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Abstract: In recent years, deep learning has been used in various applications including the clas-
sification of ship targets in inland waterways for enhancing intelligent transport systems. Various
researchers introduced different classification algorithms, but they still face the problems of low
accuracy and misclassification of other target objects. Hence, there is still a need to do more research
on solving the above problems to prevent collisions in inland waterways. In this paper, we introduce
a new convolutional neural network classification algorithm capable of classifying five classes of
ships, including cargo, military, carrier, cruise and tanker ships, in inland waterways. The game
of deep learning ship dataset, which is a public dataset originating from Kaggle, has been used
for all experiments. Initially, the five pretrained models (which are AlexNet, VGG, Inception V3
ResNet and GoogleNet) were used on the dataset in order to select the best model based on its
performance. Resnet-152 achieved the best model with an accuracy of 90.56%, and AlexNet achieved
a lower accuracy of 63.42%. Furthermore, Resnet-152 was improved by adding a classification block
which contained two fully connected layers, followed by ReLu for learning new characteristics of
our training dataset and a dropout layer to resolve the problem of a diminishing gradient. For
generalization, our proposed method was also tested on the MARVEL dataset, which consists of more
than 10,000 images and 26 categories of ships. Furthermore, the proposed algorithm was compared
with existing algorithms and obtained high performance compared with the others, with an accuracy
of 95.8%, precision of 95.83%, recall of 95.80%, specificity of 95.07% and F1 score of 95.81%.

Keywords: convolutional neural network; inland waterways; deep learning

1. Introduction

The purpose of ship classification is to identify various types of ships as accurately as
possible, which is of great significance for monitoring the rights and interests of maritime
traffic and improving coastal defense early warnings. With the improvement of all kinds
of imaging technology, the ship classification method of imaging technology has become
the mainstream method of ship target classification and recognition. From the data, the
ship image can be roughly divided into the radar image, satellite remote-sensing image,
infrared image and visible light image. The most widely used radar imaging technology is
synthetic aperture radar (SAR). The advantages of SAR imaging are a wide monitoring
range, short observation period and all-weather monitoring. On the other hand, the price
of using radar is being vulnerable to other electromagnetic interference. Moreover, the
captured ship targets only account for a few parts of the whole image. The classification
method for radar images is only suitable for larger targets. The classification effect for a
boat with a long distance is better than that for optical remote-sensing satellite imaging,
which is easily affected by changes in ocean weather and light, making it hard to do real-
time monitoring for a long time. Infrared imaging can provide rich target information and
target backgrounds obtained at night or in the case of insufficient light, and it has a strong
anti-jamming ability. However, infrared imaging is affected by the weather, temperature
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and other factors. On the sea surface, the influence of waves, clouds and other interference
will greatly affect the accuracy of the image. Thus, infrared imaging cannot provide
rich color information if the image quality is low. The visible light image contains gray
information for multiple bands, and the image quality improves steadily, which makes the
target features easier to be found and extracted. For the problem of ship classification, the
actual system can get a variety of images. This can be solved using fusion methods that
can produce high-resolution multispectral images from a high-resolution panchromatic
image and low-resolution multispectral images [1,2].

Several traditional algorithms were suggested by Rainey et al. [3] for extraction and
identification of the ship image. These include LBP, hog and sift and also classifiers
such as the nearest neighbor algorithm and SVM. Arguedas [4] used LBP features to
remove texture features from ship images to classify ships. Parameswarans et al. [5] used
the bag of words model in classifying texts and used the bag of words model in ship
classification. A two-stage ship recognition technique based on structural features was
proposed. The method can effectively distinguish ships and cargo ships according to the
ship image. Leclerc et al. [6] proposed a commercial ship classification algorithm based
on structural feature analysis which can distinguish the features of density estimation,
the position of the ship’s integral principal axis and the proportion of integral quantity
of the left, middle and right parts. Through a synchronous experiment in the East China
Sea experimental area, it was proven that the average classification accuracy of COSMO-
SkyMed image quotient method was 89.94%. Liang Jinxiong et al. [7] suggested the use
of a BP neural network to classify six infrared images. After pre-processing the images,
the Hu invariant moment, edge image and perimeter area ratio were selected, and the
accuracy of the four-layer BP neural network was about 84%. The traditional ship image
classification method is based on the expert system, which can recognize the ship according
to the ship type and lacks good generalization performance. Therefore, ship classification
accuracy needs to be enhanced. With the rapid development of edge metering and word
learning, convolutional neural networks have become a research hotspot in the field
of image classification. Rainey et al. [8] created and acquired a convolutional neural
network to recognize ships from satellite images and achieved good results. Liu et al. [9]
proposed an improved residual network to detect and classify remote-sensing ship images
which is prone to overfitting due to a small dataset. Khellal et al. [10] proposed using an
extreme learning network to recognize a ship’s infrared image. This method is suitable
for infrared recognition systems. After using extreme learning features, it also needs to
use extreme learning machines based on integration for classification. Therefore, this
method proposes a CNN model with multi-resolution input. The performance of the
proposed method was evaluated with TerraSAR-X images which were composed of five
maritime categories. The classification effect was different, but how the change in the
image resolution affected the internal activation of the CNN was still unclear from the test.
Chen Xingwei [11] proposed a method for extracting multiple ship classification features
such as the contrast, entropy, energy and inverse moment features to obtain a feature
vector set and taking the feature vector set as the input of the deep learning algorithm
to create a ship classifier model. The classification accuracy of the self-built dataset was
more than 90%. H. Zhu et al. [12] proposed an all new classification architecture for SAR
images of ships via deep learning. The classification architecture attained an accuracy
of 99.24%. Liu et al. [13] proposed the latest target classification algorithm, improved
Inception V3 and center loss convention neural network (IICL-CNN), established on a
well-established network to improve the accuracy of ambiguous targets. It performed best
with ambiguous ship targets compared with the original Inception V3 model. Pedroche
et al. [14] proposed a data preparation process for real-world kinetic data management and
the detection of fishing vessels. These features are intended for modeling ship behavior, but
since they do not include context-related information, the classification can be applied in
other scenarios. Li et al. [15] indicated ship classification methods for the practical testing
of satellite images and specified the respective techniques and statistics for the extraction
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of features. Qiu et al. [16] proposed a dual double seaport classification system based on
multilayer complex facility fusion. It obtained high accuracy, but it had the drawbacks of
other features not being extracted and being time-consuming.

Until recently, more researchers have still been researching how to obtain a good clas-
sification algorithm. All the existing studies have achieved good classification results, but it
is important to perform more research on comparison analysis of classification algorithms
using convolutional neural networks in a visible light image dataset and selecting which
one is suitable while also introducing a new classification algorithm which can improve the
accuracy of predicting ships in inland waterways so as to avoid collisions which are likely
to occur. To solve the above limitation, the following contributions have been made for
the proposed classification system. First, a new convolutional neural network architecture
has been employed which consists of two fully connected layers followed by ReLu and
drop out to improve the accuracy of ship classification systems. Secondly, to ensure the
generalization of the network, the improved CNN has been tested on the MARVEL dataset,
which consists of more than 10,000 images and 26 categories of ships. Finally, a comparison
has been performed between the proposed ship classification systems and other existing
classification algorithms.

2. Materials and Methods
2.1. Convolutional Neural Network Structure

A CNN has three notable features, namely weight sharing, a local connection and
subsampling in time and space. Unlike a simple BP neural network that uses all fully
connected layers, a CNN includes many different types, such as convolutional layers,
pooling layers and fully connected layers. These layers are used to better extract target
features while reducing the model parameters. At the same time, the advantage is that
a CNN does not require artificial design features, which is also the reason why it is
widely studied. In this section, a variety of classic CNN models are used to classify the
ships dataset.

2.2. Classic CNN Model

In order to determine the overall structure and complexity of the feature extraction
network in the ship target detection algorithm, in this section, we selected AlexNet, VGG-
16, Inception V3, ResNet-18, ResNet-34, ResNet-50, ResNet-101,ResNet-152 and GoogleNet
from the common convolutional neural networks [17], and various experimental compar-
isons have been performed to obtain the best classification algorithm.

(a) AlexNet

AlexNet was researched and designed by AI godfather Hinton and his student Alex
Krizhevsky, and it won the championship in the ILSVRC-2012 image classification compe-
tition. The task index was 10 percentage points higher than the second place winner. It
contains 5 convolutional layers, two fully connected layers and softmax as the last layer,
which helps with prediction. AlexNet’s new ideas include abandoning sigmoid and tanh
and adopting the ReLU activation function to make the network converge faster. ReLU is
already the activation function used by most networks today. The local response normal-
ization layer (local response normalization (LRN)) prevents overfitting and enhances the
generalization ability of the network, but later researchers rarely used it. AlexNet was also
one of the first networks to adopt GPU acceleration, which promoted the development of
deep networks.

(b) VGG-16

The VGG-16 network has the basic structure of downsampling with the largest pooling
layer after multiple convolutional layers with a convolution kernel size of 3 × 3. VGG-16
is one of the widely used levels in VGGNet’s multi-level network. After going through
multiple structures composed of a convolutional layer and pooling layer, the VGG-16
network uses all the output of the last pooling layer as the input of the fully connected
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layer in the network and passes through three consecutive fully connected layers to give
the confidence of each category. Since VGG-16 has three fully connected layers containing
a large number of parameters, the model will take up more memory and consume more
computing resources.

(c) ResNet-152

Before the residual network (ResNet) came out, it was difficult for researchers to
solve the problem that increasing the depth of the neural network would lead to gradient
dispersion, gradient explosion and network degradation, so it was impossible to build a
deeper network. However, in theory, because a CNN extracts features from a low-level to
high-level process, more layers, to a certain extent, means that features containing more
information can be extracted, which has a direct benefit for the overall performance. Gradi-
ent dispersion and explosion can be significantly improved through standard parameter
initialization and proper regularization. He Kaiming and others believe that network
degradation is due to the fact that the optimal depth of the network may only be the first
segment of the present, and the parameters of the last segment make it difficult to learn
the identity transformation. In order to learn the identity transformation more easily, the
identity mapping [18] was introduced, the structure of which is shown in Figure 1.

Figure 1. Block diagram of ResNet architecture.

In the residual structure shown in Figure 1, if the input is x, the weight layer is a
3 × 3 convolutional layer and the mapping learned through multiple multilayer networks
containing parameters in the structure is f (x), then the output of the residual structure is
f (x) + x. In the network, assuming that the mth through Mth layers are composed of such
multiple continuous residual structures, the forward propagation process of this part of
the network is shown in Equation (1):

xM = xm +
M−1

∑
i=m

f (xi, Wi) (1)

where xM is the output of these continuous residual structures, xm is the input of the first
layer, Wi is the parameter of the ith layer from the mth layer to the Mth layer and xi is the
input of the ith layer.

When performing backpropagation, according to the chain rule, the calculation process
of the gradient of the first layer in the network is shown in Equation (2):

∂F
∂xm

=
∂F

∂xM

∂xM
∂xm

=
∂F

∂xM
(1 +

∂

∂xm

M−1

∑
i=m

f (xi, Wi)) (2)

It can be found from Equation (2) that the gradient of the first layer contained a partial
derivative term directly derived from the error of the layer. Even if the gradient of the
latter layer was extremely small, the gradient would not disappear in this layer.



Information 2021, 12, 302 5 of 13

(d) InceptionV3

Google’s Inception series models from V1 to V3 start from the width of the model
instead of the depth. It is believed that the size of the convolution kernel required for
objects of different sizes is also different, so the parallel convolution kernel is adopted.
At the same time, the Inception network also performs well in terms of model size and
computational efficiency. For example, when using two 3 × 3 convolution kernels instead
of a 5 × 5 convolution kernel, the expression ability is not weakened while reducing the
number of parameters.

(e) GoogleNet

GoogleNet is a 22-layer deep convolutional neural network that is a variant of the
Inception network, a deep convolutional neural network developed by researchers at
Google. It was introduced to provide more efficiency in classification and detection. It is
currently being used in classification techniques.

3. Classification Dataset and Hyperparameter Setting
3.1. Dataset Description

The dataset used in this experiment is public game of deep learning ship dataset
which can be found on Kaggle [19]. The dataset consisted of five categories of ships:
cargo, military, cruise, carrier and tanker ships, better distinguishing the classification
capabilities of different neural networks for inland ships and thus reflecting the impact
of inland rivers when different classification networks were adjusted as the backbone
network. The images of the ships were taken from different directions, in different weather
conditions, at different shooting distances and angles and from different international and
offshore harbors. The dataset consists of 8932 images, and there exist both RGB images and
grayscale images with different image pixel sizes. In this dataset, the number of samples of
all types is more than 800, which can meet the needs of model training and testing. The
dataset was divided at a ratio of 70:30, with 70% for training and 30% for testing. Figure 2
below shows sample images existing in the dataset.

Figure 2. Random selected images from the dataset.

3.2. Evaluation Indicators

Evaluation indicators are indicators which are used to measure the network perfor-
mance of the model. In this chapter, for evaluation of the classification algorithm, we
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used these indicators: accuracy, precision, recall and specificity. Accuracy measured how
accurate the model was, while precision measured how accurately the ships were classified
and recall measured how well the negative samples were detected. Specificity measured
how different classes of ships were classified. The F1 score was the addition of precision
and recall. There mathematical formulations are given in the equations below:

Precision(pre) =
TP

TP + FP
(3)

Recall(Rec) =
TP

TP + FN
(4)

Speci f icity(Spec) =
TN

TN + FP
(5)

F1 = 2 × Precision × Recall
Recall + Precision

(6)

where in Equations (3)–(5), TP represents the true positive number of accurately classified
ships, FP represents false positives (meaning incorrectly classified ships), FN means false
negative (i.e., incorrect or misclassified ships), TN represents true negative and FP represents
false positive. The sum of the samples for TP and FP is all the samples predicted to be
positive, and the sum total of TP and FN is all samples labeled positive.

3.3. Experiment Set-up and Process

(a) Image pre-processing

When training deep convolutional neural networks, proper pre-processing of the
images can effectively speed up the convergence speed during training. The pre-processing
methods used in this chapter are shown in Figure 3.

Figure 3. Image pre-processing process.
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The normalization formula is shown in Equation (7), where the image channel is
represented by y, the mean is represented by µ and the standard deviation is represented
by σ:

ynor =
y − µ

σ
(7)

(b) Parameter initialization

To speed up the training process, the network in this experiment was initialized
with the parameters of the ImageNet pretraining network. Because ImageNet and our
dataset had different categories, the last layer of the network needed to be adjusted. The
pretraining weights of this layer could not be used. The Kaiming Norm [20] method was
used to initialize this layer.

This initialization method initialized the parameters of the convolutional layer with a
random value of a normal distribution with a mean value of 0 and a standard deviation of
σ. The value of the standard deviation σ is shown in Equation (8):

σ =

√
2

(1 + α2)× f an_in
(8)

In the formula, the number of input layer features is represented by f an_in.

(c) Hyperparameter settings

The hyperparameter settings of each network in the experiment are shown in Table 1.

Table 1. Hyperparameter settings.

Parameter Image Size Optimization Weight
Decay Factor

Training
Learning Rate

Training
Epochs

Momentum
Factor Batch Size

Value 224 × 224 Adam 1 × 10−5 0.001 40 0.9 64

During the experiment, the training set’s accuracy was recorded for every epoch, and
the test set’s accuracy was recorded when training was over. The entire experiment was run
in Google Colab. Initially, the present pretrained AlexNet [21], VGG [22], Inception-V3 [23],
ResNet [24] and GoogleNet [25] were adjusted to the game of deep learning ship dataset
for ultimate network performance in the suggested real-time ship application. With regard
to various models’ performance, the best-performing model was chosen to improve the
network classification accuracy. The models were adjusted according to the classes found in
the public dataset. These network models were trained in the PyTorch framework, and the
momentum and learning rate were optimized using Adam. The cross-entropy loss function
was employed for collecting loss in the entire process, and after each epoch, validation was
performed to evaluate learning during network training. As can be seen in Figure 4, the
accuracy performance of ResNet-152 was higher compared with AlexNet, VGG, Inception
V3 and GoogleNet. The accuracy of ResNet was 90.56%, while the model which acquired
low accuracy was AlexNet, which differed by 27.14%. GoogleNet obtained an accuracy of
81.23%, higher than that of VGG and AlexNet. However, the VGG model also acquired
79.28% accuracy, much higher than the AlexNet model. Furthermore, Inception V3 obtained
86.45% accuracy. Through the experiment, it is believed that improving the ResNet model
will lead to higher accuracy, and the model can be used for classification.
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Figure 4. Accuracy performance of each CNN model on the test set.

4. Proposed Method

In order to solve the problems described above for the accuracy of the classification
system, we proposed a new classification model. First, based on the pretrained models
(AlexNet, VGG, Inception V3, ResNet and GoogleNet), as described above in Section 2.2,
the models were fine-tuned with the public dataset we used. Based on their performance,
the best model was selected in order to further adjust the performance for high accuracy in
classifying ships in inland river waterways. After selecting the best model, the model was
adjusted, and classification was conducted based on the modification of the network. The
overall process is shown in Figure 5 below.

Figure 5. Proposed architecture of modified Resnet 152.
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4.1. Network Adjustment

The architecture of ResNet 152 had 152 layers of depth. This was accomplished with
the replacement of a three-layer bottleneck block for every two layers of ResNet [21]. The
network input layer took an RGB color image of 224 × 224 pixels. Figure 5 shows that the
provided method’s structure included 64 convolution kernels, 7 × 7, with a first layer step
of 2 and a max-pool layer of 3 × 3 × 2.

For the first convention layer, stride 2 was employed. In addition, in the preceding
layers (i.e., from layer 2 to layer 5), three-layer bottleneck blocks were used. Convolution
block 2 consisted of 128 filters, block 3 had 256 filters, block 4 had 1024 filters and block 5
had 2048 filters. The next layer was the average pooling. The last fully connected layer of
transfer learning was removed from the network because it was trained for 1000 categories,
and we only had 5 categories in our dataset. An additional classification block was used
which contained a fully connected (FC) layer with 1024 neurons. This layer was followed
by average pooling and a ReLu layer for learning new characteristics of our training dataset.
Next, we introduced a dropout layer on the bottom of the network to resolve the problem
of a diminishing gradient. A new fully connected layer for five types of classification
of ships was added on the basis of the classification block, where every previous layer
connected the five output classes by using the softmax function. The learning rates of these
new layers were modified so they could learn well the features of our training dataset.
With a batch size of 32 and the number of epochs set to 20, training took 8 h.

4.2. Experiment Results and Analysis

The proposed ResNet structure, as mentioned in the previous section, aimed at im-
proving the performance of the network. An additional classification block was used which
contained a fully connected (FC) layer with 1024 neurons. This layer was followed by aver-
age pooling and a ReLu layer for learning the new characteristics of our training dataset.
For enhancing the stability of the network and discovering the best feature extraction
vector of the fully connected layers, ResNet with 152 layers was examined using a public
ship dataset with several permutations of the vectors of fully linked layers in the proposed
classifying block.

Nevertheless, in order to perform transfer learning, the features extracted from previ-
ous layers were used to propose the classifying block, gaining the optimum weight and
distortion from the input dataset. For training and validation of the proposed classifying
algorithm, the same learning and momentum parameters were used. The proposed net-
work of two fully linked (connected layers), higher functional vectors had much greater
precision compared with other fully connected layers with lower functional vectors, as
can be seen in Table 2. Below the classifying block was the first layer, which was fully
related to 2048 features. At the same time, the highly functional, fully connected layers
were introduced to the classifying network block. The following phase was evaluation of
our network in different depth layers. The accuracy of each layer is shown in Table 3 to
verify the network’s performance.

Table 3 shows how the network depth affected the performance of the public ship
dataset in terms of accuracy. The performance of the ResNet model was demonstrated
to be boosted by increasing the network depth. As a result, ResNet 152 achieved greater
accuracy in the overall dataset classes compared with ResNet with fewer depth layers (i.e.,
Resnet 18, 34, 50 and 101).

Table 2. Classification test accuracy of various feature vectors.

No_Fcn Fcn1_Out_Features Fcn2_In_Features Fcn2_Out_Features Acc (%)

1 5 - - 91.24
2 1636 1636 5 95.79
2 1124 1124 5 95.71
2 778 778 5 95.62
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Table 3. The accuracy performance of different depth layers in our dataset.

Depth
Accuracy (%)

Cargo Military Tanker Carrier Cruise Average Accuracy

18 91.87 98.00 87.56 92.81 95.98 93.24
34 92.79 96.18 88.92 96.25 95.89 94.01
50 91.85 96.93 90.46 95.74 95.68 94.13
101 92.71 97.09 89.35 97.63 96.51 94.66
152 93.00 98.00 91.00 99.00 98.00 95.80

The ResNet 152 precise performance matrices are shown in Table 4. It was observed
that the classification system failed to fully recognize the cargo and tanker ships, with
accuracy percentages of 93.00 and 91.00, respectively, while the carrier, cruise and military
classes were accurately classified. The overall accuracy of the classification system was
95.8%. This shows how accurate the proposed classifying system was. In terms of precision,
the military, carrier and cruise ships were more than 98% correctly classified, and the lowest
precision was obtained by the cargo and tanker classes at 90.29% and 92.86%, respectively.
In addition, in terms of specificity, the overall performance obtained was 95.07, which
shows that the overall performance of the proposed classification system was good.

Table 4. Evaluation metrics of proposed classification algorithm for the game of deep learning sea
ship dataset.

Class Acc Pre Rec Spec F1 Score

Cargo 93.00 90.29 93.00 97.5 91.62
Military 98.00 98.99 98.99 99.75 98.99
Cruise 98.00 98.99 97.03 99.75 98.00
Carrier 99.00 98.02 99.00 80.12 98.51
Tanker 91.00 92.86 91.00 98.25 91.92
Overall 95.80 95.83 95.80 95.07 95.81

4.3. Analysis of Proposed Classification System with the MARVEL Dataset

To ensure the generalization capability of our proposed network, analysis was also
conducted on a different public dataset (i.e., the MARVEL data set), where the ships
were divided into 26 categories, covering common ship categories which could better
distinguish the classification capabilities of different neural networks for inland ships,
thus reflecting the impact of inland rivers when different classification networks were
adjusted as the backbone network. Five categories (cargo, military, cruise, carrier and
tanker) were selected. We randomly selected 140 images in each category to be used as
test images for our proposed classification system. The network was not retrained, and
only the test images were used for testing the performance of our system. Table 5 shows
the classification accuracy of the dataset. It can be observed that even though a different
dataset was used, it yielded a greater performance. It can be concluded that the proposed
classification algorithm performed best even when used with a different dataset.

Table 5. Evaluation metrics of proposed classification algorithm for the MARVEL dataset.

Class Acc Pre Rec Spec F1 Score

Cargo 88.69 81.33 88.69 94.03 84.85
Military 93.46 95.44 93.46 98.33 94.44
Cruise 88.94 97.86 88.94 98.76 93.18
Carrier 96.99 97.89 96.99 79.09 97.44
Tanker 88.65 89.85 88.65 96.44 89.25
Overall 91.35 92.47 91.35 93.33 91.83
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From the table, it can be observed that the tanker classification obtained the lowest
accuracy (88.65%), and the carrier classification obtained the highest accuracy (96.99%). The
overall accuracy was 91.35%, showing that our proposed classification system performed
best even with a different dataset. For the other evaluation metrics, precision obtained an
overall percentage of 92.47%, while recall’s was 91.35%, specificity’s was 93.33% and the F1
score’s was 91.83%.

4.4. Comparison of Proposed and Existing Methods

The basic goal of classifying ships is to recognize ships as accurately as possible.
Human errors may occur if monitoring is conducted manually or when traditional methods
are used. A river contains different types of ships, but identifying a certain kind of ship
is very difficult. A strong, effective ship classifying network was presented and proven
to solve these challenges. This section presents the comparison analysis of the proposed
algorithm with different existing techniques. For classifying ships, the use of a public
dataset is common for most researchers. Nevertheless, a comparison of various methods
used in different research projects is still a remaining unresolved subject. The table below
demonstrates our study’s general performance in comparison with the state-of-the-art
approaches in the literature.

As stated in Table 6 below, Wang et al. [26] designed an approach to ship categorization
using SAR pictures and in situ information. This was based on backscattering-based cate-
gorization and ship geometry, and it obtained an accuracy of 82 percent. Zhang et al. [27]
demonstrated a deep classification network based on CNN architecture with gnostic field
technology. They utilized 0.8 for the CNN output and 0.2 for the gnostic field output. The
daily ACC technique’s accuracy was 87.40 percent. For the three classes of ship images,
Jiang et al. [28] built their classification architecture based on the dispersion characteristics.
Their work was completed with the boat length ratio and an accuracy ratio of 83.33 percent.
Gundogdu et al. [29] introduced an SVM-classified CNN model for the extraction of deep
features. The total metrics for [29] were 90.93, 90.86, 91.01, 90.84 and 90.93. In another
work, ships were recognized and categorized with a raw underwater audio signal by
Sheng et al. [30], inspired by the auditory CNN model. In the experiments, the cumulative
accuracy classification for 5 ship classes reached 79.2 percent. While Shen et al. [30] had
in-depth analysis with a CNN-inspired auditory technique, the five-class classification
template yielded worse performance. Leclerc et al. [6] used the method of transfer learning
with the Inception V3 network. Various learning rates were obtained to develop a clas-
sification network and obtain a total accuracy of 0.889 percent. Our proposed technique
surpassed previous studies by utilizing the modified Resnet-152 architecture by adding
a classification block with two fully connected layers and testing it on a game of deep
learning sea ship dataset. The performance measures are presented in Table 4.

Table 6. Comparison between state-of-the-art algorithms.

Method Year Acc Pre Rec Spec F1 Score

Hierarchical ship classifier [26] 2014 82.00 -
Gnostic field + CNN [27] 2015 87.40 - - - -

Parametric vector estimation + SVM [28] 2016 83.33 - - - -
CNN + SVM [29] 2017 90.93 90.86 91.01 90.84 90.93

Auditory-inspired CNN [30] 2018 79.20 79.66 79.33 - 78.83
Inception v3 [6] 2018 78.73 -

Cas-ShipNet [31] 2020 95.06 95.07 95.06 98.77 95.05
Our method 2021 95.8 95.83 95.80 95.07 95.81

For each class of ship, Table 7 shows the metric performance of the state-of-the-art
techniques. Although Wang et al. [26] reported the smallest accuracy in the tanker and
cargo classes, Jiang et al. [28] exhibited the lowest accuracy in the carrier class. The military
and cruise ship classes were not included. Ucar and Korkmaz [31] obtained high accuracy in
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the military and cruise ship classes compared with our proposed method with a difference
of 0.38%, but for the other classes of ships, it acquired low classification accuracy compared
with our proposed method. For overall comparison, our proposed approach performed
better than others.

Table 7. Classification comparison of different ship classes with state-of-the-art algorithms.

Method Cargo Military Cruise Carrier Tanker

Hierarchical ship
classifier [26] 80 - - 93.30 72.70

Parametric vector
estimation + SVM [28] 87.50 - - 80.00 82.50

Cas-ShipNet [31] 88.26 98.38 98.38 98.79 91.50
Ours 93.00 98.00 98.00 99.00 91.92

5. Conclusions

This paper introduced a new classification model’s architecture, which is based on
improving the ResNet-152 architecture. This improved the performance of the classification
model for classifying ships in inland waterways. Initially, the pretrained models used were
AlexNet, VGG16, ResNet, Inception V3 and GoogleNet for the game of deep learning sea
ship public dataset, which consisted of five classes: cargo, military, carrier, cruise and tanker
ships. Based on their performance, the best model was selected for further improvement.
The ResNet-152 model performed better compared with the others, with an accuracy of
96.68%. Further improvement was made by adding a new classification block with two
fully connected layers followed by ReLu and a dropout Layer. The new proposed method
achieved high accuracy compared with the other existing algorithms, with an accuracy of
95.80%. For testing the generalization of the proposed algorithm, it was further tested on
the MARVEL public dataset, where it also obtained a good accuracy of 91.35%, proving the
accuracy of the proposed method. Lastly, it was compared with other existing algorithms
in classifying different classes of ships in inland waterways, and our proposed method
achieved better results compared with the others. In future works, the proposed method
will be improved in order to classify the ships in different weather conditions using more
advanced technology. Additionally, for proper image pre-processing, a comparison of
accuracy for noisy and low-contrast images will be used along with the addition of the
Jaccard index to compare the accuracy of the classification.
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