
 information

Article

Optimizing Small BERTs Trained for German NER

Jochen Zöllner 1,2,* , Konrad Sperfeld 1 , Christoph Wick 2 and Roger Labahn 1

����������
�������

Citation: Zöllner, J.; Sperfeld, K.;

Wick, C.; Labahn, R. Optimizing

Small BERTs Trained for German

NER. Information 2021, 12, 443.

https://doi.org/10.3390/info

12110443

Academic Editor: Diego Reforgiato

Recupero

Received: 28 September 2021

Accepted: 20 October 2021

Published: 25 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Mathematics, University of Rostock, 18057 Rostock, Germany;
konrad.sperfeld@uni-rostock.de (K.S.); roger.labahn@uni-rostock.de (R.L.)

2 PLANET AI GmbH Rostock, 18057 Rostock, Germany; christoph.wick@planet-ai.de
* Correspondence: jochen.zoellner@uni-rostock.de

Abstract: Currently, the most widespread neural network architecture for training language models
is the so-called BERT, which led to improvements in various Natural Language Processing (NLP)
tasks. In general, the larger the number of parameters in a BERT model, the better the results
obtained in these NLP tasks. Unfortunately, the memory consumption and the training duration
drastically increases with the size of these models. In this article, we investigate various training
techniques of smaller BERT models: We combine different methods from other BERT variants, such
as ALBERT, RoBERTa, and relative positional encoding. In addition, we propose two new fine-
tuning modifications leading to better performance: Class-Start-End tagging and a modified form
of Linear Chain Conditional Random Fields. Furthermore, we introduce Whole-Word Attention,
which reduces BERTs memory usage and leads to a small increase in performance compared to
classical Multi-Head-Attention. We evaluate these techniques on five public German Named Entity
Recognition (NER) tasks, of which two are introduced by this article.

Keywords: named entity recognition; natural language processing; BERT; German language; pre-
training; fine-tuning; dataset

1. Introduction

NER is a well-known task in the field of NLP. The NEISS project [1] in which we work
in close cooperation with Germanists is devoted to the automation of diverse processes
during the creation of digital editions. One key task in this area is the automatic detection
of entities in text corpora that correspond to a common NER task. Currently, the best
results for NER tasks have been achieved with Transformer-based [2] language models,
such as Bidirectional Encoder Representations from Transformers (BERT) [3]. Classically,
a BERT is first pre-trained with large amounts of unlabeled text to obtain a robust language
model and then fine-tuned to a downstream task. In particular, for the pre-training step,
many variants of BERT, such as ALBERT [4], RoBERTa [5], or XLNet [6], were already
investigated. Pre-training is resource-intensive and takes a long time (several weeks) for
training. For that reason, online platforms, such as Hugging Face [7], offer a zoo of already
pre-trained networks that can be directly used to train a downstream task. However,
the available models are not always suitable for a certain task, such as NER, in German
because they can be pre-trained on a different domain (e.g., language, time epoch, or text
style).

Furthermore, when philologists create new digital editions, different research priorities
can be set so that a different associated NER task is created each time. That is why
philologists must also be able to train individual NER tasks themselves who commonly
only have access to limited compute resources. For this reason, the aim is to train NER
tasks on smaller BERT models as best as possible. Since our focus is the NER, we test if the
optimizations work consistently on five different German NER tasks. Due to our project
aims, we evaluated our new methods on the German language. We suspect a consistent
behavior on similar European languages such as English, French and Spanish. Two of

Information 2021, 12, 443. https://doi.org/10.3390/info12110443 https://www.mdpi.com/journal/information

https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-3889-6629
https://orcid.org/0000-0003-3856-5878
https://orcid.org/0000-0003-3958-6240
https://orcid.org/0000-0003-1901-9644
https://doi.org/10.3390/info12110443
https://doi.org/10.3390/info12110443
https://doi.org/10.3390/info12110443
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/info12110443
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info12110443?type=check_update&version=3

Information 2021, 12, 443 2 of 20

the considered tasks rely on new NER datasets that we generated from existing digital
text editions.

Therefore, in this article, we examine which techniques are optimal to pre-train and
fine-tune a BERT to solve NER tasks in German with limited resources. We investigate this
on smaller BERT models with six layers that can be pre-trained on a single GPU (RTX 2080
Ti 11 GB) within 9 days, whereas fine-tuning can be performed on a notebook CPU in a
few hours.

We first compared different well-established pre-training techniques, such as Mask Lan-
guage Model (MLM), Sentence Order Prediction (SOP), and Next Sentence Prediction (NSP),
on the final result of the downstream NER task. Furthermore, we investigated the influence
of absolute and relative positional encoding, as well as Whole-Word Masking (WWM).

As a second step, we compared various approaches for carrying out fine-tuning since
the tagging rules cannot be learned consistently by classical fine-tuning approaches. In
addition to existing approaches, such as the use of Linear Chain Conditional Random
Fields (LCRFs), we propose the so-called Class-Start-End (CSE) tagging and a specially
modified form of LCRFs for NER, which led to an increased performance. Furthermore,
for decoding, we introduced a simple rule-based approach, which we call the Entity-Fix
rule, to further improve the results.

As already mentioned, the training of a BERT requires many resources. One of the
reasons is that the memory amount of BERT depends quadratically on the sequence length
when calculating the energy values (attention scores) in its attention layers, which leads to
memory problems for long sequences. In this article, we propose Whole-Word Attention,
a new modification of the Transformer architecture that not only reduces the number
of energy values to be calculated by about a factor of two but also results in slightly
improved results.

In summary, the main goal of this article is to enable the training of efficient BERT
models for German NER on limited resources. For this, the article provides different
methodology and claims the following contributions:

• We introduce and share two datasets for German NER formed from existing digi-
tal editions.

• We investigate the influence of different BERT pre-training methods, such as pre-
training tasks, varying positional encoding, and adding Whole-Word Masking on a
total of five different NER datasets.

• On the same NER tasks, we investigate different approaches to perform fine-tuning.
Hereby, we propose two new methods that led to performance improvements: Class-
Start-End tagging and a modified form of Linear Chain Conditional Random Fields.

• We introduce a novel rule-based decoding strategy achieving further improvements.
• We propose Whole-Word Attention, a modification of the BERT architecture that

reduces the memory requirements of the BERT models, especially for processing long
sequences, and also leads to further performance improvements.

• We share the datasets (see Section 2) and our source code (https://github.com/
NEISSproject/tf2_neiss_nlp/tree/berNer21, accessed on 19 October 2021), which is
based on tfaip [8] with the community.

The remainder of this article is structured as follows: In Section 2, we present our
datasets, including the two new German NER datasets. In Section 3, we introduce the differ-
ent pre-training techniques, and Section 4 describes fine-tuning. Subsequently, in Section 5,
we introduce Whole-Word Attention (WWA). In all these sections, we provide an overview
of the existing techniques with the corresponding related work that we adopted and also
introduce our novel methods. Afterwards, Section 6 shows the conducted experiments and
their results. We conclude this article with a discussion of our results and providing an
outlook on future work.

https://github.com/NEISSproject/tf2_neiss_nlp/tree/berNer21
https://github.com/NEISSproject/tf2_neiss_nlp/tree/berNer21

Information 2021, 12, 443 3 of 20

2. Datasets

In this section, we list the different datasets. First, we describe the dataset used for
pre-training throughout our experiments. Then, we mention the key attributes of five NER
datasets for the downstream tasks.

2.1. Pre-Training Data

To pre-train a BERT, a large amount of unlabeled text is necessary as input data. We
collected the German Wikipedia and a web crawl of various German newspaper portals
to pre-train our BERT. The dump of the German Wikipedia was preprocessed by the
Wiki-Extractor [9], resulting in about 6 GB of text data. In addition, we took another
2 GB of German text data from different newspaper portals. We used various German
newspaper portals, such as https://www.faz.net/aktuell/ (accessed on 19 October 2021) or
https://www.berliner-zeitung.de/ (accessed on 19 October 2021) in August 2020, crawled
with the news-please framework [10].

2.2. NER Downstream-Datasets

We evaluated our methods on five different NER tasks. In addition to three already
existing German NER datasets—the frequently used GermEval 2014 dataset and two
NER datasets on German legal texts—we introduce two NER tasks of two existing digital
editions. In the following, we describe each of the five tasks.

2.2.1. GermEval 2014

One of the most widespread German NER datasets is GermEval 2014 [11], which com-
prises several News Corpora and Wikipedia. In total, it contains about 590,000 tokens with
about 41,000 entities that are tagged into four main entity classes: “person”, “organization”,
“location”, and “other”. Each main class can appear in a default, a partial, or a derived
variant, resulting in 12 overall classes. In the GermEval task, entities can be tagged in two
levels: outer and inner (nested entities). Since there are few inner annotations in the dataset,
we restrict ourselves to evaluating the outer entities in our experiments as it is often the
approach in other papers (e.g., [12–14]). This is called the outer chunk evaluation scheme,
which is described in more detail by [14].

2.2.2. Legal Entity Recognition

The Legal Entity Recognition (LER) dataset [15] contains 2.15 million tokens with
54,000 manually annotated entities from German court decision documents of 2017 and
2018. The entities are divided into seven main classes and 19 subclasses, which we label by
Coarse-Grained (CG) and Fine-Grained (FG), respectively. The FG task (LER FG) is more
difficult than the CG task (LER CG) due to its larger number of possible classes.

2.2.3. Digital Edition: Essays from H. Arendt

We created an NER dataset based on the digital edition “Sechs Essays” by H. Arendt.
It consists of 23 documents from the period 1932–1976, which were published online in [16]
as TEI files [17]. In these documents, certain entities were manually tagged. Since some of
the original NER tags comprised too few examples and some ambiguities (e.g., place and
country), we joined several tags, as shown in Table 1.

Note that we removed any annotation of the class “ship” since only four instances
were available in the dataset and no other similar class is available. We provide the resulting
dataset online (see https://github.com/NEISSproject/NERDatasets/tree/main/Arendt,
accessed on 19 October 2021) in a format similar to the CONLL-X format [18] and in a simple
JSON format under a CC BY-NC-SA 3.0 DE license together with the training, development,
and test partitions. Since not all entities are equally distributed over the 23 documents,
the sentences of all documents are shuffled before splitting them into partitions.

https://www.faz.net/aktuell/
https://www.berliner-zeitung.de/
https://github.com/NEISSproject/NERDatasets/tree/main/Arendt

Information 2021, 12, 443 4 of 20

Table 1. Distribution of NER entities in H. Arendt Edition. Column “Original attributes” lists
which attributes from the original TEI files were combined into one “Entity” for the NER dataset.
On average, an entity consists of 1.36 words.

Entity # All # Train # Test # Devel Original Attributes

person 1702 1303 182 217 person, biblicalFigure, ficticiousPer-
son, deity, mythologicalFigure

place 1087 891 111 85 place, country
ethnicity 1093 867 115 111 ethnicity
organization 455 377 39 39 organization
event 57 49 6 2 event
language 20 14 4 2 language

unlabeled words 153,223 121,154 16,101 15,968

2.2.4. Digital Edition: Sturm Edition

The second NER dataset consists of 174 letters of the years 1914–1922 from the Sturm
Edition [19] available online in TEI format. It is much simpler than the dataset from
the H. Arendt edition and contains only persons, places, and dates as tagged entities.
From the original TEI files, we built an NER dataset with tags distributed, as shown
in Table 2. Similarly to the H. Arendt dataset, the resulting dataset is available online
(see https://github.com/NEISSproject/NERDatasets/tree/main/Sturm, accessed on 19
October 2021) in a format similar to the CONLL-X format and in a simple JSON format
under a CC-BY 4.0 license together with the training, development, and test partitions.
In contrast to the H. Arendt dataset, we split the 174 letters without shuffling the sentences
across all documents.

Table 2. Distribution of NER entities in the Sturm Edition. On average, an entity consists of
1.12 words.

Entity # All # Train # Test # Devel

person 930 763 83 84
date 722 612 59 51
place 492 374 59 59

unlabeled words 33,809 27,047 3306 3456

3. Pre-Training Techniques

In this section, we provide an overview of several common pre-training techniques
for a BERT that we examined in our experiments.

3.1. Pre-Training Tasks

In the original BERT [3], pre-training is performed by simultaneously minimizing the
loss of the so-called Mask Language Model (MLM) and Next Sentence Prediction (NSP)
tasks. The MLM task first tokenizes the text input with a subword tokenizer, then 15%
of the tokens are chosen randomly. Hereby, 80% of these chosen tokens are replaced
by a special mask token, 10% are replaced by a randomly chosen other token, and the
remaining 10% keep the original correct token. Therefore, the goal of the MLM task is to
find the original token for the 15% randomly chosen tokens, which is only possible by
understanding the language and thus learning a robust language model.

Since BERT should also be able to learn the semantics of different sentences within
a text, NSP was additionally included. When combining NSP with MLM, the input for
pre-training are two masked sentences that are concatenated and separated by a special
separator token. In 50% of the cases, two consecutive sentences from the same text docu-
ment are used, whereas, in the other 50%, two random sentences from different documents
are selected. The goal of the NSP task is to identify which of the two variants it is.

https://github.com/NEISSproject/NERDatasets/tree/main/Sturm

Information 2021, 12, 443 5 of 20

In the follow-up papers, RoBERTa [5] and XLNet [6] experiments showed that the NSP
task often had no positive effect on the performance of the downstream tasks. Therefore,
both papers recommended that the pre-training should solely be performed by the MLM
task. In the ALBERT paper [4], this was investigated in more detail. They assumed that the
ineffectiveness of the NSP task was only due to its simplicity, which is why they introduced
Sentence Order Prediction (SOP) as a more challenging task that aims to learn relationships
between sentences similar to the NSP task: BERT always receives two consecutive sentences,
but in 50% of the cases, the order is wrong by flipping them. The SOP task is to learn the
correct order of the sentences.

In this article, we examine the influences of the different pre-training tasks (MLM,
NSP, and SOP) with the focus on improving the training of BERT for German NER tasks.

3.2. Absolute and Relative Positional Encoding

The original Transformer architecture [2] was exclusively based on attention mecha-
nisms to process input sequences. Attention mechanisms allow every sequence element
to learn relations to all other elements. By default, attention does not take into account
information about the order of the elements in the sequence. However, since information
about the order of the input sequence elements is mandatory in almost every NLP task,
the original Transformer architecture introduced the so-called absolute positional encoding:
a fixed position vector pj ∈ Rdmodel was added to each embedded input sequence element
xj at position j ∈ {1, . . . , n} for an input sequence of length n; thus

x′j = xj + pj.

In the original approach, the position vector pj is built by computing sinusoids of
different wavelengths in the following way:

pj,2k := sin
(

j/10,0002k/dmodel
)

,

pj,2k+1 := cos
(

j/10,0002k/dmodel
)

where k ∈
{

1, . . . , b dmodel
2 c

}
. While the experiments in [2] showed great results, the disad-

vantage of absolute positional encoding is that the performance is significantly reduced
in cases where the models are applied on sequences longer than those on which they
were trained because the respective position vectors were not yet seen during training.
Therefore, in [20], other variants for positional encoding were investigated and compared
on translation tasks. The most promising approach was relative positional encoding [21]:
a trainable distance information dK

j−i is added in the attention layer when computing the
energy ei,j of the ith sequence element to the jth one. Thus, if xi and xj are the ith and jth
input elements of a sequence in an attention layer, instead of multiplying just the query
vector WQxi with the key vector WKxj, one adds the trainable distance information dK

j−i to
the key vector resulting in

ei,j :=

(
WQxi

)T
(

WKxj + dK
j−i

)
√

dk
(1)

where WQ
n , WK

n ∈ Rdmodel×dk . In addition, when multiplying the energy (after applying
softmax) with the values, other trainable distance information dV

j−i is added. Finally,
the output yi for the ith sequence element of a sequence of length n with relative positional
encoding is computed by

yi =
n

∑
j=1

αi,j

(
WV xj + dV

j−i

)
(2)

Information 2021, 12, 443 6 of 20

where αi,j =
exp(ei,j)

n
∑

k=1
exp(ei,k)

and WV ∈ Rdmodel×dv . To train dK
j−i and dV

j−i, a hyperparameter τ

(called the clipping distance), the trainable embeddings rK
−τ , . . . , rK

τ ∈ Rdk , and rV
−τ , . . . , rV

τ ∈
Rdv are introduced. These embeddings are used to define the distance terms dK

j−i and dV
j−i,

where distances longer than the clipping distance τ are represented by rτ or r−τ ; thus:

dK
j′−j = rK

clipτ(j′−j) (3)

dV
j′−j = rV

clipτ(j′−j) (4)

clipτ(x) = max(−τ, min(τ, x))

The authors in [20] already showed that relative positional encoding suffers less from
the disadvantages of absolute position encoding of unseen sequence lengths. In this article,
we examine the influence of these two variants of positional encoding during the training
of German BERT models.

3.3. Whole-Word Masking (WWM)

Whole-Word Masking (WWM) is a small modification of the Mask Language Model
(MLM) task described in Section 3.1. In contrast to the classic MLM task, WWM does not
mask token-wisely but instead word-wisely. This means that in all cases, either all tokens
belonging to a word are masked or none of them. Recent work [13,22] already showed the
positive effect of WWM in pre-training on the performance of the downstream task. In this
article, we also examine the differences between the original MLM task and the MLM task
with WWM.

4. Fine-Tuning Techniques for NER

The task of NER is to detect entities, such as persons or places, which possibly consist
of several words within a text. As proposed in [3], the traditional approach for fine-tuning
a BERT to a classification task, such as NER, is to attach an additional feed-forward layer
to a pre-trained BERT that predicts token-wise labels. In order to preserve and obtain
information about the grouping of tokens into entities, Inside-Outside-Beginning (IOB)
tagging [23] is usually applied. IOB tagging introduces two versions of each entity class,
one marking the beginning of the entity and one representing the interior of an entity,
and an “other” class, which all together results in a total of γ = 2e + 1 tag classes, where e
is the number of entity classes. Table 3 shows an example in which the beginning token of
an entity is prefixed with a “B-” and all other tokens with an “I-”.

Table 3. IOB tagging example with unlabeled words (O) and the two entities: “location” (Loc) and
“person” (Per). The first tag of each entity is prefixed with “B-”, while all the following tokens of that
entity are marked with an “I-”. The first row are the words of the sentence that are split into one or
more tokens (second row). The third row shows the tagged tokens based on the given entities (last
row). The example sentence can be translated as “Peter lives in Frankfurt am Main”.

Words Peter lebt in Frankfurt am Main
Tokens Peter lebt in Frank _furt am Main
Tagged Tokens B-Per O O B-Loc I-Loc I-Loc I-Loc
Entities Person Location

In compliance with the standard evaluation scheme of NER tasks in [24], we compute
an entity-wise F1 score denoted by E-F1. Instead of computing a token- or word-wise F1
score, E-F1 evaluates a complete entity as true positive only if all tokens belonging to the
entity are correct. Our implementation of E-F1 relies on the widely used Python library
seqeval [25].

Usually, IOB tagging is trained by a token-wise softmax cross-entropy loss. However,
this setup of one feed-forward layer and a cross-entropy loss does not take into account

Information 2021, 12, 443 7 of 20

the context of the tokens forming an entity. In the following, we will call this default
approach of fine-tuning the BERT Default-Fine-Tuning. It can lead to inconsistent tagging;
for example, an inner tag may only be preceded by an inner or beginning tag of the same
entity and thus results in a devastating impact on the E-F1-score. Therefore, we propose and
compare three modified strategies that include context to prevent inconsistent NER tagging
during training or decoding. The first approach is a modification of the IOB tagging,
the second proposal uses Linear Chain Conditional Random Fields (LCRFs), and the last
attempt applies rules to fix a predicted tagging.

Most papers on BERT models dealing with German NER, for example [13] or [12],
do not focus on an investigation of different variants for fine-tuning. However, there
are already studies for NER tasks in other languages (e.g., [26,27]) that show that the
application of LCRFs can be beneficial for fine-tuning. The authors of [27] also investigated
whether it is advantageous for the fine-tuning of BERT models on NER tasks to link the
pre-trained BERT models with LSTM layers. However, these experiments did not prove to
be successful.

4.1. Fine-Tuning with CSE Tagging

In this section, we propose an alternative to the IOB tagging that we call Class-Start-
End (CSE) tagging. The main idea is to split the task into three objectives, as shown in
Table 4: finding start and end tokens and learning the correct class.

Table 4. CSE tagging example. Rows refer to the tokens and its respective target for start, end,
and class.

Tokens Peter lebt in Frank _furt am Main
Start 1 0 0 1 0 0 0
End 1 0 0 0 0 0 1
Class Per O O Loc Loc Loc Loc

CSE appends two additional dense layers with logistic-sigmoid activation to the
last BERT layer with scalar outputs, one for the start pstart and one for the end pend

token. In summary, the complete output for an input sample consisting of n tokens is((
pstart

1 , pend
1 , y1

)
,
(

pstart
2 , pend

2 , y2
)
, . . . ,

(
pstart

n , pend
n , yn

))
∈ Rn×(2+e+1), where e + 1 is the

number of possible entities and the “other” class.
The objective for yi is trained with softmax cross-entropy as before but without the

distinction between B- and I-, while the start and end vectors contribute extra losses Jstart

and Jend:

Jstart = −
n

∑
j=1

[
tstart

j · log (pstart
j) + (1− tstart

j) · log (1− pstart
j)

]
, (5)

where tstart and pstart are the target and prediction vectors for start, as shown in Table 4.
Jend is the defined analog.

Converting the CSE into IOB tagging is realized by accepting tokens that exceed the
threshold of 0.5 as start or end markers. If an end marker is missing between two start
markers, the position of the highest end probability between the two locations is used as
an additional end marker. This approach is applied analogue in reverse to miss the start
markers. Finally, all class probabilities between each start and end marker pairs (including
start and end) is averaged to obtain the entity class. In conclusion, an inconsistent tagging
is impossible.

4.2. Fine-Tuning with Linear Chain Conditional Random Field with NER-Rule (LCRFNER)

Another approach to tackle inconsistent IOB tagging during fine-tuning of a BERT is
based on Linear Chain Conditional Random Fields (LCRFs), which are a modification of
Conditional Random fields, both proposed in [28]. LCRFs are a common approach to train
neural networks that model a sequential task and are therefore well suited for fine-tuning

Information 2021, 12, 443 8 of 20

NER. The basic idea is to take into account the classification of the neighboring sequence
members when classifying an element of a sequence.

The output Y = (y1, y2, . . . , yn) ∈ Rn×γ of our neural network for the NER task
consists of a sequence of n vectors whose dimension corresponds to the number of classes
γ ∈ N. LCRF introduce so-called transition values T that are a matrix WT of trainable
weights, in the basic approach: T := WT ∈ Rγ×γ. An entry Ti,j of this matrix T can be seen
as the potential that a tag of class i is followed by a tag of class j. In one of the easiest forms
of LCRFs, which we choose, decoding aims to find the sequence Cp :=

{
cp

1 , cp
2 , . . . , cp

n

}
∈

{1, 2, . . . , γ}n with the highest sum of corresponding transition values and elements of the
corresponding output vectors, as shown in Equation (6).

Cp := arg max
C∈{1,...,γ}n

(
n

∑
j=1

yj,cj +
n−1

∑
j=1

Tcj ,cj+1

)
(6)

Equation (6) is efficiently solved by the Viterbi-Algorithm (see, e.g., [29]). During
training, a log-likelihood loss is calculated that takes into account the transition values
T and the network output Y. The authors in [29] provide a detailed description for
its implementation.

Since the IOB tagging does not allow all possible transitions, [30] tried to simply ban
these forbidden transitions completely by assigning fixed non-trainable high negative
values to the associated entries in T. However, this did not lead to any improvement in per-
formance, but they were able to show that this allows fine-tuning to converge faster when
switching from the classic IOB tagging to the more detailed IOBES tagging scheme [30].
In contrast to them, we extend the original LCRF approach by explicitly modeling these
forbidden transitions by adding additional trainable weights to the model when computing
the transition values T. In the following, we call our adapted algorithm LCRFNER.

Assume an NER task comprises the set of entities X1, X2, . . . , Xe, which results in
γ = 2e + 1 classes following the IOB tagging scheme. Thus, beside a label O for unlabeled
elements, for each entity Xi, there is a begin label B-Xi and an inner label I-Xi. For simplicity,
we order these classes by B-X1, . . ., B-Xe, I-X1, . . ., I-Xe, O, that is:

Class i belongs to label


B-Xi if i ≤ e
I-Xi−e if e < i ≤ 2e
O otherwise.

With respect to this ordering, we introduce the matrix F ∈ {0, 1}γ×γ of all forbidden
transitions as

Fi,j =

{
1 if e < j ≤ 2e and i 6= j and i 6= j− e
0 otherwise.

Thus, an element Fi,j is 1, if and only if a tag of class j can not follow on a tag of class
i in the given NER task. This maps the constraint that the label of the predecessor of an
interior tag of label I-X can only be the same interior label I-X or the corresponding begin
label B-X.

In Figure 1, we illustrate the definition of F.
Likewise, we define the matrix A ∈ {0, 1}γ×γ by Ai,j = 1 − Fi,j as the matrix

of all allowed tag transitions. LCRFNER introduces two additional trainable weights
ωF

factor, ωF
absolute ∈ R besides the weights WT and constructs T by

T := (A+ ωF
factorF)�WT −ωF

absoluteF, (7)

where � is the point-wise product. If setting ωF
factor = 1 and ωF

absolute = 0, this defaults
to the original LCRF approach. In this way, the model can learn an absolute penalty by

Information 2021, 12, 443 9 of 20

ωF
absolute and a relative penalty by ωF

factor for forbidden transitions. Note that LCRFNER
is mathematically equivalent to LCRF; the only purpose is to simplify and to stabilize
the training.

Previous Element

B-X1

B-X2

I-X1

I-X2

O

B-X1

B-X2

I-X1

I-X2

O

Next Element 
0 0 0 1 0

0 0 1 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

 =: F

B-X1B-X2 I-X1 I-X2 O

B-X1

B-X2

I-X1

I-X2

OP
re
v
io
u
s
E
le
m
en
t

Next Element

Figure 1. Example for the definition of the matrix F of all forbidden transitions for two entities X1, X2. If we follow the IOB
tagging scheme, red arrows mark forbidden transitions between two sequence elements that lead to an entry 1 in F.

4.3. Decoding with Entity-Fix Rule

Finally, we propose a rule-based approach to resolve inconsistent IOB tagging, which
can, for example, occur if an I-X tag is subsequent to a token that is not I-X or B-X (for
any possible entity class X). Our so-called Entity-Fix rule replaces forbidden I-X tags with
the tag of the previous token. If the previous token has a B-X tag, the inserted token is
converted to the corresponding I-X tag. In the special case where an I-X tag is predicted
at the start of the sequence, it is converted to B-X of the same class. See Table 5 for an
example. The advantage of this approach is that it can be applied as a post-processing step
independent of training. Furthermore, since only tokens that already form an incorrect
entity are affected by this rule, the E-F1 score can never decrease by applying it. Note that
this does not necessarily hold for the token-wise F1 score, though.

Table 5. Example for the Entity-Fix rule. Rows refer to the tokens, its respective target, prediction,
and the prediction resulting from decoding with the Entity-Fix rule. Changes are emphasized in bold.

Tokens Peter lebt in Frank _furt am Main
Target B-Per O O B-Loc I-Loc I-Loc I-Loc
Prediction I-Per O O B-Loc I-Org I-Org I-Loc
Prediction with Fix-Rule B-Per O O B-Loc I-Loc I-Loc I-Loc

5. BERT Architecture with Whole-Word Attention (WWA)

In this section, we describe our proposed word-wise attention layers used by some of
our BERT models during pre-training and fine-tuning. This Whole-Word Attention (WWA)
was inspired by the benefits of the Whole-Word Masking (WWM). It comprises two
components: the first one called mhawwa applies traditional multi-head attention on
words instead of tokens, while the second component is a windowed attention module
called mhawind.

5.1. Traditional Approach

In contrast to current NLP network architectures, previous approaches for tokenizing
text (e.g., [31]) did not apply a tokenizer to break down each word of a sentence into
more than one possible token. Instead, they trained representations for a fixed vocabulary
of words. The major drawback was that this required a large vocabulary, and out-of-
vocabulary words could not be represented. Modern approaches tokenize words by

Information 2021, 12, 443 10 of 20

a vocabulary of subwords that allows composing unknown words by known tokens.
However, when combined with Transformers, attention is computed between pairs of
tokens. As a consequence, the number of energy values (see Equation (1)) to be calculated
increases quadratically with sequence length, resulting in a large increase in memory and
computation time for long sequences.

Different approaches exist to tackle this problem. The most prominent ones are
BigBird [32] and Longformer [33]. In their work, the focus is on pure sparse attention
strategies: Instead of a full attention, they try to omit as many calculations of energy values
as possible, so as little performance as possible is lost. Instead, we propose to rejoin tokens
into word-based tokens that also have a quadratic dependence on the sequence length but
by a lower slope.

5.2. Our Methodology

The purpose of the first module, mhawwa, is to map tokens back to words and then to
compute a word-wise attention. However, since mhawwa loses information about the order
of tokens within a word, we introduce mhawind as an additional component that acts on
the original tokens. mhawind scales linearly with the sequence length since only a window
of tokens is taken into account when computing the energy vectors. In summary, mhawwa
learns the global coarser dependence of words, whereas mhawind allows resolving and
learning relations of tokens but only in a limited range. In the following, we first describe
mhawwa and then mhawind.

Let T denote the input of our BERT model, which is a part of text and can thus be
seen as a sequence of words T = (w1, w2, . . . , wm) with m ∈ N. Similar to a classical BERT,
a tokenizer T transforms T into a sequence of tokens T (T) =: t = (t1, t2, . . . , tn) ∈ Nn with
m ≤ n because we only consider traditional tokenizers that encode the text word-wisely
by decomposing a word into one or more tokens. Such a tokenizer provides a mapping
function FT,T : {1, 2, . . . , n} → {1, 2, . . . , m} that uniquely maps an index i of the token
sequence t to the index j of its respective word wj.

Each encoder layer ` of the classical BERT architecture contains a multi-head attention
layer mha`, which maps its input sequence X`

T,T = (x`1, x`2, . . . , x`n) ∈ Rn×d to an output
Y`

T,T of equal length n and dimension d:

mha`(X`
T,T) = Y`

T,T = (y`1, y`2, . . . , y`n) ∈ Rn×d,

where the ith output vector y`i is defined as the concatenation of the resulting vectors
for every attention head computed by Equation (2). Our mhawwa layer modifies this by
applying attention only on the sequence X̂`

T,T = (x̂`1, x̂`2, . . . , x̂`m) ∈ Rm×d, where

x̂j :=
1

|{i : FT,T (i) = j}| ∑
i:FT,T (i)=j

xi (8)

and {i : FT,T (i) = j} is the set of all tokens i belonging to the word j. In other words, we
average the corresponding token input vectors for each word. Next, we apply mha on
X̂`

T,T yielding the output

mha`(X̂`
T,T) =: Ŷ`

T,T = (ŷ`1, ŷ`2, . . . , ŷ`m) ∈ Rm×d

which is a sequence of length m only. Finally, to again obtain a sequence of length n, we
transform the output sequence back to the length n by repeating the output vector for
each word according to the number of associated tokens. Thus, the final output of a layer
mha`wwa is defined as

mha`wwa(X`
T,T) := Z`

T,T = (z`1, z`2, . . . , z`n) ∈ Rn×d

where z`i := ŷ`FT,T (i)
. See Figure 2 for an illustration of the concept described above.

Information 2021, 12, 443 11 of 20

Classical Multi-Head Attention

x1 x2 . . . xn

Multi-Head Attention Layer (mha)

y1 y2 . . . yn

Whole-Word Attention

x1 x2 . . . xF1 xF1+1 xF1+2 . . . xF1+F2 xn

x̂1 x̂2 . . . x̂m

Multi-Head Attention Layer (mha)

ŷ1 ŷ2 . . . ŷm

z1 z2 . . . zF1 zF1+1 zF1+2 . . . zF1+F2 zn

Average Average Average

Figure 2. Left: Multi-Head Attention. Right: Our concept of Whole-Word Attention, where classical Multi-Head Attention
is applied on words instead of tokens. Orange: Members of sequences, whose length is the number of tokens n. Red:
Members of sequences, whose length is the number of words m. For a better overview, we define Fj :=

∣∣{i : FT,T (i) = j
}∣∣

as the number of tokens the j’th word consists of.

We perform positional encoding by utilizing relative positional encoding because
absolute positional encoding adds the positional vectors to the token sequence directly
after the embedding. This is not compatible with WWA of Equation (8). Instead, relative
positional encoding adds a word-wise relative positional encoding to the vectors of the
word-wise sequence within mha`(X̂`

T,T).
As an experiment, we also pre-trained a BERT that solely uses mhawwa layers for

attention. However, it was already apparent in the pre-training that it could only achieve a
very low Mask Language Model (MLM) accuracy. The main reason for this is that Z`

T,T
does not take into account any information about the position of the tokens within a word
since the output elements of them are equal, which is why these tokens are no longer
related to each other via attention. To tackle this problem, for each `, we introduce a
second multi-head attention layer mha`wind based on windowed attention as used in [32,33].
Because the sole purpose of mha`wind is to map the relationships and positions of the tokens
within a word in the model, we use a very small sliding window size of ω = 5 tokens in
each direction. Hence, in contrast to [32,33], we also do not arrange our input sequence
into blocks or chunks.

Formally, we define mhawind as

mha`wind(X`
T,T) := Y`

T,T = (y`1, y`2, . . . , y`n) ∈ Rn×d

where the ith output vector y`i is the concatenation of the resulting vectors y`,h
i for every

attention head h. Each y`,h
i is given by

y`,h
i =

i+ω

∑
j=i−ω

αh
i,j

(
WV,hxj + dV,h

j−i

)

where αh
i,j =

exp
(

eh
i,j

)
n
∑

k=1
exp
(

eh
i,k

) ,WV,h ∈ Rdmodel×dv . The energy values eh
i,j for each attention

head h are defined as in Equation (1), and the distance vectors dV,h
j−i , dK,h

j−i are given by
the Equations (3) and (4).

Information 2021, 12, 443 12 of 20

In summary, in our BERT model using WWA, the total output of the `-th attention
layer of the `-th encoder layer is, after adding the input sequence X`

T,T as a residual,

X`
T,T + mha`wwa(X`

T,T) + mha`wind(X`
T,T)

compared to the original approach

X`
T,T + mha`(X`

T,T).

mhawind introduces additional trainable variables compared to the traditional Transformer
architecture. However, the number of energy values only increases linearly compared to the
sequence length with respect to the window size ω by a factor 2ω + 1. Hence, the impact
on the memory can be neglected for long sequences and small ω. In order to quantify the
overall reduction of memory consumption using WWA, we provide an example using our
tokenizer built on the German Wikipedia with a vocabulary of about 30,000, as is common
in many BERT models. It transforms on average a sequence of m words in n ≈ 1.5m = 3

2 m
tokens. Therefore, while the traditional multi-head attention layer calculates n2 energy
values per each head, our WWA approach only requires

mhawwa︷︸︸︷
m2 +

mhawind︷ ︸︸ ︷
(2ω + 1)n ≈ 4

9
n2 + (2ω + 1)n (9)

energy values. Thus, for large n (and small ω), the number of energy values to be calculated
is more than halved.

6. Experiments

To evaluate our proposed methods for German NER tasks, we conducted several
experiments. First, we compared the pre-training variants presented in Section 3 and
then fine-tuning techniques presented in Section 4. Afterwards, we applied Whole-Word
Attention (WWA) on the overall training of the NER task. Finally, we discuss our results in
relation to the state-of-the-art models of the LER and GermEval tasks.

6.1. Comparing Pre-Training Techniques

In our first experiments, we investigated which of the known pre-training techniques
(see Section 3) yields the best models for a subsequent fine-tuning on German NER tasks.
For this purpose, we combined the three presented pre-training tasks (Mask Language
Model (MLM), MLM with Sentence Order Prediction (SOP), and MLM with Next Sentence
Prediction (NSP)) with relative and absolute positional encoding and optionally enabled
Whole-Word Masking (WWM). For each resulting combination, we pre-trained a (small)
BERT with a hidden size of 512 with 8 attention heads on 6 layers for 500 epochs and
100,000 samples per epoch. Pre-training was performed with a batch size of 48 and a
maximal sequence length of 320 tokens, which is limited by the 11 GB memory of one
GPU (RTX 2080 Ti). Each of the 12 resulting BERTs was then fine-tuned using the Default-
Fine-Tuning approach (described in Section 4) on the five German NER tasks described in
Section 2.2. For fine-tuning, we chose a batch size of 16 and trained by default for 30 epochs
and 5000 samples per epoch. The number of epochs was increased to 50 for the larger LER
tasks. Each fine-tuning run was performed three times, and its average result was reported
in Table 6 together with its standard deviation σ.

Information 2021, 12, 443 13 of 20

Table 6. Columns refer to the average E-F1 score (cf. [24]) of three fine-tuning runs with Default-Fine-Tuning (see Section 4)
for five datasets and its standard deviation σ multiplied by 100. Rows refer to the respective pre-training task, absolute or
relative positional encoding (PE), and use of Whole-Word Masking (WWM); best results within 2 · σ of the maximum (best)
are emphasized

Pre-Train Task PE WWM GermEval H.Arendt Sturm LER CG LER FG Average
E-F1 100σ E-F1 100σ E-F1 100σ E-F1 100σ E-F1 100σ E-F1

MLM abs. - 0.7785 0.09 0.7600 1.28 0.8236 1.20 0.9061 0.48 0.8969 0.37 0.8330
MLM abs. X 0.7901 0.21 0.7681 0.40 0.8102 1.73 0.9192 0.12 0.9028 0.21 0.8381
MLM rel. - 0.7852 0.16 0.7674 0.54 0.8011 1.45 0.9198 0.34 0.9144 0.27 0.8376
MLM rel. X 0.8086 0.24 0.7741 0.79 0.8555 0.34 0.9347 0.30 0.9206 0.14 0.8587

MLM, NSP abs. - 0.7609 0.10 0.7688 1.21 0.8085 0.20 0.9067 0.36 0.8928 0.56 0.8275
MLM, NSP abs. X 0.7484 1.52 0.7621 0.40 0.8110 1.38 0.9047 0.30 0.8930 0.30 0.8238
MLM, NSP rel. - 0.7802 0.40 0.7471 0.48 0.8172 1.37 0.9193 0.39 0.9105 0.18 0.8348
MLM, NSP rel. X 0.7750 0.23 0.7564 1.15 0.8191 0.40 0.9168 0.07 0.9044 0.38 0.8343

MLM, SOP abs. - 0.7530 0.18 0.7669 0.71 0.7942 1.20 0.8979 0.25 0.8817 0.14 0.8188
MLM, SOP abs. X 0.7355 0.38 0.7590 0.21 0.7995 2.40 0.9047 0.17 0.8950 0.35 0.8187
MLM, SOP rel. - 0.7745 0.58 0.7548 0.52 0.8052 0.62 0.9176 0.24 0.9040 0.48 0.8312
MLM, SOP rel. X 0.7863 0.31 0.7807 0.41 0.8550 0.15 0.9246 0.24 0.9122 0.38 0.8518

The first thing we can see in Table 6 is that, as expected, the standard deviation for the
NER tasks with a smaller ground truth (mainly Sturm but also H.Arendt) is higher than
for NER tasks with larger ground truth (GermEval, both LER variants). The fluctuations of
the different fine-tuning runs are nevertheless within a reasonable range.

The results in Table 6 reveal that the best performing BERTs for NER tasks used relative
positional encoding, WWM, and were solely pre-trained with MLM. This is plausible since
the samples, i.e., the academical NER datasets, are only single sentences and hence using
additional sentence-spanning losses during pre-training (SOP or NSP) is even harmful for
these downstream tasks.

Furthermore, our experiments show that relative positional encoding yields signifi-
cantly better results than absolute positional encoding. This is an interesting observation
since the experiments from [20] stated that relative positional encoding only performs
better when applied to sequences with longer lengths than those on which the network
was previously trained. To investigate this in detail, we performed an analysis of the E-F1
score in dependence of the sequence length. We sorted the samples in the test list for each
dataset by token length in increasing order and then split them into seven parts of equal
number of samples. The left chart of Figure 3 shows the averaged E-F1 score of the five
datasets for each part. We observe that relative encoding (rel) is outperforming absolute
encoding (abs) for almost any sequence length. For long sequences (last part), the gap
between the two approaches increases, which is expected. The right chart of Figure 3 shows
the E-F1 score for each part of only the H. Arendt dataset. For this dataset, the discrepancy
between relative and positional encoding is very small, which shows that the benefit of
relative positional encoding highly depends on the dataset. Nevertheless, on average, our
experiments suggest using relative positional as the mean of choice for German NER tasks.

Furthermore, we observe that WWM together with relative positional encoding led to
significant improvements when combined with MLM with or without SOP as pre-training
task. In summary, our best setup combined solely MLM, relative positional encoding,
and WWM.

Information 2021, 12, 443 14 of 20

2 4 6
test list part

0.82

0.84

0.86

E
-F

1

Mean of Datasets

abs

rel

2 4 6
test list part

0.70

0.75

0.80

E
-F

1

H. Arendt Dataset

abs

rel

Figure 3. The E-F1 score for a BERT trained on Mask Language Model (MLM) task with Whole-Word Masking (WWM) for
relative and absolute positional encoding fine-tuned with Default-Fine-Tuning (see Section 4) tested on seven parts of the
test list, which are sorted by token length, starting with short sequences. Left shows the mean over all datasets, and the
right shows the results on one dataset (H. Arendt).

6.2. Comparing Fine-Tuning Techniques

In this section, we examine our four different variants of fine-tuning: Default-Fine-
Tuning (see Section 4), Class-Start-End (CSE) (see Section 4.1), and Linear Chain Condi-
tional Random Field (LCRF), or LCRFNER (see Section 4.2). The new fine-tuning techniques,
CSE and LCRFNER, were specifically designed to help the network learn the structure of
IOB tagging.

First, we evaluated the impact of the fine-tuning method in dependence of the pre-
training techniques examined in Section 6.1. For this purpose, we fine-tuned all BERT
models in analogy to Section 6.1 on all five NER tasks using the four fine-tuning methods
mentioned. The individual results shown in Table 7 are averaged across the five tasks,
whereby the outcome of each task is the mean of three runs.

Table 7. Average E-F1 score of all five NER tasks and three fine-tuning runs. Rows refer to the
respective pre-training task, absolute or relative positional encoding (PE), and use of Whole-Word
Masking (WWM); Columns refer to the fine-tuning methods Default-Fine-Tuning (DFT), Class-Start-
End (CSE), Linear Chain Conditional Random Field (LCRF) and LCRFNER; best results per column
are emphasized.

Pre-Training Task PE WWM Avg. DFT Avg. CSE Avg. LCRF Avg. LCRFNER

MLM abs. - 0.8330 0.8608 0.8455 0.8469
MLM abs. X 0.8381 0.8635 0.8443 0.8516
MLM rel. - 0.8376 0.8682 0.8477 0.8539
MLM rel. X 0.8587 0.8785 0.8623 0.8651

MLM, NSP abs. - 0.8275 0.8536 0.8346 0.8418
MLM, NSP abs. X 0.8238 0.8543 0.8358 0.8416
MLM, NSP rel. - 0.8348 0.8639 0.8457 0.8471
MLM, NSP rel. X 0.8343 0.8595 0.8417 0.8459

MLM, SOP abs. - 0.8188 0.8515 0.8292 0.8325
MLM, SOP abs. X 0.8187 0.8597 0.8312 0.8369
MLM, SOP rel. - 0.8312 0.8598 0.8450 0.8473
MLM, SOP rel. X 0.8518 0.8714 0.8557 0.8605

Overall Average 0.8340 0.8608 0.8432 0.8476

Regardless of the choice of the fine-tuning method, the results confirm that pre-trained
BERTs that were only pre-trained with MLM use relative Positional Encoding and use
WWM are the most suitable for German NER tasks. Therefore, we will only consider this
fine-tuning setup in the following.

Furthermore, the results show that LCRFNER consistently outperforms LCRF. We
think that the introduction of the new weights ωF

factor, ωF
absolute (see Equation (7)) enables the

Information 2021, 12, 443 15 of 20

fine-tuning with LCRFNER to outperform LCRF because the network can more easily learn
to avoid inconsistent tagging. However, CSE performs best on average. We suspect that this
is due to the fact that the way of decoding in CSE completely prevents inconsistent tagging.

Table 8 provides more details for the best setup by listing separate results per NER
task. Furthermore, we examined the influence of applying the rule-based Entity-Fix (see
Section 4.3) as a post-processing step.

Table 8. Average E-F1 score of three fine-tuning runs on BERTs pre-trained with Mask Language Model (MLM), relative
positional encoding, and Whole-Word Masking (WWM). Rows refer to the fine-tuning methods Default-Fine-Tuning (DFT),
Class-Start-End (CSE), Linear Chain Conditional Random Field (LCRF), and LCRFNER; Columns refer to the NER task; best
results per column are emphasized.

Fine-Tuning Task Entity-Fix Rule GermEval H. Arendt Sturm LER CG LER FG Average

DFT - 0.8086 0.7741 0.8555 0.9347 0.9206 0.8587
DFT X 0.8408 0.7903 0.8706 0.9474 0.9427 0.8783

CSE - 0.8397 0.8048 0.8647 0.9429 0.9401 0.8785
CSE X 0.8397 0.8048 0.8647 0.9429 0.9401 0.8785

LCRF - 0.8216 0.7822 0.8453 0.9365 0.9261 0.8623
LCRF X 0.8422 0.7941 0.8629 0.9477 0.9410 0.8776

LCRFNER - 0.8220 0.7857 0.8508 0.9394 0.9278 0.8651
LCRFNER X 0.8448 0.7999 0.8783 0.9488 0.9455 0.8823

The Entity-Fix rule was specifically designed to fix inconsistencies that otherwise
would lead to an error on the metric. Since the CSE decoding already includes the rules of
the metric, no changes are present if applying the Entity-Fix rule. This post-processing step
led to clear improvements on all other fine-tuning methods. Surprisingly, although LCRF
and LCRFNER were specially designed to learn which consecutive tags were not allowed in
the sequence, they still show significant improvements with the Entity-Fix rule. Thus, they
were not able to learn the structure of the IOB tagging scheme sufficiently.

The general result is that LCRFNER represents the best fine-tuning method if combined
with the Entity-Fix rule.

Additionally, we examined why, in contrast to all other tasks, the H. Arendt task
with CSE yielded slightly better results than with LCRFNER and the Entity-Fix rule by
comparing the errors made on the test set. Unfortunately, no explanation could be found
in the data. Nevertheless, LCRFNER emerges as the best fine-tuning method from our
experiments in general.

6.3. Results of Whole-Word Attention (WWA)

Next, we investigated the influence of replacing the original multi-head attention
layers with our proposed Whole-Word Attention (WWA) approach. For this, we pre-
trained BERTs with only the Mask Language Model (MLM), relative positional encoding,
and Whole-Word Masking (WWM) with the same hyper-parameter setup as in Section 6.1.
Since, as shown in Equation (9), WWA allows increasing the maximal token sequence
length, we first pre-trained a BERT with a token sequence length of 320 (similar to the
previous experiments) but also one with a maximum sequence length of 300 words, which is
roughly 450 tokens on average (see Equation (9)). This value is chosen so that approximately
the same number of energy values were calculated in this BERT model as in the comparable
model without WWA.

After pre-training of the two BERTs was finished, we fine-tuned all NER tasks with
our best fine-tuning method LCRFNER. Table 9 compares the results of using WWA to
those without (see Table 8).

Information 2021, 12, 443 16 of 20

Table 9. Average E-F1 score of three fine-tuning runs with LCRFNER on BERTs pre-trained with Mask
Language Model (MLM), relative positional encoding, and Whole-Word Masking (WWM). Rows
refer to the use of WWA and the maximal sequence length in pre-training; Columns refer to the use
of the Entity-Fix rule.

WWA Max Seq. Length Pre-Train Avg. E-F1 Avg. E-F1 with Entity-Fix Rule

- 320 token 0.8651 0.8823
X 320 token 0.8676 0.8832
X 300 words 0.8674 0.8832

The results show that, on average, WWA slightly improved the original approach,
even though training was done with reduced memory consumption due to the smaller
number of energy values to be calculated and stored. The drawback is that the pre-training
of a BERT with WWA takes about 1.5 times longer than pre-training without WWA due
to the additional window attention layer and the transformation of the sequence from
token to word and vice versa. The runtime could probably be accelerated by improving
the implementation for the transformation from token sequence to word sequence without
looping over the samples of the batch.

Increasing the maximum sequence length to 300 words did not result in an additional
advantage of the performance. We suspect that the reason is that the maximum sequence
length for NER tasks is not a primary concern because the samples in all five NER datasets
tested almost never exhausted the maximum sequence length used in pre-training. How-
ever, we expect a benefit for other downstream tasks such as document classification or
question answering where longer sequences and long-range relations are more important.

6.4. Comparing Results with the State of the Art

In this section, we compare our results with the current state of the art. This is only
possible for the two LER tasks and the GermEval task since the other two NER datasets
were newly introduced by this paper.

To the best of our knowledge, the current state of the art in both LER tasks was
achieved in [34]. They applied a non-Transformer model on the basis of bidirectional LSTM
layers and a LCRF with classical pre-trained word embeddings. For evaluation, in contrast
to our used E-F1 score, they took a token-wise F1 score, thus calculating precision and recall
per token.

Table 10 shows the comparison of the token-wise F1 score to our best results.

Table 10. Comparison of our best results on the two LER-tasks with the previous state of the art
models of [34], where T-F1 and E-F1 are the token- and entity-wise F1 scores, respectively.

Task Model T-F1 E-F1

LER CG Previous SoTA [34] 0.9595 -
LER CG our best 0.9842 0.9488

LER FG Previous SoTA [34] 0.9546 -
LER FG our best 0.9811 0.9455

Note, however, that the comparison of the token-wise F1 score is not entirely correct
because in our models, words can sometimes break down into several tokens, whereas,
in [34], presumably exactly one token is always used per word. Furthermore, since it was
not published, we were not able to use the identical splits of train, validation, and test data.

Next, in Table 11, we compare our results for the GermEval task with the current state
of the art, which, to the best of our knowledge, was achieved in [13]. In addition, we list
the best results that were achieved without a Transformer architecture [14].

Information 2021, 12, 443 17 of 20

Table 11. Comparison of our best results on the GermEval-task with other state of the art models,
where E-F1 is the entity-wise F1 score. Our shown result is again the average of 3 fine-tuning
runs. The score of DistilBERT was taken from https://huggingface.co/dbmdz/flair-distilbert-ner-
germeval14 accessed on 19 October 2021.

Model Params E-F1

BiLSTM-WikiEmb [14] - 0.8293
DistilBERTBase [35] 66 mio 0.8563
GBERTBase [13] 110 mio 0.8798
GELECTRALarge [13] 335 mio 0.8895

our best on small BERTs 34 mio 0.8448

While our approach outperforms the BiLSTM results of [14], we were not able to reach
the results of [13]. One of the reasons is that our BERTs are smaller and also pre-trained
on a much smaller text corpus. The DistilBERT [35] with almost 2× the parameters also
reaches a higher score. This comes with the drawback that a larger BERT is needed for
pre-training. There are some reasons where it is desired to train a BERT from scratch,
for example, to enable research such as the Whole-Word Attention or training on a different
domain/language. In Table 12, we illustrate some differences of some technical attributes
between our BERT models and GBERTBase of [13]. It shows that our models can be trained
with much lower hardware requirements.

Table 12. Comparison of some technical attributes between GBERTBase (from [13]) and our small
BERTs. The operations per training is a coarse estimation based on the theoretic compute power and
pre-training time.

GBERTBase Our Small BERTs

Parameter 110 mio 34 mio
Pre-training hardware 1× TPU v3 1× GPU
Memory 128 GB 11 GB
Compute power 420 TFLOPS 14 TFLOPS
Tokens seen in pre-training 2.6× 1011 1.6× 1010

Pre-training time ≈7 days ≈9 days
Operations per training ≈254 EFLOP ≈11 EFLOP

In addition, we compared the time needed for a fine-tuning. For a fair comparison,
we downloaded the GBERTBase from Hugging Face and fine-tuned it with the same hyper-
parameters as we fine-tuned our models. This resulted in an average time of 50 min for a
fine-tuning run on our models and 70 min for a run on GBERTBase.

7. Conclusions and Future Work

In this article, we conducted our research on comparatively small BERT models to
address real-world applications with limited hardware resources, making it accessible to
a wider audience. We have worked out how to achieve the best results in German NER
tasks with smaller BERT models. This simplifies the work of Germanists in the creation of
digital editions.

Therefore, we investigated which pre-training method is the most suitable to solve
German NER tasks on three standard and two newly introduced (H. Arendt and Sturm)
NER datasets. We examined different pre-training tasks, absolute and relative positional
encoding, and masking methods. We observed that a BERT pre-trained only on the Mask
Language Model (MLM) task combined with relative positional encoding and Whole-Word
Masking (WWM) yielded the overall best results on these downstream tasks.

We also introduced two new fine-tuning variants, LCRFNER and Class-Start-End (CSE),
designed for NER tasks. Their investigation, in combination with Default-Fine-Tuning
and common Linear Chain Conditional Random Fields (LCRFs), showed that the best

https://huggingface.co/dbmdz/flair-distilbert-ner-germeval14
https://huggingface.co/dbmdz/flair-distilbert-ner-germeval14

Information 2021, 12, 443 18 of 20

pre-training technique of the BERT is independent of the fine-tuning variant. Furthermore,
we introduced the Entity-Fix rule for decoding. Our results showed that for most German
NER tasks, LCRFNER with the Entity-Fix rule delivers the best results, although there are
also tasks for which the CSE tagging has a minor advantage.

In addition, our novel Whole-Word Attention (WWA) that modifies the Transformer
architecture resulted in small improvements by simultaneously halving the number of
energy values to be calculated. For future work, it would be particularly interesting to
investigate WWA in connection with other downstream tasks, such as document classifica-
tion or question answering, where the processing of longer sequences is more important
than in NER tasks. Another approach would be to combine WWA with a sparse-attention
mechanism such as BigBird [32].

To further simplify the training and application of BERTs for users with only a low
technical background, we are currently developing an open source implementation of these
optimized models in a user friendly software with a graphical user interface. The goal of
this software is to greatly simplify the creation of digital editions by enriching text stored
as TEI files with custom NER taggings.

Author Contributions: Conceptualization, J.Z. and K.S.; Data curation, J.Z. and K.S.; Formal analysis,
J.Z. and K.S.; Funding acquisition, R.L.; Investigation, J.Z. and K.S.; Methodology, J.Z. and K.S.;
Software, J.Z., K.S. and C.W.; Supervision, R.L.; Validation, J.Z. and K.S.; Visualization, J.Z. and
K.S.; Writing—original draft, J.Z. and K.S.; Writing—review and editing, J.Z., K.S., C.W. and R.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the European Social Fund (ESF) and the Ministry of Education,
Science, and Culture of Mecklenburg-Western Pomerania (Germany) within the project NEISS (Neural
Extraction of Information, Structure, and Symmetry in Images) under grant no ESF/14-BM-A55-
0006/19.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: We share the datasets (see Section 2) and our source code (https://github.
com/NEISSproject/tf2_neiss_nlp/tree/berNer21), which is based on tfaip [8] with the community.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

BERT Bidirectional Encoder Representations from Transformers
CSE Class-Start-End
IOB Inside-Outside-Beginning
LCRF Linear Chain Conditional Random Field
LER Legal Entity Recognition
MLM Mask Language Model
NER Named Entity Recognition
NLP Natural Language Processing
NSP Next Sentence Prediction
DFT Default-Fine-Tuning
SOP Sentence Order Prediction
WWA Whole-Word Attention
WWM Whole-Word Masking

References
1. NEISS Project Neuronal Extraction of Information, Structures and Symmetries in Images. Available online: https://www.neiss.

uni-rostock.de/en/ (accessed on 22 October 2021).
2. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In

Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2017; pp. 5998–6008.

https://github.com/NEISSproject/tf2_neiss_nlp/tree/berNer21
https://github.com/NEISSproject/tf2_neiss_nlp/tree/berNer21
https://www.neiss.uni-rostock.de/en/
https://www.neiss.uni-rostock.de/en/

Information 2021, 12, 443 19 of 20

3. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Minneapolis, MN, USA, 2–7 June 2019; Volume 1, pp. 4171–4186.

4. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. Albert: A lite bert for self-supervised learning of lan-
guage representations. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia,
26–30 April 2020.

5. Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly
optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692.

6. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for language
understanding. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2019; pp. 5753–5763.

7. Hugging Face. Available online: https://huggingface.co/ (accessed on 22 October 2021).
8. Wick, C.; Kühn, B.; Leifert, G.; Sperfeld, K.; Strauß, T.; Zöllner, J.; Grüning, T. tfaip—A Generic and Powerful Research Framework

for Deep Learning based on Tensorflow. J. Open Source Softw. 2021, 6, 3297. [CrossRef]
9. Attardi, G. WikiExtractor. 2015. Available online: https://github.com/attardi/wikiextractor (accessed on 15 February 2020).
10. Hamborg, F.; Meuschke, N.; Breitinger, C.; Gipp, B. news-please: A Generic News Crawler and Extractor. In Proceedings of the

15th International Symposium of Information Science, Berlin, Germany, 13–15 March 2017; pp. 218–223. [CrossRef]
11. Benikova, D.; Biemann, C.; Kisselew, M.; Pado, S. GermEval 2014 Named Entity Recognition Shared Task: Companion Paper.

2014. Available online: http://nbn-resolving.de/urn:nbn:de:gbv:hil2-opus-3006 (accessed on 10 November 2020).
12. Labusch, K.; Neudecker, C.; Zellhöfer, D. BERT for Named Entity Recognition in Contemporary and Historic German. In

Proceedings of the 15th Conference on Natural Language Processing, Erlangen, Germany, 8–11 October 2019; pp. 1–9.
13. Chan, B.; Schweter, S.; Möller, T. German’s Next Language Model. arXiv 2020, arXiv:2010.10906.
14. Riedl, M.; Padó, S. A Named Entity Recognition Shootout for German. In Proceedings of the 56th Annual Meeting of the

Association for Computational Linguistics, Melbourne, Australia, 15–20 July 2018; Volume 2: Short Papers; Association for
Computational Linguistics: Stroudsburg, PA, USA, 2018; pp. 120–125. [CrossRef]

15. Leitner, E.; Rehm, G.; Moreno-Schneider, J. A Dataset of German Legal Documents for Named Entity Recognition. arXiv 2020,
arXiv:2003.13016.

16. Hahn, B.; Breysach, B.; Pischel, C. Hannah Arendt Digital. Kritische Gesamtausgabe. Sechs Essays. 2020. Available online:
https://hannah-arendt-edition.net/3p.html (accessed on 22 October 2021).

17. TEI-Consortium. Guidelines for Electronic Text Encoding and Interchange. 2017. Available online: https://tei-c.org/ (accessed on
22 October 2021).

18. Buchholz, S.; Marsi, E. CoNLL-X Shared Task on Multilingual Dependency Parsing. In Proceedings of the Tenth Conference on
Computational Natural Language Learning (CoNLL-X), New York, NY, USA, 8–9 June 2006; Association for Computational
Linguistics: Stroudsburg, PA, USA, 2006; pp. 149–164.

19. Schrade, M.T. DER STURM. Digitale Quellenedition zur Geschichte der internationalen Avantgarde. 2018. Available online:
https://sturm-edition.de/id/S.0000001 (accessed on 22 October 2021).

20. Rosendahl, J.; Tran, V.A.K.; Wang, W.; Ney, H. Analysis of Positional Encodings for Neural Machine Translation. In Proceedings
of the IWSLT, Hong Kong, China, 2–3 November 2019.

21. Shaw, P.; Uszkoreit, J.; Vaswani, A. Self-attention with relative position representations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans,
LA, USA, 1–6 June 2018; Volume 2, pp. 464–468.

22. Cui, Y.; Che, W.; Liu, T.; Qin, B.; Yang, Z.; Wang, S.; Hu, G. Pre-training with whole word masking for chinese bert. arXiv 2019,
arXiv:1906.08101.

23. Ramshaw, L.A.; Marcus, M.P. Text Chunking Using Transformation-Based Learning. In Natural Language Processing Using Very
Large Corpora; Armstrong, S., Church, K., Isabelle, P., Manzi, S., Tzoukermann, E., Yarowsky, D., Eds.; Text, Speech and Language
Technology; Springer: Dordrecht, The Netherlands, 1999; pp. 157–176._10. [CrossRef]

24. Sang, E.F.; De Meulder, F. Introduction to the CoNLL-2003 shared task: Language-independent named entity recognition. arXiv
2003, arXiv:cs/0306050.

25. Nakayama, H. Seqeval: A Python Framework for Sequence Labeling Evaluation. 2018. Available online: https://github.com/
chakki-works/seqeval (accessed on 22 October 2021).

26. Luoma, J.; Pyysalo, S. Exploring Cross-sentence Contexts for Named Entity Recognition with BERT. arXiv 2020, arXiv:2006.01563.
27. Souza, F.; Nogueira, R.; Lotufo, R. Portuguese Named Entity Recognition using BERT-CRF. arXiv 2020, arXiv:1909.10649.
28. Lafferty, J.; McCallum, A.; Pereira, F. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence

Data. In Proceedings of the International Conference on Machine Learning (ICML), Williamstown, MA, USA, 28 June–1 July 2001.
29. Sutton, C.; McCallum, A. An Introduction to Conditional Random Fields. 2010. Available online: https://homepages.inf.ed.ac.

uk/csutton/publications/crftutv2.pdf (accessed on 22 October 2021).
30. Lester, B.; Pressel, D.; Hemmeter, A.; Ray Choudhury, S.; Bangalore, S. Constrained Decoding for Computationally Efficient

Named Entity Recognition Taggers. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP,
Online, 16–20 November 2020; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 1841–1848. [CrossRef]

https://huggingface.co/
http://doi.org/10.21105/joss.03297
https://github.com/attardi/wikiextractor
http://dx.doi.org/10.5281/zenodo.4120316
http://nbn-resolving.de/urn:nbn:de:gbv:hil2-opus-3006
http://dx.doi.org/10.18653/v1/P18-2020
https://hannah-arendt-edition.net/3p.html
https://tei-c.org/
https://sturm-edition.de/id/S.0000001
http://dx.doi.org/10.1007/978-94-017-2390-9_10
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://homepages.inf.ed.ac.uk/csutton/publications/crftutv2.pdf
https://homepages.inf.ed.ac.uk/csutton/publications/crftutv2.pdf
http://dx.doi.org/10.18653/v1/2020.findings-emnlp.166

Information 2021, 12, 443 20 of 20

31. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their
compositionality. Adv. Neural Inf. Process. Syst. 2013, 26, 3111–3119.

32. Zaheer, M.; Guruganesh, G.; Dubey, A.; Ainslie, J.; Alberti, C.; Ontanon, S.; Pham, P.; Ravula, A.; Wang, Q.; Yang, L.; et al. Big
bird: Transformers for longer sequences. arXiv 2020, arXiv:2007.14062.

33. Beltagy, I.; Peters, M.E.; Cohan, A. Longformer: The long-document transformer. arXiv 2020, arXiv:2004.05150.
34. Leitner, E.; Rehm, G.; Moreno-Schneider, J. Fine-Grained Named Entity Recognition in Legal Documents. In Semantic Systems.

The Power of AI and Knowledge Graphs; Acosta, M., Cudré-Mauroux, P., Maleshkova, M., Pellegrini, T., Sack, H., Sure-Vetter, Y.,
Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2019; pp. 272–287. [CrossRef]

35. Sanh, V.; Debut, L.; Chaumond, J.; Wolf, T. DistilBERT, a distilled version of BERT: Smaller, faster, cheaper and lighter. arXiv
2019, arXiv:1910.01108.

http://dx.doi.org/10.1007/978-3-030-33220-4_20

	Introduction
	Datasets
	Pre-Training Data
	NER Downstream-Datasets
	GermEval 2014
	Legal Entity Recognition
	Digital Edition: Essays from H.Arendt
	Digital Edition: Sturm Edition

	Pre-Training Techniques
	Pre-Training Tasks
	Absolute and Relative Positional Encoding
	Whole-Word Masking (WWM)

	Fine-Tuning Techniques for NER
	Fine-Tuning with CSE Tagging
	Fine-Tuning with Linear Chain Conditional Random Field with NER-Rule (LCRFNER)
	Decoding with Entity-Fix Rule

	BERT Architecture with Whole-Word Attention (WWA)
	Traditional Approach
	Our Methodology

	Experiments
	Comparing Pre-Training Techniques
	Comparing Fine-Tuning Techniques
	Results of Whole-Word Attention (WWA)
	Comparing Results with the State of the Art

	Conclusions and Future Work
	References

