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Abstract: Augmented reality is the fusion of virtual components and our real surroundings. The
simultaneous visibility of generated and natural objects often requires users to direct their selective
attention to a specific target that is either real or virtual. In this study, we investigated whether this
target is real or virtual by using machine learning techniques to classify electroencephalographic
(EEG) and eye tracking data collected in augmented reality scenarios. A shallow convolutional
neural net classified 3 second EEG data windows from 20 participants in a person-dependent manner
with an average accuracy above 70% if the testing data and training data came from different trials.
This accuracy could be significantly increased to 77% using a multimodal late fusion approach that
included the recorded eye tracking data. Person-independent EEG classification was possible above
chance level for 6 out of 20 participants. Thus, the reliability of such a brain–computer interface is
high enough for it to be treated as a useful input mechanism for augmented reality applications.

Keywords: augmented reality; neural networks; eye tracking; classification; attention; EEG

1. Introduction

One of the many challenges that our brain is faced with daily is the filtering and
processing of vast amounts of information about our surroundings. The input recorded
by our auditory, visual, olfactory, gustatory, proprioceptive, and tactile senses is immense
at almost any given moment. To survive in a world of sensory overload, we need to
give meaning to this available information and focus on the most important aspects of
the input. The cognitive process of directing this focus on a selected sensation is the
core of attention mechanisms [1]. Subtle differences can still be found between different
definitions of “attention” because many processes are still under examination. The meaning,
assumptions, and implications about the importance of consciousness, concentration,
willingness, allocation of resources, memory, and vigilance are yet to be understood.

As mentioned before, our attention can be directed towards different senses. While
at times, our attentional capabilities are best split between several senses equally (i.e.,
proprioceptive, visual, and auditory while riding a bike in traffic), we sometimes also
focus our attention mainly on one sense. Visual attention refers to the conscious and
unconscious filtering and selection of visual input [2]. In many cases, this process is
linked to gaze behavior, assuming that we direct our eyes at the attended targets (overt
attention). Intuitively, the analysis of eye tracking data is often chosen as a means for
attention detection. However, the exact gaze point detection requires constant recalibrations
to correct for slight movements and sometimes, eye tracking data cannot be recorded
with sufficient accuracy if a participant is wearing glasses or has another eye condition.
Contrasting overt visual attention, covert visual attention describes directing one’s attention
to the visual periphery instead of the foveal focus. In this case, eye movement is no indicator
for the direction or object of attention [3]. Additionally, attention is more complex than
just focusing on specific visual targets or senses. For example, ref. [4] give a detailed
taxonomy of internally and externally-directed attention and [5] describe the large-scale
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neural network that is associated with exogenous (bottom-up) or endogenous (top-down)
attention shifts. In general, it can be seen that different aspects and forms of attention cause
different neural activity patterns in the brain [1]. Thus, brain imaging techniques are a
good alternative to eye tracking to study and detect complex attention mechanisms, which
may not be observed from gaze only.

Electroencephalography (EEG) is one technique that is used to measure such brain
wave patterns. The electrical activity is measured with electrodes that are placed on the
scalp and recorded by a computer. These recordings can be analyzed and the results can be
interpreted as a user input that triggers an action on the connected computer or device. Such
a human-computer interaction system is known as a brain–computer interface (BCI) [6].
If a user actively uses the BCI, it can be used for communication (i.e., spelling devices for
paralyzed people [7]) or control (i.e., movement of prosthetic limbs [8]). A passive BCI
instead makes use of arbitrary brain signals that are not the result of voluntary, purposeful
control [9]. When the mental or emotional state of the user changes, the neural activity
is unintentionally altered and this information can be extracted and used for adaptations
of the connected device (i.e., cognitive fatigue detection in pilots [10]). For such systems
to work effectively, the detection of state changes is required to work accurately and in
real-time. With its high temporal resolution and the possibility to use a mobile setup, EEG
is a good solution for BCIs or cognitive state classification in general.

Especially, if the attentional targets have certain, distinct properties, brain pattern
analysis is reliable to classify the current targets of attention, independent of gaze. For
example, when the luminance of an attended target flickers in a steady frequency, the same
frequency can be observed as a neural response in the brain. This phenomenon is called
Steady-State Visually Evoked Potential (SSVEP) and it is a robust detection mechanism
for visual attention independent of eye movement to the target and even possible for
peripheral vision [11].

Augmented reality (AR) is a relatively new type of user interface that combines real
and virtual content. At its core, it is the display of generated information and objects into a
natural environment. This merges the near-infinite memory capacity and processing power
of computers with human intelligence, information processing, reasoning, and bodily
adaptability. The presentation of the virtual content can happen through hand-held devices
(i.e., smartphones) or head-mounted displays (HMD, i.e., Microsoft HoloLens, Microsoft,
Redmond, Washington, United States ). While the HMD are often see-through for the real
surroundings and only project the virtual content on the display, the hand-held devices
mostly show a video representation of the environment with the added virtual content
(see Section 1.1). This melting of real and virtual information adds to the sensory input
and increases the sensory overload. Solving tasks and operating in an environment with a
mixture of real and virtual content, therefore, requires sophisticated capabilities to retain
attention in order to avoid distraction.

AR introduces two types of distinguishable attention targets in one scene: Real ones
and virtual ones. This distinction did not have to be made before, because it is unique
to AR but offers interesting information about how users interact with AR and how they
process available information. Some AR applications might profit from the information
whether the user’s attention is on real or virtual information because they can adapt their
user interface or behavior for better interaction with the user.

An exemplary use case for the beneficial differentiation between real and virtual
objects of attention are industrial augmented reality applications. In [12], the authors
identify AR as one of the most important technologies for the Industry 4.0. They analyzed
current studies and state that AR can bring value to several industry tasks and sectors:
Service, manufacturing, sales and marketing, design, operations, and training. Ref. [13]
investigated the usability of AR manuals for factory workers and concluded that visual
information is presented more clearly in AR compared to instructions on paper (as a
.pdf). For their methodology, they used a structure of simplified text instructions and
2-dimensional graphical symbols. The virtual content is shown concurrently with the
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real objects, for example on a screen via a hand-held display. Another AR tool to support
workers was suggested by [14]. The tool enables the inspection of three-dimensional
models in a real-world context to detect the presence of design or mechanical discrepancies
on the final physically assembled product. At the same time, the workers can annotate the
three-dimensional models and add their comments or mark any errors. Both of these AR
tools, manuals and model annotations, present real and virtual content in close proximity.
All instructions or annotations should be placed very accurately and the virtual content
must adapt to the real content in the scene and to the current task. If the application
was aware of whether the user’s attentional focus was on real or virtual content while
making annotations, it might add this information explicitly or adapt the presentation of
the information for a better communication and collaboration basis across workers on the
same project. Depending on the work context, this could further be improved if the virtual
content was slightly more transparent and changes in the viewpoint of the worker would
result in overlapping real and virtual context. It adds flexibility to the inspection of the
model while retaining the high accuracy of the annotations. For the manuals, whenever
virtual content overlaps real objects of interest, the application could move or delete the
virtual content. The application could also extract the information about the attentional
focus as an information source on when to display new instructions. A salient change of
the virtual content might distract the user during times of attention to the real object. This
could be desired (to prevent errors) or undesired (to not disrupt the process).

Some of the mentioned use case applications could be implemented using just an exact
gaze point of the worker. However, as assessed by [15], eye tracking devices usually only
have an accuracy of 0.4–0.9 degrees for adults in very fixed settings. They suggest calculat-
ing with a 1 degree offset in general which would mean a miscalculation of approximately 1
cm if the target distance from the eyes is 60 cm. Due to the mentioned proximity of real and
virtual content, this offset could already lead to a misclassification of the attentional target.
Additionally, the systems will mostly be used in a mobile setting, where the eye tracking
accuracy further decreases. If the eye tracking device is located in a head-mounted display,
frequent recalibrations would be necessary or if the eye tracker was part of a hand-held
device, the position of the eye compared to the camera would be subject to constant change,
decreasing the accuracy of the gaze point estimation. Lastly, the mentioned overlap of real
and virtual content shows another limit of pure gaze point estimation.

As described before, EEG recordings are often used for the classification of cognitive
states in general, but also for visual attention. Thus, we considered this a suitable alternative
to eye tracking. In [16], the authors discussed several brain recording methods and their
usability and application, such as near infrared spectroscopy (NIRS), functional magnetic
resonance imaging (fMRI), as well as positron emission tomography (PET). Especially fMRI
and the PET were considered not suitable for our study because of the static recording
stations that would not allow for the results to be used in portable AR applications. NIRS
recordings can be performed in a mobile setup, but the temporal resolution is lower and
would not be applicable for real-time systems in the future. Thus, EEG data was chosen as
the input for the BCI.

In this work, we performed a study to test how well we can classify attention on
real and virtual objects in a controlled augmented reality setting based on EEG and eye
tracking data. We implemented a pairs game that had a virtual and a real set of cards and
recorded 20 participants while their attentional focus was directed towards the cards. The
collected EEG data was classified using a shallow convolutional neural net (CNN) that was
built analogously to a Filter Bank Common Spatial Patterns (FBCSP, [17]) feature extraction
approach. We compare the results to a simple eye tracking classification approach and a
combination of both modalities. We also test the generalizability by analyzing the spectral
density of the EEG data for each participant and by testing a person-independent classifier.

The future goal is to work towards a real-time classifier of attention on real and
virtual objects that could support pure eye tracking information about the direction of
visual attention. The BCI would supply the application with information about the current
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attentional state of the user. Depending on the context, as seen in the example, an interface
or behavior adaptation might be appropriate to reduce unwanted distractions and improve
the usability of the AR system.

1.1. Augmented Reality Technology

According to [18], three main characteristics define an AR system: (1) It combines
real and virtual content, (2) the interaction with the system happens in real-time, and (3)
a reaction and three-dimensional integration of virtual content in the real surroundings
takes place. As mentioned before, AR interfaces can be realized through different devices
which [19] categorize into three types: Video see-through augmented reality devices record
their surroundings and display them through a video with the added virtual content. This
version is often used for AR applications on mobile phones and tablets. Optical see-through
augmented reality devices instead, use a transparent screen that only displays the virtual
content while allowing the user to still see the real surroundings. In Projective AR, the
virtual content is projected onto real objects in the environment.

In this work, we use an optical see-through AR device with an HMD that was de-
veloped by Microsoft (HoloLens Gen 1, see Figure 1). At the time of the study, it is one
of the most advanced devices. All the virtual information is directly projected into the
participant’s field of view and several cameras scan the surroundings for correct object
placement. Interaction with the system is possible through voice control, gestures, and
external clicking devices. The participant movement is tracked in relation to the real world,
to stick virtual objects to real places, even if they are outside of the field of view.

Figure 1. Setup of the EEG and the HoloLens during the experimental session.

Currently, AR technology still has its limitations (frame rate, resolution, projection
area) and users are usually able to distinguish between real and virtual objects. First of
all, virtual objects are usually brighter because they originate from a light source within
the device. Additionally, augmented content can withstand physical laws. While the
virtual content can be influenced by the real content, the real content can never truly be
influenced or changed by virtual content and this flaw can become obvious in different
scenarios (i.e., object movements). Another reported projection flaw is that objects can
appear to be floating in times when they should not. Further limitations are caused by the
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2.4-megapixel display of the device. The 16:9 ratio of the screen offers an HD resolution of
1280 × 720 pixels per eye but restricts the natural field of view. Thus, a virtual object may
disappear from the screen, while the natural surrounding where it was placed is still visible
for the user (source: https://docs.microsoft.com/en-us/hololens/hololens1-hardware,
accessed on 15 April 2021). The display is updated with a refresh rate of 60 Hz.

1.2. Related Work

To the best of our knowledge, there are no scientific publications that dealt with
the classification of virtual and real objects of attention in EEG-based AR-BCI systems.
However, the general use of EEG recordings to assess visual attention was proven to
be successful in several studies. Many of these visual attention EEG-studies make use
of evoked or event-related potentials, such as Steady-State Visually Evoked Potentials
(SSVEP, [20]) or the P300 (positive deflection in voltage after approximately 300 ms, [21]).
We will not discuss these studies and their results further in this context, because they are
only applicable in specific AR scenarios and applications and require a very specific design.

On the other hand, several research works analyzed general claims about neural
activation patterns during visually attentive phases. For example, in [22], the authors
report frontoparietal engagement during visual attention tasks. Ref. [23] investigated brain
activation patterns for cued visual attention to either the right or the left visual hemifield
and found that attention shifts modulate the alpha activity in the contralateral posterior
parietal cortex. Sustained attention on a specific target was studied in [24], showing
that, in fact, the attention oscillates in a periodic fashion instead of being truly sustained.
Ref. [25] found that alpha power increases during times of sensory-input independent tasks
compared to sensory-intake tasks. Further, ref. [26] performed visual attention EEG studies
using a portable consumer-level EEG headset and proved, that they are good enough to
assess event-related potentials of visual attention.

Taking it one step further, EEG data can not only be used to study the neural correlates
of attention but it can be used to improve human-machine interaction. Several studies
have focused on the modeling of cognitive states for EEG-based BCI systems. Apart from
attention, these BCIs can differentiate between levels of mental workload, tiredness, or
different emotions [27]. Zhang et al. [28] used EEG data to estimate two states of mental
fatigue on a single-trial basis with an accuracy of 91%. A mobile setup was tested in [29],
where students’ attentiveness was measured in a classroom and correctly classified with an
accuracy of 76.82%. Li et al. [30] recognized the potential of EEG for attention estimation
and implemented a real-time attention level classifier. The subjects undertook different
mental tasks and self-reported their attention in three different levels. The system was able
to classify the attentional state in real-time with an accuracy of 57%. Sethi et al. [31] used
such an attention classifier for an e-Learning setting to provide feedback to the users on
their attentional state. The feedback improved their performance and attention level. To
locate user attention and reduce mental workload in video analysis tasks, ref. [32] used eye
tracking and EEG data for spatio-temporal event selection. They achieved 91% temporal
and 86% spatial accuracy for a static paradigm.

Many BCI systems use gaze as an active input mechanism for controlling an appli-
cation [33]. The latest AR-headset from Microsoft, the HoloLens 2 even is equipped with
in-built eye tracking at a frequency of 30 Hz, and some native applications make use of
the gaze point for facilitated user interaction. However, there is more information in the
viewing behavior than only the current gaze point. It has been shown that it is possible to
classify emotions [34], mental states [35], cognitive deficits [36], and internal thoughts [37]
from eye gaze. Annerer-Walcher et al. [38] performed a detailed analysis on several eye
tracking features to predict internal from external focus of attention.

One of the technologies that can profit from some of the mentioned BCI systems is
augmented reality. The combination of augmented reality and brain–computer interfaces
has been of high interest lately. Si-Mohammed et al. [19] published a state-of-the-art
summary for AR-BCI systems and described the scope of application. In their work, recent

https://docs.microsoft.com/en-us/hololens/hololens1-hardware
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improvements in the combination of both technologies become apparent, however, they
also critically reflect on problems and shortcomings, such as setup and movement artifacts.
The problematic combination of two head-mounted systems, like EEG and augmented
reality headsets, has also been mentioned by [39]. The correlation of AR with EEG-based
BCI-systems has been discussed in [40]. Many AR-BCIs or brain-controlled AR systems
make use of specific neural responses such as SSVEP [41] or the P300 [42]. Especially
SSVEP-based BCIs are used in many studies to assess the general feasibility of such systems
for specific contexts because they are easy to implement and have a straight-forward
analysis [43]. For example, ref. [44] suggested controlling the user interface of a medical
AR application that enables X-ray vision by adding SSVEP stimuli to normal eye tracking
techniques. The feedback of the doctors suggested that such a BCI increases the usability
of AR for medical contexts. As mentioned before, these evoked potential studies will not
be discussed further for this work. Moreover, we will not discuss any active BCIs where
the user explicitly alters his neural activity to evoke an action. Instead, we focus on passive
BCIs as described by [45] and how they have been combined with AR.

In 2004, Navarro suggested using AR and Bluetooth as catalysts for a wide use of
EEG-based BCIs in his paper “Wearable, wireless brain–computer interfaces in augmented
reality environments” [46]. Zao et al. [47] combined EEG and Electrooculography (EOG,
measuring eye movements) with AR, suggesting that this type of neurofeedback and
neuromonitoring has the potential to improve applications in augmented cognition ranging
from feedback-controlled perceptual training to virtual learning and social interactions.
Similar to the sample use case from the introduction, ref. [48] replaced the normal input
mechanism for an Industry 4.0 inspection tool with a BCI-based input mechanism. Aiming
at the restoration of motor control. Chin et al. [49] implemented an AR-BCI that uses a
3D model of a hand to visualize the motor imagery task that the patient is performing. It
was found that the BCI-based model is more engaging than conventional visual feedback,
even when the majority of the participants are BCI-naive. Barresi et al. [50] claimed that
BCI-checked surgical training for users is better than normal training. They combined a
BCI with AR and estimated the level of attention. The medical context was also picked
up by [51] that used a BCI in combination with AR to assess mental fatigue caused by the
visual input. They conclude that the higher workload that is associated with AR may derive
from the higher perceived difficulty of tasks in AR. The “Mind–Mirror”, implemented and
tested by [52], is a direct neurofeedback system that combines visualization of one’s own
brain in action and a semi-transparent mirror. The virtual model of the brain and current
neural activation patterns of the user are displayed on the mirror in the place of the actual
brain of the user. This helped the participants to learn to control their mental states and the
authors suggest applications ranging from education and training to entertainment. Han
et al. [53] argument, that augmented and virtual reality are important technologies for the
future of tourism. They suggest a framework to study how these technologies can be used
to enhance visitor experiences. In this framework, EEG is used as an experience measure.

The expressed future research goal is to build a real-time BCI for AR that adapts an
application’s behavior and user interface according to the attentional state of the user.
This was implemented for internally-directed (i.e., thought, memory, mental arithmetic)
and externally-directed (i.e., visual search, reading) attention in previous work. In [54],
we showed that it was possible to classify internal and external user attention in an
augmented reality paradigm and in [55], a first real-time attention-aware smart-home
system in AR was implemented and tested. It was shown that the usability was improved
and the distraction decreased by including system behavior restrictions based on the
detected internal or external attention of the user. As input modalities, EEG and eye
tracking data was used.

1.3. Hypotheses

Based on the related work, the current quality of augmented content, and knowledge
about neural processing of visual information, we hypothesize that activity patterns in
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the human brain are different for visual attention of real-world objects and virtual objects
in augmented reality. This hypothesis is based on the fact that the virtual content is still
recognizable as such by the user. Thus, the processing of visual virtual information should
evoke a noticeably different neural response than the processing of visual information that
is not virtual. Building upon the assumption that there is a detectable difference in the
neural response, we hypothesize that state-of-the-art machine learning algorithms should
be able to learn this difference and build models for both cases of attentional focus (real
and virtual object). Precisely, our main hypothesis is stated as follows:

Hypothesis 1 (H1). In a controlled augmented reality environment, a person-dependent EEG
data classification of real or virtual visual attention is possible with an accuracy significantly higher
than chance level.

One major discussion point that is often critical of EEG-based attention classification
is the fact that eye tracking data is easier to collect and leads to even better results. Newest
augmented reality headsets are even supplied with a built-in eye tracker (i.e., Microsoft’s
HoloLens 2). This method reaches its limitations for small or overlapping content and is
highly dependent on an accurate eye tracker calibration if the gaze point is used to define
the current attentional target. Slight movements of the eye tracking device in relation to
the eyes would influence the result and constant recalibration would be necessary. Instead,
the gaze patterns can be analyzed for differences, as it is often done in eye tracking studies
on other cognitive phenomena (see Section 1.2). In our scenario, the viewing behavior for
virtual and real objects would have to be noticeably different. We assume, that there are
only marginal differences and thus, we hypothesize additionally:

Hypothesis 2 (H2). In a controlled augmented reality environment, basic person-dependent eye
tracking data classification of real or virtual visual attention is not significantly more reliable than
the person-dependent classification of simultaneously recorded EEG data.

Assuming that the distinguishable neural activity patterns are evoked by the nature
of the virtual representations, they should be similar across participants. Cross-participant
EEG pattern recognition for person-independent brain–computer interfaces has been a
challenging but desired topic in the field. Individual differences among the participants
and users lead to lower classification accuracies compared to models that were trained on
person-dependent data. However, we want to analyze whether the models still generalize
over participants. We formulate our third hypothesis as follows:

Hypothesis 3 (H3). In a controlled augmented reality environment, a classifier trained on person-
independent EEG data can predict real or virtual visual attention of a new participant with an
accuracy significantly higher than chance level.

The focus of this study lies on H1, with H2 and H3 being supporting hypotheses. H2
is taken as a motivation to study this topic and H3 is a preliminary analysis to inspire
further thoughts in the direction of training-free real-time BCIs.

2. Experimental Design

The major requirements for the experimental task were (1) to ensure retained attention
on a real or virtual object over a controlled period of time, (2) a high similarity between
the real and virtual trials and their objects beyond the mode of presenting the scene
elements, and (3) to avoid strong artifacts in the data. To avoid these artifacts (i.e., caused
by movements), we decided to use a controlled and static setting. The retained attention
on specific parts of the field of view was achieved by turning the task into a “serious
game” [56]. We implemented a card game that follows the idea of the popular game PAIRS
in augmented reality. In a game of pairs, the players have a set of cards with distinctive
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symbols or pictures on them (i.e., different animals). Each symbol is present exactly twice.
The two cards with the same symbol make a pair.

We decided to play the traditional pairs game with adjusted rules in a one-person
format, without an opponent. In the beginning, the cards are presented with their symbols
facing upwards. The participant is instructed to look at the cards in their positions for 20 s
and to remember the positions of as many pairs as possible. This phase is called memory
phase. Immediately afterward, in the recall phase, the cards are turned around in the
same spot to their empty side and the participant has 20 s to find as many correct pairs as
possible by selecting them one by one. When a card is selected, it is turned around to the
side with the symbol. If a second card is selected and it does not show the same symbol,
as the first card, both cards are turned back around to their empty side. It is considered
a mistake but the recall-phase continues. If the two cards match, they stay turned to the
side containing the symbol and count as “correctly recalled”. In the end, feedback is given
about the correct number of pairs that were detected. All participants were asked not to
guess randomly but focus on the cards on the memory phase. If several pairs were found
correctly within the given time limit of 20 s, it can be assumed that the player was actively
paying attention to the cards in the memory phase. Field sizes were chosen randomly to
vary the difficulty. The possible fields consisted of 5 × 2, 4 × 3, 7 × 2, or 4 × 4 cards. Thus,
between 5 and 8 pairs were present in each trial. Following a personal difficulty evaluation,
the threshold for the number of pairs that had to be detected correctly to assume a focused
Memory-phase was set to 3. Trial difficulty was evenly distributed across the course of
the experiment for both virtual and real conditions (r2 < 3 ∗ 10−3 for Pearson correlation
between card count and trial position in the experiment).

As mentioned, the game was implemented in AR. With our research goal in mind, we
introduced two trial conditions: “Real” and “virtual”. In the “real” condition, the sustained
attention of the participant is on real objects and in the “virtual” condition, the sustained
attention is on virtual objects. Some virtual elements are present in both conditions to
optimally simulate a typical augmented reality scenario. These elements are the border of
the field, marbles by the side, and a deck of cards. The crucial difference between the two
conditions is the playing cards: In the “real” condition, the cards are real physical cards,
whereas, in the “virtual” condition, the cards are virtual cards that are displayed by the
augmented reality device. The virtual and real cards are identical in size and display the
same pairs of matching symbols. The playground is a light grey wooden board in the size
of 90 cm × 40 cm that was placed on a box. The height of this tabletop was the same as
the height of the seating of the player. This placement was chosen to give the participant a
good overview of the full set of cards. The perspective of the player during the memory
phase can be seen in Figure 2 for an example of each condition.

Figure 2. Participant’s view of the two task conditions. Left: “Virtual” condition with 4 × 3 field size;
right: “Real” condition with 4 × 4 field size; both: Virtual field size border (blue), virtual marbles
(lower-left corner), a virtual deck of cards (upper right corner), and a real tabletop (light grey). The
two different field sizes were chosen in this example to illustrate the randomly chosen difficulty
levels. The field sizes varied from trial to trial.



Information 2021, 12, 226 9 of 26

The only data that was used in the analysis, was the data that was recorded during
the memory phase. In this phase, the participants retained their attention either on only
real or only virtual content in an augmented reality scenario, while no other actions or
cognitive tasks could make a difference between real and virtual trials. This ensures that
any difference which is found by the classifier can be tied to the difference in attention on
virtual vs. real objects. The data from the recall phase was not used, because during the
recall the participant had to perform the action of turning the cards around. This was done
manually in the “real” condition. In the “virtual” condition, the participant used the visual
“gaze point” that is visible through the augmented reality device and a Bluetooth clicker
for selection. Since these performance differences interfere with the pure visual attention
on objects and we do not want these differences to be learned by the model, we did not
use the data from the recall phase. However, we played the full game to encourage the
motivation of the participants and to record the number of correct pairs as a measure of
how well the memory phase was performed by the participants.

Another slight difference between the two conditions is the transitions between the
phases. In the “virtual” condition all cards were simultaneously presented to start the
memory phase and simultaneously turned over after the memory phase to start the recall
phase. In the “real” condition, this was not possible because the cards had to be laid out
and turned around by hand by the experimenter. To have the same sharp beginning and
cutoff of the memory phase in the “real” condition as in the “virtual” condition, a white
screen covering the whole visual field of the augmented reality device was added. The
white screen covered all the cards so that they were not visible, while the experimenter
prepared the field. It was present before the memory phase (while the experimenter laid the
cards down) and before the recall phase (when the experimenter turned the cards around
to their empty side). This time period was not used during the classification process. The
exact procedure of each condition of the task, including the time limits, can be seen in
Figure 3.

Figure 3. Step-by-step procedure of the two task conditions with times and performed actions.
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The game was implemented in Unity (version 2018.4.2f1) using the HoloToolKit
(version 2017.4.3.0) for compatibility with the Microsoft HoloLens Generation 1.

3. Methods

For this within-subject study, we recorded data from 20 participants with normal
or corrected to normal vision (age 26.1 ± 7.2; 7 female). Nine of the participants were
university students at the time of the recordings (7 in the field of computer science). In a
preliminary questionnaire, 11 participants reported that they had experiences with virtual
reality and 7 participants reported that they had used an augmented reality device before.
After an introduction to the experiment, all participants gave written informed consent to
the recording and storing of their data in a completely anonymized fashion. The study was
approved by the local ethics committee.

3.1. Experiment Session

All experiment sessions took place in the same room of an office building. The room
was quiet but not shielded and both sunlight and artificial light were present. A less
controlled experiment environment was chosen for a justified comparison to possible
real-life applications. The same experimenter attended and instructed all sessions to avoid
differences between performance and explanations during the trials. All participants were
instructed to come without makeup for better eye tracking results and to not use hair
products on the day of the experiment (such as conditioners, gels, sprays, or wax), for
a higher EEG calibration accuracy (following common EEG patient guides, i.e., https:
//www.hss.edu/conditions_eeg-testing-a-patients-guide.asp, accessed on 15 April 2021).
The chair and table were set up before the session.

In the beginning, the participants filled out a demographic questionnaire and received
a written explanation of the task to ensure that no information was left out. As the first
step, the EEG cap was set up and the HoloLens with the eye tracker was adjusted on top
of the cap (see Figure 1). For details on the EEG and eye tracking, see Section 3.2. After
the setup was completed and the participant was seated in the experiment chair, the eye
tracker was calibrated using the manual 3D-marker calibration of Pupil-Labs software
Pupil Capture (https://docs.pupil-labs.com/core/software/pupil-capture/#calibration
-methods, accessed on 15 April 2021). Unfortunately, eye tracking recordings are only
available for 13 participants because of technical problems (no pupil detection possible).
All comparisons between eye tracking and EEG data in this study will be based on the 13
participants only.

The experiment was controlled via an experiment terminal by the experimenter. Before
the main trials started, each participant executed tutorial trials to get accustomed to the
operation of the game. The number of tutorial trials was chosen individually, depending
on the feedback of the participant. In total, each participant completed 20 trials of the “real”
condition and 20 trials of the “virtual” condition, resulting in a total of 40 trials. These
trials were performed in blocks of four trials of the same condition (one trial of each field
size). After each block, the condition of the next block was generated randomly with the
constraint, that a maximum number of five blocks per condition was possible. The block
design was chosen to facilitate and shorten the experimental setup during trials, especially
for the “real” trials, where the experimenter was required to set the cards up manually. The
field size was also generated randomly for each trial. During the “virtual” trials, errors
and correctly recalled pairs were recorded by the application, while for “real” trials, the
experimenter noted performance results by hand.

On average, the participants spent less than 60 min with the performance of the exper-
iment. Afterward, all participants answered a questionnaire regarding their perception of
the task. The questions compared the perceived difficulty, interaction, and usability of both
conditions. Additional free feedback was collected.

Trials, during which technical or environmental problems occurred, were excluded
from the analysis. This led to a reduced number of trials for participants 5, 6, 7, 8, and 10

https://www.hss.edu/conditions_eeg-testing-a-patients-guide.asp
https://www.hss.edu/conditions_eeg-testing-a-patients-guide.asp
https://docs.pupil-labs.com/core/software/pupil-capture/#calibration-methods
https://docs.pupil-labs.com/core/software/pupil-capture/#calibration-methods
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and an overall average of 0.5 deleted trials. The reduced trial number is corrected for in all
statistical analyses.

3.2. Data Recording

During the main trials, we recorded EEG, eye tracking, and task data with matched
timestamps using the Lab Streaming Layer system (LSL https://github.com/sccn/labstr
eaminglayer, accessed on 15 April 2021). The task data included the beginning and end of
trials, as well as their condition, and the results of the recall phase. This data was used for
windowing and performance analysis. For the communication between the HoloLens and
LSL, we used LSLHoloBridge (https://gitlab.csl.uni-bremen.de/fkroll/LSLHoloBridge,
accessed on 15 April 2021). For details on the architecture, see [54].

The EEG data was recorded using a wireless g.Nautilus EEG-headset from g.tec
(https://www.gtec.at/product/gnautilus-research/, accessed on 15 April 2021) and 16
gel-based active electrodes. The positions of the electrodes are based on the 10-20-system,
covering the whole scalp but adjusted to have minimal interference with the placement of
the HoloLens. This resulted in the following placement: Cz, Fp2, F3, Fz, F4, FT7, C3, Fp1, C4,
FT8, P3, Pz, P4, PO7, PO8, and Oz. We used a 500 Hz sampling rate during the recordings
and impedances were kept below 30 kΩ (following the suggestions of the manufacturer
(http://nbtltd.com/wp-content/uploads/2018/05/grecorderusermanual.pdf, accessed
on 15 April 2021)). The data was recorded with a right ear-lobe reference and AFz as the
ground electrode. Electrodes whose impedance was above 30 kOhm after the calibration
were considered to have insufficient data quality and were excluded for the analysis (on
average 1.85 ± 1.66 electrodes). In most cases, this was due to a faulty electrode.

Since there is no integrated eye tracker in the HoloLens Generation 1, the PupilLabs
binocular eye tracker was mounted to the device. The two cameras that record the eyes are
placed under the screen of the head-mounted display and the world-camera is fixated above
the screen. The cameras record the eyes with a sampling rate of 120 Hz. Pupil Capture was
used to record the gaze position and pupil diameter of the participant. We decided to use
basic 2D gaze point coordinates for the analysis in this study, to reflect the eye tracking
capabilities of the built-in eye tracker of the HoloLens Generation 2 (as of June 2020).

The pupil diameter reacts to the brightness of the surroundings. Thus, we decided
to disregard it for the analysis, because for a generalized claim about augmented reality
scenarios, the changing brightness will depend highly on the environment and task and will
not be as stable as in our controlled setting. The lighting conditions between the recordings
of participants may vary. However, since the eye tracking data is used for person-dependent
analysis, this will not be discussed. As reported before, technical difficulties resulted in a
reduced set of eye tracking data from only 13 of 20 participants. The average eye tracking
accuracy after the calibration was 2.49 ± 0.51 degrees.

3.3. Analysis

The data analysis, including the preprocessing and the classification, was performed
with Python 3.6. All preprocessing steps were kept to a minimum, aiming at a feasible
pipeline for a real-time BCI.

Performance statistics of the participants were collected and used to test for the desired
focused attention during the task. A very low performance would have resulted in the
exclusion of the participant (see Section 3.1). However, that did not happen, and single
trials with bad performance results were not excluded.

The EEG data was preprocessed using the MNE toolbox (https://mne.tools/stable/i
ndex.html, accessed on 15 April 2021) and following the suggestions of the PREP-pipeline
by [57]. The data was band-pass filtered between 3 and 45 Hz using a windowed FIR-filter,
excluding the delta-band (1–3 Hz) because it is mainly related to sleep [58]. An additional
notch-filter was applied at 50 Hz (power source frequency). The data was re-referenced
to average reference. Following the PREP recommendations, we “Detect and interpolate
bad channels relative to [this] reference”. The bad channels were excluded during the

https://github.com/sccn/labstreaminglayer
https://github.com/sccn/labstreaminglayer
https://gitlab.csl.uni-bremen.de/fkroll/LSLHoloBridge
https://www.gtec.at/product/gnautilus-research/
http://nbtltd.com/wp-content/uploads/2018/05/grecorderusermanual.pdf
https://mne.tools/stable/index.html
https://mne.tools/stable/index.html
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calibration due to insufficient data quality if the impedance remained higher than 30 kOhm
after the calibration (see Section 3.2). We did not visually inspect the EEG recordings for
artifacts, neither were any artifacts cleaned automatically. Again, this approach was chosen
with a real-time BCI in mind.

Based on the experimental markers, 3 second EEG windows were extracted. This
window length was chosen because it allows claims about the feasibility of a real-time
BCI in this context. As mentioned in Section 2, only the data from the memory phase will
be used for classifier training and testing. The 20-s memory phase was cut into 5 non-
overlapping windows (3–6, 6–9, 9–12, 12–15, and 15–18 s after memory phase onset). The
first and last seconds of each Phase were left out because the probability for artifacts and
missing attentional focus is higher. Afterward, the epochs were baseline corrected using
the first 0.5 s of the epochs as the baseline to remove drifts from the data [59].

The cleaned, windowed raw EEG data was used as the input for a shallow convo-
lutional neural network. The network was tested and implemented by [60] and is built
following a Filter Bank Common Spatial Pattern (FBCSP) feature extraction pipeline. Based
on previous experiments, the learning rate of the model was adjusted to 0.0015 with a
weight decay of 0. Their suggested cropped training approach was applied with automatic
settings. In all analyses of this study, the neural net was trained for 150 epochs.

3.3.1. Trial-Oblivious Approach

For the person-dependent analysis, we first tried a randomized, stratified training-
testing split with 30% testing data and repeated the training and testing with 10 random
splits for each participant for better accuracy estimation. The splits of the epochs were
independent of the trials they belonged to, thus trial-oblivious.

3.3.2. Trial-Sensitive Approach

Since we always extract 5 data windows from each trial, the effect of belonging to the
same trial within the recording might play an important role for the model. To test and
correct for this effect, we additionally used a training-testing split that was trial sensitive.
For this approach, all windows from the same trial were either in the training or in the
testing data. This trial-sensitive split was also performed ten times, randomly but stratified,
with 30% testing data.

In the next step, we analyzed the accuracy that was achieved during the trial-sensitive
randomized approach, based on the position of the extracted window within the trial.
The question to be answered was, whether any time-frame of the 20-second trial achieved
significantly lower or higher classification accuracies than the other extracted windows.

3.3.3. Bci-Approach

As the last method for splitting into training and testing data, we chose an approach
that represents the real application of a BCI. In the BCI-approach, we maintained the
chronological order of trials, i.e., trained the model on the windows of the first trials for
each condition and tested the model performance on the windows of the last trials of each
condition (70:30 split). If this classifier were used in a real-time BCI, the classifier would
be trained on training data that is collected and labeled in a controlled setting before the
classifier is used for testing trials in the application.

3.3.4. Eye Tracking

For the eye tracking classification, the same windowing was chosen as described for
the EEG data. We followed the feature extraction and classification procedure as described
in [61], using the scikit-learn toolbox [62]. The calculated features were based on the
recorded x and y gaze point coordinates and included information about the outlier quote,
fixations, saccades, and gaze velocity and distance. Again, the training and testing split
was performed trial-sensitive but randomized 10 times in a stratified manner. The reported
accuracies are the average over all ten fitting and testing runs of the LDA. The NN could
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not be used for the eye tracking data because it was specifically designed for eye tracking
data. The design and evaluation of suitable Neural Nets for the eye tracking classification
in the presented task are not within the scope of this work.

We were also interested in the combination of both modalities. In a late fusion
approach, we calculated the average accuracy over ten runs for each participant when the
EEG prediction was only used if the confidence that was estimated by the NN surpassed a
fixed threshold. In all other cases, the eye tracking prediction was taken.

All performed claffifications are summarized in Table 1.

Table 1. Description of all performed classification accuracy analyses.

Approach Data Train:Test Split-Restriction Classifier

Trial-Oblivious EEG 70:30 Stratified NN

Trial-Sensitive EEG 70:30 Windows from the same trial are either all in the
training set or all in the test set, Stratified NN

BCI-Approach EEG 70:30
First 70% of the trials of each label are in the

training set, last 30% of the trials of each label are in
the test set

NN

Eye Tracking ET 70:30 Windows from the same trial are either all in the
training set or all in the test set, Stratified LDA

Late Fusion ET
EEG 70:30 Windows from the same trial are either all in the

training set or all in the test set, Stratified

NN
Threshold

LDA

Person-Independent EEG Leave-1-out No data of the test subject is in the training set NN

3.3.5. Person-Independent Approach

For the third hypothesis, we tested whether the classification of EEG data for this task
is possible above chance level for a person-independent classifier. This means that the
classifier is never trained on data from the participant whose data is to be classified. The
same preprocessed EEG data was taken from all participants and the same neural net as
described before was trained in a leave-1-participant-out fashion for all participants. Thus,
the model was trained on the data of 19 participants and tested on the remaining full data
set of one participant. To add to the understanding of generalizability of the differences
in the EEG data, we computed the mean Power Spectral Densities (PSD) for the Alpha
(8–14 Hz), Beta (14–30 Hz), Gamma (30–45 Hz) and Theta-band (4–8 Hz) for each electrode
of each participant. This results in 16 electrodes × 4 frequency bands = 64 features that
were compared for significant differences. We used MNEs Welch-method to calculate the
PSDs. The results for each window were scaled between 0 and 1 based on the minimum
and maximum for each feature of each participant individually before computing whether
there are significant differences between the “real” and “virtual” conditions if pooled over
all subjects. For this analysis, a significance level of α = 0.001 was chosen, for a meaningful
statement despite the high number of available data windows (n = 3940, approximately
200 windows per subject).

3.3.6. Evaluation

We evaluated the accuracy, precision, recall, and F1-score for all approaches but we
will base our discussion of the results on the accuracy of the classifier. Due to the balanced
class distribution, the chancel level for correct window classification is 0.5. Thus, accuracy
should represent the quality of the classification well.

In order to rate whether the classification accuracy is significantly higher than chance
level, an approach suggested by [63] was followed. Based on the assumption that this
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two-class paradigm follows a binomial distribution with n = number of test trials and
p = 0.5, we can assume that the confidence intervals are given by

p ±

√
p(1 − p)

n + 4
z1− α

2

with z1− α
2

being the 1 − α
2 quantile of the Normal Distribution with a mean of 0 and a

standard deviation of 1. The upper border of the interval is calculated for the claim “better
than random”. If not stated otherwise, we chose the significance level of α = 0.05 for all
statistical tests in this study. To compare the classification results across training approaches
and modalities, paired t-tests were calculated as a significance measure.

4. Results

After the evaluation of the performance results, no participant had to be excluded from
the analysis. All participants detected more correct pairs than incorrect pairs on average.
Summarized over all performed trials by all participants, 5.22 pairs were detected correctly
and only 1.5 errors were made. A difference between the conditions can be observed:
77.34% of the trials in the “virtual” condition were complete within the time limit with all
pairs, whereas this was the case in 81.35% of the “real” trials. However, due to the different
procedures during both conditions, with longer pauses in the “real” condition and higher
technical difficulty in the “virtual” condition, no conclusions should be drawn from these
results. Importantly, the performance was high enough to assume focused attention during
the memory phases.

The results of the questionnaires and individual comments also did not lead to any
reasonable exclusion of trials or participants. Overall, the interaction with both conditions
was comfortable. It was reported, that the recall phase was harder to perform in the
“virtual” condition, but this does not affect the data of the memory phase. Additionally,
the questionnaire results show, that the memorization of the cards was neither too hard,
nor too easy with an average score of 2.2 ± 0.95 for the “virtual” condition and 2.55 ± 1.1
for the “real” condition on a scale from 1 = easy to 5 = hard. The free questions on the
questionnaires revealed, that the main difference in perceived difficulty is due to the
“recall”-phase, where the interaction with the virtual cards was less intuitive. However,
since the data of the “recall”-phase is not analyzed, the different ratings are not important.
We chose “relatively easy” card layouts because we did not want the participants to develop
alternative strategies to remember the card positions. The task aimed to ensure sustained
attention to the cards over a longer period of time, which can already be achieved with
rather low difficulty. Twelve participants rated the “virtual” condition as preferable and
more fun. There was no correlation between classification results and experience with AR.

4.1. Person-Dependent Classification

As a significance measurement, the lower border for “significantly better than random”
was calculated as described in Section 3.3. For all participants with a complete EEG dataset,
the classification accuracy had to surpass 62.25% (n = 60). For subject 8, seven trials had
to be excluded. The results for this subject were significant if they were better than 64%
(n = 45). The classification results are considered over both conditions combined because
no significant difference between the accuracy of each condition was detected.

The results of the trial-oblivious training sessions for each participant can be seen
in the first column of Table 2. The average classification results of the 10 runs that were
performed per person are all significantly better than chance. The mean classification
accuracy over all participants reached 92.92% ± 8.41%.
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Table 2. Overview for trial-oblivious, trial-sensitive, BCI, and person-independent training ap-
proaches. Rounded results are shown for all participants individually. Trial-oblivious results are the
average accuracy over 10 randomized training-test splits. BCI-approach is the result if the classifier is
tested on the last 30% of windows. Person-independent training was performed on the data of the
other 19 subjects. n = number of test trials. * Significantly better than random (based on [63] with n
as indicated, p = 0.5 and α = 0.05).

Participant Trial-Oblivious Trial-Sensitive BCI-Approach Person-
Independent

1 0.96 * 0.69 * 0.55 0.48
2 0.91 * 0.70 * 0.63 * 0.53
3 0.97 * 0.86 * 0.83 * 0.50
4 0.94 * 0.79 * 0.55 0.63 *
5 0.92 * 0.71 * 0.65 * 0.54
6 1.00 * 0.60 0.59 0.54
7 1.00 * 0.71 * 0.58 0.56
8 1.00 * 0.90 * 0.89 * 0.70 *
9 0.87 * 0.65 * 0.49 0.49
10 0.64 * 0.76 * 0.89 * 0.47
11 0.99 * 0.57 0.40 0.64 *
12 0.97 * 0.65 * 0.54 0.58 *
13 0.96 * 0.73 * 0.80 * 0.62 *
14 0.98 * 0.64 * 0.54 0.48
15 0.86 * 0.71 * 0.76 * 0.51
16 0.80 * 0.77 * 0.69 * 0.51
17 0.97 * 0.83 * 0.83 * 0.59 *
18 0.97 * 0.62 * 0.58 0.53
19 0.92 * 0.86 * 0.90 * 0.53
20 0.99 * 0.71 * 0.63 * 0.52

Mean 0.93 * 0.72 * 0.66 * 0.54
Std 0.08 0.09 0.15 0.06
n 60 60 60 200

In comparison, the trial-sensitive approach reached 72.34% ± 8.77% average accu-
racy over all participants. This is significantly lower than the trial-oblivious approach
(t(19) = 6.9451, p < 0.0001). When the classifier was not trained on data from the trials it
is tested on, it predicts the condition wrong in more cases. On the other hand, the classifier
seems to learn which 3-s windows are from the same trial. We conclude that there is a
strong temporal dependency in the data and that the trials-sensitive approach represents
the difference between attention on real and virtual objects better. The trial-oblivious
approach supposedly overestimates the generalizability of the learned model. We will
focus our discussion and further results on the trial-sensitive approach. The classification
accuracies for each participant are reported in detail in Figure 4. From an individual
perspective, the classification was better than random for 17 of the 20 participants. We
compared the precision, recall and F1 score for both conditions and the results show the
same effects as the accuracy measurements, which was expected because of the equal
distribution of the two conditions (see Table 3). Table 4 additionally reports the confusion
matrix for both conditions averaged over all 20 participants. In further results, the accuracy
of the classification will be reported.
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Figure 4. Barplots showing the mean classification accuracy and standard deviation of the trial-
sensitive randomized approach performed 10 times for each participant. Orange bars are used
for participants, where the average classification accuracy was below the calculated threshold for
performance better than random.

Table 3. Precision, recall and F1 score for real and virtual condition of each participant.
x = Participants with an average accuracy that was not significant.

Real Virtual

Participant Precision Recall F1 Precision Recall F1

1 0.71 0.65 0.68 0.68 0.73 0.70
2 0.67 0.81 0.73 0.76 0.60 0.67
3 0.91 0.78 0.84 0.81 0.93 0.86
4 0.84 0.72 0.77 0.75 0.87 0.81
5 0.72 0.69 0.71 0.70 0.73 0.72

6 x 0.61 0.57 0.59 0.59 0.63 0.61
7 0.72 0.69 0.71 0.70 0.73 0.72
8 0.85 0.94 0.89 0.94 0.86 0.90
9 0.64 0.67 0.65 0.65 0.62 0.64

10 0.74 0.75 0.75 0.78 0.77 0.78
11 x 0.57 0.61 0.59 0.58 0.53 0.56
12 0.62 0.80 0.69 0.71 0.50 0.59
13 0.68 0.79 0.73 0.79 0.69 0.74
14 0.63 0.68 0.65 0.65 0.61 0.63
15 0.70 0.74 0.72 0.72 0.68 0.70
16 0.78 0.76 0.77 0.76 0.79 0.78
17 0.79 0.87 0.83 0.88 0.81 0.84

18 x 0.62 0.64 0.63 0.63 0.60 0.61
19 0.79 0.94 0.86 0.94 0.78 0.85
20 0.72 0.69 0.70 0.70 0.73 0.72

Mean 0.71 0.74 0.72 0.74 0.71 0.72
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Table 4. Confusion matrix for the classification accuracy using the Trial-Sensitive approach averaged
over all participants (predicted condition × correct condition).

Real Virtual

Real 0.36 ± 0.04 0.15 ± 0.05
Virtual 0.13 ± 0.05 0.36 ± 0.06

The analysis of the trial-parts showed that the windows extracted from 15–18 s after
memory phase onset achieved a significantly lower classification accuracy than the win-
dows extracted from 3–6, 6–9, and 12–15 s and highly significantly lower accuracy than the
windows from 9–12 s (see Figure 5).

Figure 5. The mean classification accuracy and standard error depending on the timing interval of
the extracted window within the trial. The results are calculated on all 10 trial-sensitive randomized
runs of all 20 participants. Significant differences between the categories are marked. * Significant
(α <0.05). ** Highly significant (α <0.001).

If we restrict the trial-sensitive splitting of the training data further by using only the
last 30% of trials for testing in the BCI-approach, the average classification accuracy drops
to 66.38% ± 14.5%. This overall average classification accuracy is significantly better than
random and individually, 11 of the 20 participants had a classification accuracy better than
random. For the results per person, see the second column (BCI-approach) of Table 2.

4.2. Eye Tracking Classification

Technical problems arose during the recordings of the eye tracking data. For 7 partici-
pants, either a successful calibration was not possible because the pupil detection was not
stable, or the confidence of the eye tracker decreased dramatically because the lightning
conditions changed and again, pupil detection was not possible. This shows that EEG may
often be more reliable than ET.

Figure 6 shows a comparison of the 13 participants with full EEG and eye tracking
datasets of the study. We compared the mean classification accuracy over 10 classification
runs for both datasets for all subjects. The mean accuracy for the eye tracking data was
73.39% ± 7.6% (EEG: 73.63% ± 7.99%). The accuracy difference between the two modalities
was not significant in a paired t-test (t(12) = 0.0784, p = 0.9388). For 5 of the 13 participants,
the classifier performance was better for the EEG data, and for 8 participants, it was better
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for the eye tracking data. There was no correlation between the results for eye tracking and
EEG (Pearson’s r = 0.07).

Figure 6. Direct comparison of EEG and eye tracking classification results individually. The barplots
show the mean and standard deviation over the 10 trial-sensitive randomized runs per participant.

For the late fusion approach that combined both modalities, the average classification
accuracy over all 13 subjects increased to 77.47% ± 8%. This improvement was significant
compared to the EEG only result (t(12) = 3.0114, p = 0.0108) but not compared to the eye
tracking result (t(12) = 1.6343, p = 0.1281). On average, 71.2% ± 10.66% of the predictions
were based on the EEG model. Overall, the results improved for 11 of the 13 participants
(See Figure 7).

Figure 7. Classification accuracies of the single modalities compared to the combined modalities
with a late fusion approach per participant.

4.3. Person-Independent Classification

For the person-independent EEG classification, the training was performed on the
data of 19 subjects and tested on the remaining subject. Following the significance analysis
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method of [63], with n = 200 and p = 0.5, the classification accuracy has to be above 56.8%
to be considered better than random. The individual person-independent classification re-
sults were better than random for 6 of the 20 participants (see column “Person-Independent”
of Table 2). The mean accuracy over all participants reached 54% ± 6% which is not signifi-
cantly better than random.

4.4. Feature Analysis

To answer the question of what the FBCSP-based neural net learned, different ap-
proaches and visualizations were tested. Firstly, we decided to compare the frequency band
features of the two task conditions independent of the models. We tested for significant
differences if the features are averaged per participant using a t-test for paired samples.
With a significance level of α < 0.05 for a highly significant difference, three features were
selected. A graph for the three features is shown in Figure 8. For the alpha-band, the
differences between the conditions were significant for FP2 (t(19) = −2.618, p = 0.017)
and PO7 (t(19) = −2.364, p = 0.029). For FP2, a significant difference was also found
for the beta-band (t(19) = −2.245, p = 0.0369). characteristic activity in parietal and
occipetal regions of the brain is in accordance with the results from [22] on visual attention.
The alpha and beta activity in the right frontal region of the brain (FP2) was also linked
to attention in [64]. The authors assumed the the association of the brain activity with
attentional control via the inhibition of behaviorally irrelevant stimuli.

Figure 8. Boxplot graph of the features that show significant (α < 0.05) differences between the
two conditions when averaged per participant. The bar shows the mean value, the box shows the
quantiles of the data, and the whiskers extend to show the rest of the distribution. Outliers are
indicated with the diamonds.
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We also visualized the FBCSP and analyzed what the neural net had learned. However,
no common pattern was shared across participants or across person-independent models
and the results were not visible in this approach. This is due to the low resolution from
only 16 electrodes.

5. Discussion

In this work, we used machine learning to classify attentional focus on real and virtual
objects in augmented reality. To the best of our knowledge, this is the first work on the
subject. We implemented an adjusted pairs game with real and virtual cards and classified
3-s windows of EEG and eye tracking data.

Our first hypothesis H1 was that we would be able to predict the real and virtual
targets of attention with an accuracy better than random for person-dependent classifiers.
Even after excluding the time effect in the data, the average accuracy over all participants
was still significantly higher than chance and individually, 17 of 20 subjects reached a per-
formance significantly better than chance. This reliable prediction supports our hypothesis.

One drawback of BCI systems is that they are not very robust and rarely reach 100%
accuracy. Usually, their results worsen with time as movements and environmental factors
influence the accuracy [65]. Additionally, it has been claimed that 20% of the participants
in a BCI experiment are unable to achieve reliable results because of “BCI-Illiteracy” [66].
This percentage is in line with our results. The reasons for this effect have not yet been
determined but could be due to the high interpersonal differences between brain activation
patterns [67].

Considering the short time windows of 3 seconds and the sparse positioning of the
electrodes, the results are satisfying. We assume that the classification accuracy can be
improved by increasing the density of the EEG or optimizing the current placement of the
electrodes. Moreover, longer data windows could improve the performance of the classifier.
These improvements were not assessed further in this work, because we keep the goal of
real-time classification in mind. Further tuning of the setup and preprocessing, as well
as a more specialized classification process, could significantly improve the classification
accuracies for each individual participant. These steps can be taken if the goal is not a real-
time adaptation but for example a post-hoc analysis of how the content of an application
was perceived.

Since the distinction is possible based on the EEG data, the question remains what
exactly leads to the differences in neural activity patterns for the two conditions. The
individual and person-independent feature analyses showed many variances between
participants. Possible explanations for distinguishable cognitive user states in this task
include aspects of workload, memory, or visual input properties. Depending on the
participant, the main perceived differences between the two task conditions might vary.
The frequency band analysis sheds some light on the possible distinguishing features: Most
features with highly significant differences over all participants were located in parietal
and occipital regions of the brain. The occipital cortex contains the visual cortex, which
is the primary region for the processing of visual information, while the parietal cortex
is activated through sensations and perception and plays an important role in sensory
integration, especially for visual input [68–70].

The frequency band that showed the most significant differences was the alpha band.
According to [71], alpha-band activity in the parietal and occipital regions is reduced for
retained attention to a bright stimulus. As mentioned, the brightness of the real and virtual
cards was indeed different and could be an explanation for the results.

It could happen that in the future the AR technology for head-mounted displays
improve significantly. It would make it harder to distinguish whether the attention is on
a real or a virtual object. However, until then, a differentiation of the two states by our
supposed methods is possible and in some cases helpful for the application design.

These initial clues about the differences should be used in further studies on the topic
for both setup and additional analysis.
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Our second hypothesis (H2) was that the eye tracking classification would not sig-
nificantly outperform the EEG data classification. Compared to the EEG recordings, the
eye tracking recordings had a worse quality and more technical difficulties due to the
mobile setup in conjunction with the headset. These problems could be solved in the
future with a built-in eye tracker, although it may still suffer from de-calibration, e.g., from
head movement. The remaining problems with eye tracking would be the limited spatial
resolution of the gaze point and difficulties differentiating objects of attention if real and
virtual content is overlapping each other. An EEG-based classification is less prone to
a high visual fidelity of the objects. Therefore, the systems would still benefit from the
suggested BCI. For our features and classification approaches, H2 proved to be true. It was
shown that the classification accuracy of EEG and eye tracking data did not correlate and
that in many cases either the classification of the EEG or of the eye tracking data did lead to
very high classification accuracies. This suggests that a combination of the two modalities
(either in an early or a late fusion approach) would be beneficial for the performance of
a classifier. More work would have to be put into the extraction of sophisticated features
for this task and a suitable decision function or feature combination could combine the
advantages of both approaches. However, finding an optimized classifier was not in the
scope of this work.

It could happen that in the future the AR technology for head-mounted displays
improves significantly. It would make it harder to distinguish whether the attention is on
a real or a virtual object. However, until then, a differentiation of the two states by our
supposed methods is possible and in some cases helpful for the application design.

Our third hypothesis (H3) was that a reliable classification is possible even if the
classifier is trained person-independently. Person-independence is desirable because it
excludes the need for recording training data before the classification in a real-time system.
In this study, we achieved results better than chance for only 6 of the 20 participants and
the averaged results were not better than chance. Thus, we were not able to prove H3. This
suggests large between-person differences that could be due to the task specific solving
strategies of the pairs game. On the other hand, we can, at this point, also not rule out that
real and virtual attention targets evoke different neural patterns in different participants.
Further studies with other experimental setups and a closer focus on feature analysis would
be necessary to answer this question.

In this work, the focus during the task design was to have two conditions that are
as similar as possible and only differ in the nature of the attended targets. The virtual
cards were modeled on the real cards. We only analyzed the time windows during which
we were certain that the participants attended the cards. This way, we ensure that the
classified differences in the EEG recordings are only caused by this characteristic of the
objects. While we eliminate the difference factor, we reduce the generalizability of our
results with this task design. For other AR applications, these restrictions are unrealistic
and virtual and real objects will certainly differ in size, shape, color, and purpose. We
can not make sophisticated claims about how well the classification will work for less
controlled environments.

By using only the memory phase and not the recall phase of the task, we eliminate
the difference of the user input mechanisms. In the “real” condition, the participants can
select and turn cards using their own hands. In the “virtual” condition the cards are turned
after being clicked on using a virtual pointer. We made the assumption that the memory
phase does not differ for the two conditions, because no interaction with the cards is
necessary. While the participants only reported a difference in difficulty for the recall phase,
the expectancy of this might have influenced the memory phase. Previous EEG studies
have found “premovement” neural acitivty relating to the intention of a movement [72].
However, these appear about 500 ms before the movement and thus, do not interfere with
our analyzed time windows.
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6. Conclusions

Our goal was to perform a first study that tests whether attention on real and virtual
objects in AR is represented differently in the brain to an extent that makes machine
learning-based classification possible. With our current setup and analysis approach,
we were able to prove our first and second hypotheses to be true: Person-dependent
classification based on EEG data is possible better than chance and works more reliably
than the classification based on eye tracking data. A first feature analysis showed, that the
significant differences in neural activity that were detected in our study are consistent with
the literature. Even an initial attempt at a person-independent EEG-based classification
showed promising results but they were not significant in this study. Thus, we conclude that
further research on this topic will attain interesting and useful results for the improvement
of augmented reality devices and applications.

Future Work

Following the positive results from this study, the next steps will include the imple-
mentation of other scenarios to test whether the results were task-dependent. The scenarios
will be less static and controlled while improving the setup based on the newly gained
knowledge from this study. We know now that the classification is possible and we found
plausible features that differ between the conditions for all participants. One question that
remained unanswered is whether the classification accuracy decreases for highly experi-
enced users. The participants in this study had some experience but not on a level where
we would expect strong differences in the perception. One idea is to compare a group of
very experienced AR users with inexperienced users.

In general, the perceived differences between users in AR are an interesting topic and
the mentioned aspects of workload, memory, or consciousness of the perception of virtual
information are worth further studying.

The improved setup for the next studies will also include adjusted classification
processes. The combination of EEG and eye tracking into a multimodal classifier seems
promising and even gaze point information could be included as clues for specific applica-
tions. Additionally, person-independent classification can be improved and eye tracking
data will be included for this. A completely different approach to the classification of
attention in this context would be the analysis of the SSVEP, based on the display frequency
of the augmented reality device. SSVEP detection with a flickering frequency has been
done before [73].

The overall goal is an application that profits from the real-time classification of
attention on real and virtual objects in AR.
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Abbreviations
The following abbreviations are used in this manuscript:

AR Augmented Reality
BCI Brain–Computer Interface
CNN Convolutional Neural Network
EEG Electroencephalography
EOG Electrooculography
FBCSP Filter-Bank Common Spatial Pattern
HMD Head-Mounted Display
LSL Lab Streaming Layer
PSD Power Spectral Density
SSVEP Steady-State Visually Evoked Potential
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