that XGBoost performs on imbalanced data effectively. As the data set
in this study was not balanced, the XGBoost algorithm’s advantages were utilized.

4. Results

An F1 score is the harmonic mean of precision and recall, and it was used as the success
metric for our study. An F1 score is calculated to measure model success in imbalanced
data sets, although accuracy is frequently used [35]. The class balance of the data does not
affect the F1 score. Table 4 shows the results of the models used.

4.1. Logistic Regression

In logistic regression [36], a logistic function with outputs between 0 and 1 was used
as follows:

p(X) =
eβ0 + β1X

1 + eβ0 + β1X (1)

The maximum probability method was applied to the model. This function will always
generate an S-shaped curve, providing a reasonable estimate. After the manipulation of
the logistic function, the following equation was obtained:

log
(

p(X)
1− p(X)

)
= β0 + β1X1 + · · ·+ βpXp (2)

At the center of the logistic regression analysis in this equation is the prediction of an
event’s log rate. Mathematically, logistic regression estimates the multiple linear regression
function, defined as above. The algorithm classifies a given observation into the class with
the highest probability by estimating Y’s conditional distribution with K-nearest neighbors’
given X values. The algorithm identifies the neighboring points in the training data closest
to x0, represented by the KNN classifier N0, with a given positive integer K and test data.
Then, the conditional probability for class j is estimated as a fraction of the points in N0, the
response values of which equal j:

Pr( Y = j|X = x̂0) =
1
K ∑

i ε N0

I(yi = j) (3)

Finally, by applying the KNN Bayes rule, test observation classifies X0 into the class
with the highest probability.

When making logistic regression prediction, transformed variables are used. Model
output can be seen in Table 9, in which the F statistics and p values showed that the model
variables and the output of the model were significant. However, it was observed that
the R2 value of the model was well below the desired value depending on the R-squared
measurement unit, which was 0.309, showing how well the regression line approached the
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real data points (Table 9). The VIF score for OLS regression results showed a consistency of
2.09; Dif. Res. Prop value of 179l Dif. Curr. Prop value of 1.69; and Dif. Weld time. Prop
value of 1.14. Hence, it is concluded that the VIF values for the features were good enough
to evaluate this model without any collinearity hesitation.

Table 9. OLS regression results.

OLS Regression Results

Dep. Variable: Capak R−squared: 0.309
Model: OLS Adh. R−squared: 0.309

Method: Least Squares F−statistic: 3404
Date: Monday, 22 Junuary 2020 Prob (F−statistic): 0
Time: 23:27:47 Log−Likelihood: 2407.8

No. Observations: 22,826 AIC: −4808
Df Residuals: 22,822 BIC: −4775

Df Model: 3
Covariance Type: nonrobust

coef std err t P > |t| [0.025, 0.975]

const 0.0219 0.02 10.533 0 0.018, 0.026
Dif.weld time.prop 2.0697 0.024 87.28 0 2.023, 2.116

Dif.Curr.prop −1.9644 0.055 −35.549 0 −2.073, −1.856
Dif.Res.prop −0.7303 0.026 −28.25 0 −0.781, −0.680

Omnibus: 9474.822 DurbinWatson: 1.964

Prob(Omnibus): 0 Jarque–Bera(JB): 60,064.871
Skew: 1.884 Prob(JB) 0

Kurtosis: 9.996 Cond. No. 40.1

4.2. Support Vector Machine (SVM) Model

In applications in SVMs [31], the model learns to determine the decision boundary
between the two classes while training the model. The data found at the boundary between
classes are essential for the decision boundary. These are called support vectors and are
used to estimate new points. A classification decision is made based on the distances to
the support vector and the importance of support vectors learned during training. The
distance between data points is measured in Gaussian kernel:

krb f (x1, x2) = exp
(
γ||x1 − x2||2

)
(4)

• Here, x1 and x2 are data points, ‖x1 − x2‖ denotes the Euclidean distance, and γ
(gamma) is a parameter that controls the Gaussian width kernel.

• When building the SVM algorithm, important parameter optimization is carried out
to increase the success of the model. The best parameter values, which can be seen
below, are the values that are decided before the SVM model is created.

• {‘c’: 10, ‘gamma’: 5, ‘kernel’: ‘rbf’}.
• The confusion matrix for the SVM model is shown in Table 10. The recall rate was

found to be 0.42, and the F1 score was 0.57 for the SVM model, with a precision
rate of 0.86. Depending on the precision and recall values of Expulsion = 1, it was
observed that the model success did not reach the desired level, which may have
caused quality-related problems.
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Table 10. Confusion matrix score for SVM.

Precision Recall F1-Score Support

0 0.96 0.99 0.97 9058
1 0.86 0.42 0.57 725

accuracy 0.95 9783
macro avg 0.91 0.71 0.77 9783

weightedavg 0.95 0.95 0.94 9783

SVM References

Prediction
FALSE TRUE

No Expulsion 9010 48
Expulsion 420 35

Count of Trainset Observation 22,826
Count of Testset Observation 9783

4.3. GBM Algorithms

The primary purpose of the GBM algorithm is to maximally correlate the negative
gradient of the loss functions (referred to as the Bernoulli loss), which are core components
of the GBM [34]. In the classification problem, the response variable for the loss function
comes from the Bernoulli distribution, and the class-based response probability can be
predicted by minimizing the probability of negative logic associated with new class tags:

ψ(y, f)Bern = log(1 + exp(−2yf)) (5)

The GBM can produce highly optimized results when working with big data. The
parameters used to increase model success are very important in the process of designing
this algorithm. With the help of the GridSearch CV function, the best parameter values
were selected as shown below:

{‘learning_rate’: 0.2,
‘max_depth’: 5,
‘min_samples_split’: 2,
‘n_estimators’: 500}

The results in Table 11 as obtained from the model established with the help of the
GBM algorithm summarize the model success very well. The precision, recall and F1 score
values were more satisfactory for the prediction of expulsion than the previous models,
showing that the algorithm used in the robot was affectively analyzed by the GBM.

Table 11. Confusion matrix for GBM.

Precision Recall F1-Score Support

0 0.99 1 1 9058
1 0.97 0.93 0.95 725

accuracy 0.99 9783
macro avg 0.98 0.96 0.97 9783

weightedavg 0.99 0.99 0.99 9783

GBM References

Prediction
No Expulsion FALSE TRUE

9037 21
Expulsion 50 675

Count of Trainset Observation 22,826
Count of Testset Observati on 9783

4.4. Decision Tree Model and Random Forest Model

Decision tree models predict that each observation belongs to the most common class
of training observations in the region to which the classification tree results are interpreted,
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with the class ratios between the class prediction corresponding to the terminal node region
and the training observations falling in that region [36]. The Gini index in (5) calculates
the total variance measure between K classes. If the Gini index has a small value, the node
mainly contains observations from a single class [36].

−G = ∑K
k=1 p̂mk (1− p̂mk) (6)

From the results in Table 12, the decision tree model we created achieved modeling
success very close to the technical analysis of the robot in the production line. The precision
rate was 0.91, the F1 score was 0.90, and the recall rate was 0.88 for the prediction of
expulsion via the decision tree model.

Table 12. Confusion matrix for decision tree.

Precision Recall F1-Score Support

0 0.99 0.99 0.99 9058
1 0.91 0.88 0.9 725

accuracy 0.98 9783
macro avg 0.95 0.94 0.94 9783

weightedavg 0.98 0.98 0.98 9783

Decision Tree References

Prediction
FALSE TRUE

No Expulsion 8992 66
Expulsion 84 641

Count of Trainset Observation 22,826
Count of Testset Observati on 9783

The random forest algorithm can produce highly optimized results while working
with big data. The parameters used to increase model success are very important in the
process of designing this algorithm. In random forest models [37], a series of decision
trees are created by associating trees with each other, in which a random sample of m
estimators is chosen from the complete set of p predictors when building the model. A new
sample of the estimator m is taken at each division. The number of estimators considered
in each division is approximately equal to the square root of the total number of estimators
(m ≈

√
p). Many variables are not considered for every split in the tree when creating the

model. Thus, moderately strong and strong predictors are taken into account.
With the help of the GridSearch CV function, the best parameter values are selected as

shown below.

{‘min_samples_split’: 3,
‘n_estimators’: 200}

Depending on the scope of the project, models are created to improve the operation
of the robot in the line in order to increase the efficiency of the production line in such
technical and production-based projects. In fact, using this model, it attempted to learn the
robot’s operating system, and the results below prove that a good estimator was developed.
The random forest model predicted expulsion with a higher precision rate (0.94) and recall
rate (0.89), and an F1 score of 0.92, as can be seen from Table 13.
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Table 13. Confusion matrix for random forest.

Precision Recall F1-Score Support

0 0.99 1 0.99 9058
1 0.94 0.89 0.92 725

accuracy 0.99 9783
macro avg 0.97 0.94 0.96 9783

weightedavg 0.99 0.99 0.99 9783

Random Forest
References

FALSE TRUE
No Expulsion 9017 41

Expulsion 77 648
Count of Trainset Observation 22,826
Count of Testset Observation 9783

4.5. XG Boost

XGBoost is an optimized distributed algorithm designed to be highly efficient, flexible,
and portable, implementing machine learning algorithms under the Gradient Boosting
framework [38]. The purpose of XGBoost is to minimize the loss function [19].

L(F) = ∑
i

l(ŷi, yi) + ∑
k

Γ(fk) (7)

where
Γ(fk) = γT + λ||w||2 (8)

In L(F), l(ŷi, yi) represents the loss function between the actual label of data and the
predicted label. The latter function Γ(fk) is the penalizing term. T is the number of leaves
in the tree, where γ, λ are two parameters which control the complexity of the tree.

The XGBOOST algorithm optimizes the model very well when working with big data
because it interferes with the model with many parameters. Therefore, the parameters used
to increase model success are very important in the process of designing this algorithm.
With the help of the GridSearch CV function, the best parameter values were selected as
shown below:

{‘eval_metric’: ‘auc’,
‘learning_rate’: 0.5,
‘max_depth’: 5,
‘min_samples_split’: 2,
‘n_estimators’: 500,
‘reg’: ‘logistic’}

In this case, models are created for better operation of the robot in order to increase
production line efficiency. In fact, the operating system of the robot is learned with this
model, and the following results in Table 14 prove that a best estimator model has been
developed as a good reference to the robot’s operating system.

4.6. Evaluation of the Results from All Models

Table 15 also shows that the accuracy scores were relatively high. The F1 score was
also evaluated as there was imbalanced data in this study. The GBM model was the most
successful model in terms of the F1 score. Figure 9 represent the confusion matrix for GBM,
which is the algorithm that obtained the best F1 score rate.
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Table 14. Confusion matrix for XG Boost.

Precision Recall F1-Score Support

0 1 1 1 9058
1 1 1 1 725

accuracy 1 9783
macro avg 1 1 1 9783

weightedavg 1 1 1 9783

XGBoost References

FALSE TRUE
No Expulsion 9058 0

Expulsion 0 725
Count of Trainset Observation 22,826
Count of Testset Observati on 9783

Table 15. Classification precision, recall, and F1 scores of the ML models.

Model Precision Recall F1 Accuracy

Logistic
Regression 0.65 0.30 0.41 0.94

KNN 0.86 0.79 0.83 0.98
SVM 0.86 0.42 0.57 0.95

Decision Tree 0.91 0.88 0.90 0.98
Random Forest 0.94 0.89 0.92 0.99

GBM 0.97 0.93 0.95 0.99
XGBoost 0.94 0.93 0.92 0.99
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weightedavg 1 1 1 9783 

XGBoost References  

 FALSE TRUE  

No Expulsion 9058 0  

Expulsion 0 725  

Count of Trainset Observation 22,826 

Count of Testset Observati on 9783 

4.6. Evaluation of The Results from All Models 

Table 15 also shows that the accuracy scores were relatively high. The F1 score was 

also evaluated as there was imbalanced data in this study. The GBM model was the most 

successful model in terms of the F1 score. Figure 9 represent the confusion matrix for 

GBM, which is the algorithm that obtained the best F1 score rate. 

Table 15. Classification precision, recall, and F1 scores of the ML models. 

Model Precision Recall F1 Accuracy 

Logistic Regression 0.65 0.30 0.41 0.94 

KNN 0.86 0.79 0.83 0.98 

SVM 0.86 0.42 0.57 0.95 

Decision Tree 0.91 0.88 0.90 0.98 

Random Forest 0.94 0.89 0.92 0.99 

GBM 0.97 0.93 0.95 0.99 

XGBoost 0.94 0.93 0.92 0.99 
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Figure 9. Decision tree example for the parameters of welding process problems.

To elaborate on the importance of the variables in terms of their impact on the efficiency
of the welding process, the welding process parameter decision tree demonstrates an actual
and optimal view to gain insight into the process problem. When attention is paid to the
trunks of trees, the current feature, the weld time, follows the most important variable.
According to the decision tree (Figure 10), when the variables of weld time and current
differ from the reference values given for each program, the possibility of expulsion always
increases. This means that the reference values given for the programs by the team at the
factory provided the optimum level for most of the programs.
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Figure 10. Decision tree example for the parameters of welding process problems.

In the feature importance plot (see Figure 11), “Dif.weld time.prop” is the most
critical feature, followed by “Dif.Res.prop” (difference ratio between actual and reference
resistance value) and “Dif.Curr.prop” (difference ratio between the actual and reference
welding current value).
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Figure 11. Feature importance plot for GBM algorithm.

The significance level of the selected model variables was examined using TN and
TP values. The significance levels of these variables were proportional to the Gini scores
calculated in Equation (5). The variable which decreased the entropy most—“Dif.Weld
time.prop” (difference ratio between actual and reference weld time value)—was consid-
ered most powerful feature over the model and was the independent variable explaining
the dependent variable most. Therefore, it was used in the root-cause analysis of the
expulsion-related problem.

5. Conclusions and Discussion

Welding processes in the manufacturing industry have quality-related problems such
as expulsion, which cannot be controlled by manual mechanisms due to its dependence on
various complex factors. The prediction of these quality-related problems and defects is
important in terms of the prevention of quality costs and the achievement of sustainable
production targets. Although previous research provided valuable examples of machine
learning applications on welding processes, few studies focused on precise parameter
selection in a welding process to be used in expulsion prediction. In addition, to set
parameters, a thorough understanding of the inter-relationships between potential welding
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process parameters, reflected by their correlations, is required. Another important step in
constructing the prediction model is the data preparation and the selection of the machine
learning algorithm for the special data structure of the welding process robot. In this
context, this paper focused on the application of machine learning to define the quality
parameters in the welding process and predict the variables causing expulsion defects in a
case study from the automobile production line of a major Turkish automotive producer.

The high accuracy rate of the model proved that expulsion-based defects can be
minimized with the help of machine learning techniques applied in manufacturing big
data architecture. In this paper, we also proposed methods to improve welding processes
through a root-cause analysis based on outputs from the analytical model. The optimization
of the input parameters during the welding process could help to identify the root causes of
problems in the welding process in production lines. Taking everything into consideration,
firms in the production sector use various smart systems to solve problems in production
lines. One of the biggest quality-related problems companies in the automotive industry
face is during the welding process. However, it is very difficult to control the processes
and find solutions with traditional methods, because many factors affect this process.
One of the problems that arises during the welding process is the expulsion problem.
Supervised learning methods, due to their capabilities, are preferred for use in classification
in the industry, but in many cases, they are time-consuming to train and require large
data sets [22].

Rather than using the selected variables directly, we derived the interaction of the reference
and actual values as variables to observe the effect of reference values on variables following
the work of He and Garcia [35]. Aligned with the previous literature [1,5,19,31,32,34,36,37],
learning algorithms of logistic regression, KNN, SVM, decision tree, GBM, and XGBoost
were applied to the process data from the welding robot. Our data were imbalanced; hence,
our study validated the advantage of XGBoost in such data [37], differing from the work of
Sumesh et al. [12], who reported that the highest precision level was achieved with J48 and
random forest classification algorithms with sound signal data, and Asif et al. [5], who
applied sequence tagging and logistic regression algorithms on weld defect frequencies.
To compensate for the imbalance in the data, we also evaluated the F1 score, as He and
Garcia [35] recommended. The Gradient Boosting Machine (GBM) model was the most
successful model in terms of the F1 score. Despite the GBM being difficult to interpret in
previous research [34] using R and python tools, the GBM provided us with the necessary
information about variables for a meaningful interpretation. Next, the XGBoost method
was the second most accurate model. From this finding, we conclude that Boosting methods
can effectively be adapted to ML models to predict welding process practices. It must also
be noted that the random forest model was also tested; however, it was not suitable for our
data set due to its need for extensive data [31].

This study is unique in its use of differences between actual and reference values of
weld time, resistance, and welding current, differing from the studies by Asif et al. [5], who
focused on an acoustic emission system, reporting frequencies to monitor gas metal arc
weld defects, and Sumesh et al. [12], who studied sound signals.

The findings of the study revealed that the “Dif.Weldtime.prop” (difference ratio
between actual and reference weld time value) variable decreased the entropy most in the
studied spot welding process. This ratio was the independent variable, which explained
the most dependent variable and decreased the entropy because it was the feature with
the highest power over the model. Focusing on the weld time, its relationship with the
speed of the welding process has also been underlined in previous studies, such as by
Afroz et al. [21], who studied the optimization of a wearable speed monitoring device for
welding applications. Other vital features are “difference ratio between actual and reference
resistance value” and “difference ratio between the actual and reference welding current
value”. Hence, in spot welding processes, these variables should be monitored and kept
under strict control to achieve higher product quality and cost reductions.
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The application from the case study showed that expulsion problems can be minimized
with the help of machine learning techniques applied on process data; however, the
availability of smart systems, such as the robotic application in the studied company,
is crucial for such practices. The optimization of the input parameters during the welding
process helps production line engineers to reach the root cause, as provided by the decision
tree model in Figure 10.

The presented ML application can be used as a case study providing a solution model
to increase the defect identification efficiency with multi-sensory system applications, as
mentioned by Czimmerman [22]. Researchers and practitioners who aim to locate and
solve weld-defect-related problems with machine learning methods can utilize this study’s
procedures and findings to optimize the input parameters in the welding process. In further
research, clustering methods can be utilized for sub-data sets; the inclusion of the energy
loss feature in data can ensure the prediction of sustainability performance. In addition, to
detect and classify defects that can occur during welding, future studies can utilize deep
learning methods.
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