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Abstract: With the explosion of connected devices linked to one another, the amount of transmitted
data grows day by day, posing new problems in terms of information security, such as unauthorized
access to users’ credentials and sensitive information. Therefore, this study employed RSA and
ElGamal cryptographic algorithms with the application of SHA-256 for digital signature formulation
to enhance security and validate the sharing of sensitive information. Security is increasingly
becoming a complex task to achieve. The goal of this study is to be able to authenticate shared data
with the application of the SHA-256 function to the cryptographic algorithms. The methodology
employed involved the use of C# programming language for the implementation of the RSA and
ElGamal cryptographic algorithms using the SHA-256 hash function for digital signature. The
experimental result shows that the RSA algorithm performs better than the ElGamal during the
encryption and signature verification processes, while ElGamal performs better than RSA during the
decryption and signature generation process.

Keywords: data sharing; cryptographic algorithm; RSA and ElGamal; communication; digital signature

1. Introduction

With the rapid development of information digitization, security and privacy concerns
are among the most pressing problems confronting the emerging smart grid [1]. These
issues include, among many others, a lack of shared authentication across communicating
parties, the possibility of multiple cyber-attacks, illegitimate access to services, and the
disclosure of computer and network confidential information to the interacting party. Before
granting any individual access to a network and its associated services, it is necessary to
validate the individual, which may be a computer or a person, and then validate the
permission and control policies based on the individual’s identification. A digital signature
validates the user’s identity, whereas authorization validates whether the person has the
necessary authority to access the shared resource [2].

Encryption is always required for data transmission and communication [3]. Infor-
mation security utilizing encryption and decryption is crucial since data transmission and
reception are susceptible to outside assault. To increase security, data are transformed into
a coded message (encryption) and then recovered into data (decryption) [4]. To offer secure
transmission of data and information, several cryptographic algorithms have been pro-
posed, which can be classified as symmetric and asymmetric cryptographic techniques [5].
Figure 1 displays the process the plaintext passed through before turning into ciphertext
and then back into plaintext. The plaintext passes through the encryption process to pro-
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duce a ciphertext, while the cipher text passes through the decryption process to produce
the plaintext.
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A digital signature is a message’s authenticity and legality generated via a crypto-
graphic process (a contrast to a digital certificate), device, or electronic record [6]. A digital
signature is a digital equivalent to a signed signature or engraved seal, but it has much
more essential protection. It is meant to address the issue of interference and spoofing in
communications networks. Digital signatures can provide additional guarantees about the
source, presence, and position of an electronic document, activity, or communication, as
well as acknowledge the signer’s permission. Digital signatures are a segment of digital
signature technologies that sign documents using keys and encryption algorithms [7]. The
digitally signed algorithm scheme is one of the most well-known digital signature systems,
e.g., the RSA digital signing scheme, the ElGamal digital signing scheme, and many others
based on public key cryptosystems. This study, therefore, aims at implementing the RSA
and ElGamal cryptographic algorithms using the hash function to ensure data security
with integrity. In addition, this study attempts to establish the data integrity of RSA and
ElGamal cryptographic procedures that use the creation and validation of signatures. This
study will be beneficial for controlling cryptographic operations using the sender’s and
receiver’s private and public keys.

This study consists of four sections. We first describe the literature reviews. The
materials and methods used are described in Section 2. Sections 3 and 4 present the results
and discussion. Section 5 concludes the study.

Review of Literature

Zhang et al. [8] demonstrated an improved scheme using a modern main agreement
protocol over the Chang and Chang [9] system, which does not use a one-way hashing
algorithm or replication padding. Digital signature systems dependent on public-key
cryptosystems are susceptible to existential identity fraud attacks, which can be avoided by
using a one-way hash feature. The authors of this paper suggest a fraudulent assault on
the digital signature system proposed by Chang and Chang in 2004.

Burr [10] studied the possibilities of cryptographic hash functions in his article. He
emphasized that the cryptography tools include the SHA-1 and SHA-2 functions. Apart
from Dobbertin’s work after the MD5 near-break in 1996, hash function assessment saw little
development until the middle of 2004. Since then, some academics have focused on almost
all of the original hash functions, including SHA-1. These attacks shook cryptographers’
long-term faith in almost all hash functions because SHA-2 functions are, even until now,
related to the earlier broken functions built. Although cryptologists have discovered a lot
over the past few years concerning hash functions and how to attack them, cryptanalysts
widely concluded that realistic threats to SHA-2 hash functions remain impossible in the
next decades.

Acharya et al. [11], in their paper, discussed and analyzed some well-known crypto-
graphic algorithms to show the fundamental variations between current data encryption
methods. Despite the computational philosophy behind such an algorithm, the effective
techniques are well known and well documented since they have been thoroughly reviewed
and analyzed. They noted that the power of cryptography is in the key selection; longer
keys resist assault more easily than shorter keys. Nobody can guarantee complete defense.

Saleh and Meinel’s [12] HPISecure is a suggested HTTP client that is in charge of
encrypting or decrypting information. It must be mounted on the client’s computer. It
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also transmits HTTP request/response items and encrypts data before sending it to the
network or decrypts the information sent back from the network. They were in favor of
using public-key encryption. Besides that, to make it harder for unauthorized users to
use a collection of secret keys, each record can be encoded with a different key. On the
other hand, they recommend using a coordinator for key management, which may be a
third-party cloud service or a USB that stores the credentials and associated material [13,14].
Conversely, one of the drawbacks of this research is that the client must install the program
on each computer where it will be used. They also restricted information sharing and
coordination among groups of individuals.

Hwang et al. [15] suggested a cloud infrastructure business strategy built on the
principle of having two independent service providers, one for cryptography and another
for processing. The database system retains encoded user information and keys while the
cryptographic service model requires ciphering activities and then erases the information.
The key idea behind their strategy is to divide the procedure among multiple service
providers to reduce the operating cost of revealing user information. There is no certainty,
though, that the cryptographic service system fully erases the information and does not
preserve or use it. Moreover, Chandra et al.’s [16] Silverline is a technique that has been
implemented to facilitate improved data protection in the cloud. Unlike the preceding
methods, these authors concentrated on data and computation-intensive software. Their
primary aim was to encrypt as much useful information as possible without interfering
with the application’s features. As a result, although the cloud program cannot compute
any data it cannot control in plaintext, they proposed decoding only the information that is
not used in the computation.

Haque et al.’s [17] study provided a comprehensive performance analysis in which
common symmetrical and asymmetrical key encryption methods were compared to choose
the one that worked best for handheld phones and resource-constrained environments.
Various factors, including key size, data blocks, data type, and CPU time, were used to
compare the AES, RC4, Blowfish, CAST, 3DES, Twofish, DSA, and ElGamal algorithms.
The experiments show the utility of several cryptographic algorithms for use in practical
applications in which quick execution and little memory usage are essential.

Dijesh et al. [18] worked on an asymmetric key scheme for enhancing e-commerce
protection. The study explains asymmetrical techniques to make use of electronic com-
merce payments and other supportive cryptographic techniques that are crucial to the
operation of electronic business. The paper also outlines the main security issues with
online shopping. Based on security, the RSA encryption algorithm and the Fernet cipher en-
cryption algorithm were proposed as multilayer encryption algorithms. A comprehensive
and intricate technique for encryption was built using a multilayer encryption method. The
study concluded that the proposed multilayer encryption discussed was the main method
for making online transactions secure. A more advanced encryption technique can quickly
and efficiently reduce fraudulent operations.

Hamza and Al-Alak [19] analyzed several asymmetric key generators in wireless
sensor networks. Although the asymmetric key encryption algorithm provides a higher
level of security than symmetric key encryption, it requires more sensors than symmetric
key encryption. The twelve algorithm trials’ chain keys were generated using the KCMA
method (ECC, RSA, ElGamal). These chains were then combined using the SHA-2 and
XOR hashing algorithms. The diehard test was used in all tests to assess the secret key’s
unpredictability and demonstrate its increased security. When compared to XOR, SHA-2
performed the best. Table 1 gives a summary of all the literature reviewed with the results
they achieved.
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Table 1. Summary of literature.

S/N Author Methods Result Limitations

1 Zhang et al. [8] Digital signature algorithm The authors proposed DSA to
mitigate fraudulent assault. Only digital signature was used.

2 Burr [10] SHA-1 and SHA-2

The study concluded that
realistic threats to SHA-2 hash
functions remain impossible in

the next decades.

The study only protects the
integrity of data but does not

properly secure the data.

3 Acharya et al. [11] Analyzed some well-known
cryptographic algorithms

The study noted that the
power of cryptography is in

the key selection.

The study lacks a proper way to
ensure complete data security.

4 Saleh and Meinel [12] HPISecure was used to secure
the HTTP client.

The study recommends using
a coordinator for key

management.

The drawback of this research is
that the client must install the

program on each computer
where it will be used.

5 Haque et al. [17]
AES, RC4, Blowfish, CAST,
3DES, Twofish, DSA, and

ElGamal

The effectiveness of an
algorithm depends on

execution time and lower
memory usage requirement.

The study only compares the
computational time of the

selected algorithms.

6 Dijesh et al. [18]
Multilayer encryption

algorithm RSA and Fernet
cipher encryption algorithms

The method used to decrease
fraudulent activities easily and

effectively over the internet.

The study recommends a more
efficient algorithm to secure

online transactions.

7 Hamza and
Al-Alak [19]

KCMA for key generation
(ECC, RSA, ElGamal) with

SHA-1 and SHA-2

SHA-2 was the best as
compared with XOR.

The study only compares the key
generation of encryption

algorithms with the
hashing function.

From the summary of pieces of literature showing various limitations of the reviewed
work, it is expedient to proffer a solution that will enhance the security of data as well as
increase the integrity of the message. Therefore, this study embraced the use of RSA and
ElGamal algorithms with SHA-256 to enhance the integrity of data.

2. Materials and Methods

This study uses asymmetric cryptography (the RSA and ElGamal) and the SHA-256
hash function for both the encryption and sharing of sensitive information and using a
digitally signed system; security features including message authentication, data integrity,
non-repudiation, and confidentiality are also provided. For any specified ciphertext regardless
of length, the SHA-256 hash technique is employed to produce a fixed, singular value (referred
to as a message digest). It is this message digest that is subsequently encrypted/signed to
produce the signatures for the message. The system flow diagram of the system is displayed
in Figure 2, which displays the flow of information from user A to user B.
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The system is developed in such a way that the recipient also recomputes the digital
signature to ensure its integrity after the sender produces it using SHA-256. The authenticity
of the content is determined if the two signatures from the originator and the recipient are
equal; if not, the data have been changed during transit or transmission.

2.1. The RSA Algorithm

The RSA’s reliability is dependent on how challenging it is to factor huge prime numbers.
The encryption and decryption stages of the RSA algorithm involve modular exponentiation.

2.1.1. Key Generation

i Randomly choose two huge, unique primes p and q.
ii Compute the modulus n, n = p ∗ q and the phi function Ø(n) = (p − 1) ∗ (q − 1).
iii Choose a random integer e, such that 0 < e < Ø(n).
iv Compute d = e−l mod Ø(n).
v The private key is given as (d, n) and the public key as (e, n).

2.1.2. Encryption and Decryption

Given the message to be M and the cipher C,

i Encryption is carried out with the aid of the public key (e, n).
ii C = Me mod n.
iii The secret key is used for decryption (d, n).
iv M = Cd mod n.

2.2. Signing and Verification

The communicator must carry out the following to create the signatures for docu-
ment M:

i Calculate the hash h = H(M) of the message M.
ii The signature S is given as S = Hd mod n.

To verify the signature,

i Calculate the hash H of the message M.
ii Compute H′ = Se mod n.
iii If H == H′, then the signature is valid.

Any modification to the document would provide a changed hash code, which would
not correlate with the signature.

2.3. The ElGamal Algorithm

Dr. Taher Elgamal developed the ElGamal algorithm, which is a public-key method of
encryption. It is based on the one-way feature, which ensures that encryption schemes are
performed separately [20–24].

2.3.1. Key Generation

i Generate a large random prime number (p).
ii Choose a generator number (a).
iii Choose an integer (x) less than (p − 2), as the secret number.
iv Compute (d), where d = ax mod p.
v The private key is given as (x) and the public key as (p, a, d).

2.3.2. Encryption and Decryption

Represent the plaintext as an integer m, where 0 < m < p − 1.
Encryption is achieved using the public key (p, a, d).

i Choose an integer k such that 1 < k < p − 2.
ii Compute y, y = ak mod p.
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iii Compute z, z = (dk ∗m) mod p.
iv The ciphertext is given as C = (y, z).

Decryption is achieved using the private key (x).

i The receiver obtains the ciphertext C = (y, z).
ii Next, r is computed as follows: r = yp−1−x mod p.

The plain text is recovered as follows: m = (r ∗ z) mod p.

2.3.3. Signature Generation

This is accomplished first by generating the hash m of the message M, with the private
key given as (x).

The signer should then perform the following:

i Choose a random integer K with 1 ≤ K ≤ (p − 1) and gcd(K, p − 1) = 1.
ii Compute the temporary key: h = ak mod p.
iii Compute K − 1 the inverse of K mod (p − 1).
iv Compute the value s = K−1(m − xh) mod (p − 1).
v The signature is (h, s).

Any other user who receives the message M and signature (h, s) can carry out verifica-
tion using the public key (p, a, d) by computing the following:

i The hash m for the message M;
ii V1 = am mod p;
iii V2 = dh hS mod p;

]iv] The signature is valid if V1 = = V2.

2.4. The SHA-256 Hash Function

SHA-256 (secure hash algorithm, FIPS 182-2) is a cryptographic hash function that
processes input blocks of 512 bits with a digest length of 256 bits. It is a keyless hash
function. The SHA-256 follows the same model as SHA-1 and begins by defining several
constants [25–29]. Several operating systems frequently use hash methods to secure pass-
words. Figure 3 illustrates how hashing assesses a file’s authenticity. Figure 4 shows the
hashing algorithms involving rounds of the hash function such as a block cipher [30–33].
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The SHA-256 Algorithm

The algorithm for the SHA-256 hash function is given below:

1. Append a single bit, whose value is set to 1, to the input x.
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2. Compute the smallest r such that (b + r) mod 512 = 448. Append r-1 bits, whose values
are set to 0, to the result of step 1.

3. Compute the 64-bit value b mod 2ˆ64 and append this value to the result of step 2.
4. This yields a string of length that must be a multiple, m, of 512 bits and, thus, may be

represented as 16*m 32-bit blocks.

3. Results

The proposed secure sensitive data sharing system possesses the following features:

1. Encryption of files using RSA and ElGamal algorithms;
2. Signature generation and verification for text files;
3. Decryption of information using the RSA and ElGamal algorithms;
4. Generation of message digest for information/data;
5. GUI interface for easy interaction with the system;
6. Auto-generation of private and public keys for encryption, signing, and decryption;
7. Provision of interface for the selection of files or documents to be signed or encrypted.

See Figure 5.
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Figure 5 displays the interface that provides the user with various functionalities to
encrypt and sign, decrypt and verify, or generate or verify the signature of a file after
generating or loading the appropriate keys needed. See Figure 6.
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In Figure 6, the user inputs their text to be encrypted and then clicks on the ‘Encrypt and
sign’ button to generate the cipher text and digital signature for that text input. Figures 7 and 8
illustrate the decryption and signature verification of the file encrypted with the instance of
Figure 7 returning a valid signature, while that of Figure 8 returns a message dialog for an
invalid signature, which proves that either the signature does not correspond to that file or
the file has been altered in some way [34,35].
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3.1. Result Analysis

The RSA and the ElGamal algorithms were tested using 2048-bit keys. The time taken
for the encryption, decryption, signature generation, and verification modules is given
in milliseconds.

3.1.1. Encryption

Various files of different sizes were encrypted using RSA and ElGamal cryptographic
algorithms. The encryption time of both algorithms was obtained and placed in a tabular
form. See Table 2.
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Table 2. Data analysis for encryption process for RSA and ElGamal algorithms.

S/N File Size (Kb)
RSA ElGamal

Encryption Time (ms) Encryption Time (ms)

1 10 95 3520
2 15 256 4340
3 20 312 6689
4 25 476 7311
5 30 499 7834
6 35 561 8372
7 40 606 9161
8 50 1094 13,215
9 100 2136 19,359
10 200 4229 44,689

Figure 9 displays the encryption time of the RSA and ElGamal process, and its shows
that the ElGamal algorithm consumes more time during decryption for various file sizes.
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3.1.2. Decryption

The same file sizes encrypted in Table 2 were decrypted, and their various decryption
times during the decryption process were obtained and placed in a tabular form. See
Table 3.

Table 3. Data analysis for the decryption process for RSA and ElGamal algorithms.

Size (Kb)
RSA ElGamal

Decryption Time (ms) Decryption Time (ms)

1 10 3428 637
2 15 5207 975
3 20 7809 1233
4 25 9832 1807
5 30 12,692 2645
6 35 16,325 3293
7 40 18,593 3990
8 50 23,986 4525
9 100 35,479 6829
10 200 42,708 9968
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Figure 10 displays the graphical analysis of the RSA and ElGamal decryption process
for different file sizes, and the analysis shows that the ElGamal algorithm consumes lesser
time during the decryption of file sizes compared to the RSA algorithm.
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3.1.3. Signature Generation

The time taken for both RSA and ElGamal to generate a signature was captured and
recorded. Moreover, the time taken for RSA and ElGamal without SHA-256 was obtained
and recorded in a tabular form. See Table 4.

Table 4. Data analysis of signature generation process for RSA and ElGamal algorithms.

File Size (Kb)
RSA Signature

Generation
RSA without

SHA-256
ElGamal Signature

Generation
ElGamal without

SHA-256
Time Taken (ms) Time Taken (ms) Time Taken (ms) Time Taken (ms)

1 10 485 2223 136 381
2 15 469 3405 139 602
3 20 484 4448 145 823
4 25 493 5683 138 1057
5 30 464 6944 147 1346
6 35 473 8073 134 1871
7 40 486 9299 136 2018
8 50 493 10,601 146 2667
9 100 496 18,886 131 3243

10 200 481 23,981 136 4036

Figure 11 displays the graphical analysis of the signature generation. It shows that
ElGamal outperforms RSA in signature generation.

3.1.4. Signature Verification

RSA’s and ElGamal’s time taken for the signature verification process was obtained
and recorded. The time taken for both algorithms without SHA-256 was obtained as well
in milliseconds and displayed in tabular form. See Table 5.

Figure 12 displays the graphical analysis of RSA and ElGamal signature verification. The
analysis shows that RSA performs better than ElGamal in the signature verification process.
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Table 5. Data analysis for signature verification process for RSA and ElGamal algorithms.

File Size (KB) RSA Signature Verification
Time Taken (ms)

RSA without
SHA-256 (ms)

ElGamal Signature
Verification (ms)

ElGamal without
SHA-256 (ms)

1 10 15 63 177 827
2 15 15 66 189 1281
3 20 12 69 189 1630
4 25 14 76 194 2057
5 30 15 77 165 2718
6 35 15 82 167 3152
7 40 19 87 188 3770
8 50 15 98 190 4234
9 100 21 103 179 5141

10 200 25 122 199 6089
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4. Discussion

This study examined the RSA and ElGamal cryptographic algorithms to improve
information security. The application of the SHA-256 hash function to the digital signatures
of the RSA and ElGamal asymmetric cryptographic algorithms was implemented. From
the various experimental results displayed in tables and figures, it can be seen that the
RSA algorithm performs better than the ElGamal during the encryption and signature
verification processes, while ElGamal performs better than RSA during the decryption
and signature generation process. Therefore, it can be deduced that each of the algorithms
performs better than the other in some processes; however, there is no obvious superiority
of one cryptosystem over the other in all the processes of encryption, decryption, signature
generation, and signature verification.

Findings and Comparison with Existing Work

The use of cryptographic hash functions in digital signature generation provides a
mechanism such that the integrity check feature of the hash value guarantees a party of the
integrity and originality of a document or data; the finding in this study corroborates that
of Hamza and Al-Alak [19]. Signing the hash value of data with the use of hash functions,
instead of signing the data directly provides a more efficient scheme for a digital signature
because the hash of the data is a relatively smaller value compared to the original data, in
accordance with Burr [10]. This finding in this study matches that of Haque et al.’s [17]
study. However, Haque et al.’s [17] study was outperformed by implementing SHA-256 to
achieve data integrity.

5. Conclusions

The need for information security in this present time has become non-negligible
in our society due to the daily increasing emergence of cybercrimes, piracy, scam, and
fraud cases. As it has been noticed that security and safety concerns are among the most
pressing problems confronting potential distributed data, the sending and reception of
data are considered vulnerable to external attacks. Therefore, data protection through
encryption/decryption is essential. This study examined two asymmetric algorithms
(RSA and ElGamal) developed in improving information security services. In addition,
the application of the SHA-256 hash function to the digital signatures of the RSA and
ElGamal cryptosystems was implemented to establish information integrity. The technique
ensures the protection of the security of users’ sensitive data and at the same time provides
users with full control of their data. Various benefits associated with this study and the
correctness of the implemented systems make it suitable for any secure sensitive data
sharing system. Therefore, it is recommended that further implementation such as secure
submission, storage, and extraction operations of the sensitive data sharing system should
be implemented for full and maximum protection of sensitive data.
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