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Abstract: In response to the inefficiencies and high costs associated with manual buoy inspection,
this paper presents the design and testing of an Autonomous Navigation Unmanned Surface Vehicle
(USV) tailored for this purpose. The research is structured into three main components: Firstly, the
hardware framework and communication system of the USV are detailed, incorporating the Robot
Operating System (ROS) and additional nodes to meet practical requirements. Furthermore, a buoy
tracking system utilizing the Kernelized Correlation Filter (KCF) algorithm is introduced. Secondly,
buoy image training is conducted using the YOLOv7 object detection algorithm, establishing a robust
model for accurate buoy state recognition. Finally, an improved Line-of-Sight (LOS) method for USV
path tracking, assuming the presence of an attraction potential field around the inspected buoy, is
proposed to enable a comprehensive 360-degree inspection. Experimental testing includes validation
of buoy image target tracking and detection, assessment of USV autonomous navigation and obstacle
avoidance capabilities, and evaluation of the enhanced LOS path tracking algorithm. The results
demonstrate the USV’s efficacy in conducting practical buoy inspection missions. This research
contributes insights and advancements to the fields of maritime patrol and routine buoy inspections.

Keywords: buoy inspection; unmanned surface vehicle (USV); autonomous navigation; Robot
Operating System (ROS); YOLOv7; LOS algorithm

1. Introduction

A buoy serves as a critical component in maritime navigation, delineating navigational
channels, highlighting hazardous areas, and providing essential positional references [1].
Consequently, regular inspection and maintenance of buoys constitute imperative mea-
sures to ensure maritime safety and facilitate smooth maritime traffic flow. Presently,
the predominant approach to buoy inspection relies on manual methods, encompassing
assessments for color fading, physical damage, inclination deviations, and adherence to
predefined spatial ranges. Nonetheless, conventional manual inspections entail substantial
human resources, material investments, and financial allocations, while suffering from
inefficiencies, prolonged processes, and sluggish response times [1–3].

To address the shortcomings of manual buoy inspections, Li [4] has developed a
novel maritime buoy detection system leveraging the advantages of unmanned aerial
vehicles (UAVs), including low cost, rapid response, and high flexibility, for monitoring
coastal buoys. Additionally, a feasible path planning approach based on Convolutional
Hyper Neural Networks (CHNNs) and genetic algorithms has been devised to obtain
the shortest-distance trajectory for accessing each buoy once. Nevertheless, UAVs often
encounter challenges in endurance when conducting prolonged, long-range inspection
tasks, posing significant demands on their battery life, which is typically limited in current
inspection UAVs [5,6]. Furthermore, UAV operations for buoy inspections are susceptible
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to interference from strong winds, thereby introducing new challenges for precise control
and disturbance resilience of UAVs during inspections.

Intelligent buoys, by means of retrofitting conventional buoys with additional sensors
such as GPS, enable the real-time monitoring of the buoy’s position and pertinent conditions
of the surrounding water bodies [7,8]. Furthermore, some intelligent buoys, equipped with
controllers, have the capability to adjust their routes and positions, thereby achieving the
dual objectives of real-time monitoring and manipulation [9]. Despite the capacity of these
intelligent buoys to provide real-time localization and self-diagnosis of damage, they are
still unable to offer immediate feedback regarding their outward appearance. Moreover, the
development of intelligent buoys necessitates substantial investment costs, thus hindering
widespread adoption in many regions [2].

Unmanned surface vehicles (USVs), emerging as novel waterborne unmanned plat-
forms, possess the capabilities for long-range, prolonged operations and can be outfitted
with a variety of sensors onboard to fulfill specific tasks, thus finding extensive applications
in recent years in fields such as marine exploration, environmental monitoring, and patrol
inspections [10,11]. Xiong et al. [12] devised a USV tailored for water quality assessment
and investigated its trajectory control algorithm. Sotelo-Torres et al. [13] elaborated on
the development of a cost-effective and practical USV for lake depth measurement. This
system integrates an autonomous navigation framework, environmental sensors, and
multibeam sonar to collect data on underwater terrain, temperature, and wind speed.
Cheng et al. [14] amalgamated USVs with target detection algorithms for surface target
identification, establishing a comprehensive USV-based surface target recognition system.

Compared to the UAVs, the USVs offer extended endurance, rendering them suitable
for prolonged, wide-ranging maritime inspection tasks [10]. Leveraging USVs for buoy
inspections alleviates constraints associated with manpower and resources. USVs enable
the proactive observation of buoy conditions, facilitating the targeted preparation of main-
tenance protocols by personnel, thereby significantly enhancing inspection efficiency. This
approach also mitigates the risks posed to personnel by direct exposure to adverse sea
conditions, thus enhancing task execution safety. Furthermore, USVs, owing to their high
maneuverability, can swiftly respond to unforeseen events such as buoy malfunctions or
displacements, promptly conducting on-site inspection and intervention [15].

Based on the foregoing analysis, this paper presents the design of an unmanned
surface vehicle tailored for routine buoy inspection tasks, with both simulation and field
trials conducted. Reference [4] mentioned that the UAV reaches the specified buoy position
for inspection, but subsequent inspection procedures remain unexplored. This study
offers a more comprehensive scheme for buoy inspection. The primary contributions
are as follows: (1) To achieve autonomous navigation and obstacle avoidance, the paper
integrates the Robot Operating System (ROS) into the USV and supplements relevant
topics and nodes based on inspection requirements. (2) In order to conduct automated
detection of buoy conditions, a substantial dataset of buoy images is collected and subjected
to image enhancement. The YOLOv7 object detection algorithm is employed for buoy
status determination post-training. (3) To achieve the comprehensive inspection of buoys,
a buoy tracking system based on the Kernelized Correlation Filter (KCF) algorithm is
developed, coupled with enhancements to the traditional line-of-sight (LOS) USV path
tracking algorithm. Together, they ensure the continuous centering of the buoy within the
inspection frame and enable comprehensive, all-angle buoy inspection.

2. USV Hardware Composition and Navigation
2.1. USV Hardware Composition

The physical structure of the buoy inspection unmanned surface vehicle (USV) is
shown in Figure 1.
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Figure 1. Physical diagram of the USV.

The front end of the USV is equipped with a forward-facing camera and lidar, with
the camera mounted directly in the center, aligned with the direction of the bow. The
midsection houses a depth camera and camera gimbal, followed by the flight controller
and GPS fixed in the rear. Modules for data and image transmission are also installed on
the USV. The cabin contains the power supply and an Nvidia Jetson Nano development
board, with the board and various modules interconnected via serial ports. Additionally,
the USV is outfitted with searchlights and a remote control receiver, allowing for night-time
operation and flexible control through remote handling. The hull of the USV is constructed
from ABS engineering plastic, utilizing a plastic integrated body structure that reduces
weight while providing buoyancy. Other parameters of the USV are detailed in Table 1.

Table 1. Main parameters of the USV.

Title Parameter Title Parameter

Length 1.2 m Motor Power 1700 w
Width 50 cm Load Capacity 5 kg
Height 35 cm Propeller Diameter 6 cm
Speed 5 m/s(max) Draft 10 cm
Weight

Battery Capacity
20 kg

15.6 Ah/173.2 Wh
Wave Resistance Grade

Battery Duration
Level 4, 1.5 m Waves

4 h

2.2. Implementation of USV Navigation Based on ROS

The Robot Operating System (ROS) constitutes a software framework tailored for
robotics applications, offering an assortment of tools and libraries for the development of
complex and reusable robotic software components. ROS is designed with a focus on mod-
ularity and distributed processing, making it exceptionally suitable for the development
of various types of robotic systems, including unmanned surface vehicles (USVs). In the
context of buoy inspection USVs, ROS serves as the foundational framework, which, in
conjunction with open-source flight control systems and a variety of sensors, facilitates
autonomous navigation and obstacle avoidance capabilities.

As shown in Figure 2, the data transmission module, image transmission module, and
GPS communicate with the flight controller via the MAVLink protocol, facilitating real-time
data transfer. The flight controller, in turn, communicates with the industrial computer
using Mavros to transmit coordinates and waypoint information. The relevant hardware
key parameters are shown in Table 2.
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Figure 2. USV hardware framework diagram.

Table 2. Key technical parameters of the hardware.

Hardware Title Parameter

Data Transmission transmission distance 30 km
Ublox-m8n positioning accuracy 5 kg

Depth Camera working range 0.6–8 m
Lidar measuring radius 18 m

The Robot Operating System (ROS), running on the Nvidia Jetson Nano, enables the
processing of buoy images as well as the navigation and obstacle avoidance of the USV. The
flight controller’s companion QGroundControl (QGC) ground station displays the USV’s
location (the red arrowhead) and the imagery from the forward-facing fixed camera, as
shown in Figure 3. It also allows for the setting of cruising points. Once the cruising points
are set, communication between the flight controller and the Nvidia Jetson Nano translates
the cruising point coordinates into the Odom coordinate system, subsequently initiating
the USV’s navigation towards the target points.
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As shown in Figure 4, the ROS navigation framework for buoy inspection USVs has
been adapted from the traditional ROS robotic navigation framework to include additional
topics relevant to the specific application scenario of buoy inspection USVs. The incor-
poration of a Mavros node facilitates communication with the flight controller, reading
and publishing its messages within ROS. The Wp2goal node converts waypoint messages
published by Mavros into destination points under Move_base, sending them via Action
communication for navigation tasks. The Savekeeper node subscribes to the flight controller
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status messages published by Mavros, switching the USV’s control to remote mode for
manual operation upon detecting a “return” mode in the messages, thereby ensuring the
USV’s operational safety. Mode field changes can be effected through the mode switching
function in the QGC ground station. The Usv_control subscribes to the cmd_vel speed
topic, transmitting the demanded angular velocity, forward speed, and control mode to the
motion control board via serial communication and monitors the UseController parameters
for switching the USV’s motion mode, switching to remote mode as required when the
parameter is set to 1.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 5 of 23 
 

 

controller status messages published by Mavros, switching the USV’s control to remote 
mode for manual operation upon detecting a “return” mode in the messages, thereby en-
suring the USV’s operational safety. Mode field changes can be effected through the mode 
switching function in the QGC ground station. The Usv_control subscribes to the cmd_vel 
speed topic, transmitting the demanded angular velocity, forward speed, and control 
mode to the motion control board via serial communication and monitors the UseCon-
troller parameters for switching the USV’s motion mode, switching to remote mode as 
required when the parameter is set to 1. 

 
Figure 4. USV navigation framework diagram. 

2.3. Image Tracking System Based on the KCF Object Tracking Algorithm 
In order to conduct comprehensive inspections of buoys, the USVs are required to 

navigate around the buoys. Upon approaching the designated buoy for inspection, if the 
camera’s orientation remains fixed and the bow of the USV aligns precisely with the buoy, 
inspection can be performed as illustrated by USV0 in Figure 5. However, due to the un-
deractuated nature of USVs, characterized by a lack of lateral thrust, maintaining a con-
stant orientation of the bow towards the buoy imposes significant demands on the con-
troller, posing challenges for achievement. Conversely, during normal circumnavigation 
of the buoy by the USV, if the camera orientation consistently aligns with the direction of 
the bow, the buoy may fall out of the image range, impeding inspection, as depicted by 
USV1 in Figure 5. By orienting the camera direction perpendicular to the bow, as exem-
plified by USV2 in Figure 5, the buoy remains within the image range. Nevertheless, de-
viations in the USV’s tracking of the inspection path, as exemplified by USV3 in Figure 5, 
may potentially result in the buoy drifting beyond the image frame. 

 
Figure 5. Schematic representation of buoy inspection. 

To address this challenge, we have developed an image tracking gimbal based on the 
Kernelized Correlation Filter (KCF) object tracking algorithm. This gimbal enables the un-
manned surface vessel (USV) to actively adjust the camera orientation during the circum-
navigation of buoys, ensuring continuous alignment of the buoy within the center of the 
frame, as shown in Figure 6. 

Figure 4. USV navigation framework diagram.

2.3. Image Tracking System Based on the KCF Object Tracking Algorithm

In order to conduct comprehensive inspections of buoys, the USVs are required to
navigate around the buoys. Upon approaching the designated buoy for inspection, if
the camera’s orientation remains fixed and the bow of the USV aligns precisely with the
buoy, inspection can be performed as illustrated by USV0 in Figure 5. However, due to
the underactuated nature of USVs, characterized by a lack of lateral thrust, maintaining
a constant orientation of the bow towards the buoy imposes significant demands on the
controller, posing challenges for achievement. Conversely, during normal circumnavigation
of the buoy by the USV, if the camera orientation consistently aligns with the direction of the
bow, the buoy may fall out of the image range, impeding inspection, as depicted by USV1
in Figure 5. By orienting the camera direction perpendicular to the bow, as exemplified by
USV2 in Figure 5, the buoy remains within the image range. Nevertheless, deviations in the
USV’s tracking of the inspection path, as exemplified by USV3 in Figure 5, may potentially
result in the buoy drifting beyond the image frame.
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Figure 5. Schematic representation of buoy inspection.

To address this challenge, we have developed an image tracking gimbal based on
the Kernelized Correlation Filter (KCF) object tracking algorithm. This gimbal enables
the unmanned surface vessel (USV) to actively adjust the camera orientation during the
circumnavigation of buoys, ensuring continuous alignment of the buoy within the center
of the frame, as shown in Figure 6.
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The Kernelized Correlation Filter (KCF) algorithm stands as a widely employed
method for target tracking, rooted in the concept of correlation filters [16], and the steps of
the KCF object tracking algorithm are illustrated in Figure 7.
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In the buoy image tracking system, at Step 5, the error between the centroid of the
image is computed, as shown in Figure 8. The range of the screen is from 0 to 640, thus the
midpoint corresponds to 320. In Figure 8, the point corresponding to the buoy is at 280,
resulting in an error of 40. The error is subsequently transformed into angular outputs for
the servo motors through a PID controller. PWM waveforms are then generated by the
pins of Nvidia Jetson Nano to drive the servo motors, facilitating real-time adjustments
of the depth camera angles to ensure continuous alignment of the buoy image within the
frame center.
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3. Buoy Target Detection Algorithm Based on YOLOv7

In order to achieve the automated detection of buoy conditions, the integration of
target detection algorithms with target tracking algorithms is imperative. Current target
detection technologies can be categorized into two primary types: those based on tradi-
tional algorithms and those based on deep learning methodologies. Within the realm of
deep learning, the rapidly evolving algorithms primarily encompass the two-stage R-CNN
series and the one-stage YOLO (You Only Look Once) [17] and SSD (Single Shot Multi-
Box Detector) series [18]. Specifically, the R-CNN series (including RCNN, Fast-RCNN,
Faster-RCNN, Mask-RCNN, Cascade-RCNN, etc.) and R-FCN, as two-stage methods,
initially conduct a coarse localization of candidate regions followed by precise classification.
While this approach enhances the detection accuracy, its slower processing speed may
render it less suitable for applications requiring real-time responses. In contrast, the YOLO
series algorithms represent one-stage detection methods capable of directly predicting the
location and category of objects through a single forward pass. This not only significantly
improves the processing speed to enable real-time detection but also effectively utilizes
global information to enhance detection accuracy [19]. These convolutional neural network
(CNN)-based algorithms have been widely applied in multiple domains, including ocean
exploration [20], environmental monitoring, and equipment maintenance [21]. However,
the research literature related to the detection and classification of buoy images remains
relatively scarce [22]. Early research efforts attempted to develop a fine-grained naviga-
tional marker classification model based on ResNet, dubbed ResNet-Multiscale-Attention
(RMA), yet experimental results indicated the need for improved accuracy in complex
real-world settings.

The architecture diagram for buoy detection based on YOLOv7, as shown in Figures 9 and 10,
comprises four main components: the Input layer, Backbone network, Head network, and
Prediction layer.
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The input module of YOLOv7 adopts an adaptive anchor box calculation method,
coupled with data concatenation and mixed augmentation techniques, to accommodate
the requirement of 640 × 640 size dataset image inputs. The background network module
comprises CBS, ELAN, and MP1 convolutional layers, tasked with extracting fundamental
features, expanding receptive fields, and enhancing feature extraction capabilities, respec-
tively. The Neck module integrates CBS, SPPCSPC, MP, and ELAN structures, extracting
and merging feature information from different layers of the background network to
enhance model performance.

The prediction module of YOLOv7 introduces a Repconv model featuring a repa-
rameterization structure [23]. During training, this model disassembles the entire module
into multiple branches, which may be identical or distinct, and subsequently reintegrates
convolutional layers to form the trained model. This multi-branch training model is trans-
formed into a high-speed single-branch inference model, reducing network complexity and
increasing training duration while maintaining predictive performance, thereby enhancing
inference outcomes [24].

Enhancing the quantity and quality of the training set significantly contributes to
improving the confidence and effectiveness of the target detection algorithm. To augment
the accuracy of buoy target detection, the collected buoy images underwent data aug-
mentation processing. Figure 11 illustrates a schematic representation of the navigational
marker images we collected. By proportionally dividing the dataset into training, test,
and validation sets and applying various data augmentation techniques to the training set
images, the generalization capability was bolstered, thereby mitigating overfitting within
the detection model.
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Our experiment mainly uses the methods of rotation, translation, flipping, bright-
ness adjustment, and adding noise to enhance the data. Following this comprehensive
suite of data augmentation processes, the augmented training set ultimately comprised
10,368 buoy images, including 1296 original images and 9072 images generated through
data augmentation methods.

4. USV Circumnavigation Control Algorithms for Buoy Inspection
4.1. Mathematical Model of Kinematics and Dynamics for USV

To investigate the methodology for circular path tracking of unmanned surface vessels,
a comprehensive understanding of the mathematical model governing these vessels is
essential. Establishing a motion coordinate system allows for the accurate representation of
a USV’s spatial position, direction of movement, and velocity. The mathematical model for
a USV is typically based on the inertial coordinate system and the body-fixed coordinate
system, as depicted in Figure 12. The inertial coordinate system, denoted as OE − XEYEZE,
is anchored to a point on the Earth’s surface (OE) and is utilized to describe the USV’s
position and orientation. The body-fixed coordinate system, denoted as OB − XBYBZB, is
centered at the USV’s center of mass (OB) and is employed to depict changes in position
and orientation due to external forces, i.e., the USV’s linear and angular velocities.
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In the inertial coordinate system, the position of a USV is represented by x, y, z. The
rotational motion of the USV is characterized by their rotation around the OEXE-axis,
OEYE-axis, and OEZE-axis, which are represented by the roll angle ϕ, pitch angle θ, and
yaw angle ψ, respectively. The position and orientation of the USV in the inertial coordinate
system can be denoted by vector η, η = [η1,η2]

T ,η1 = [x, y, z]T ,η2 = [ϕ, θ, ψ]T . In the
body coordinate system, the translational velocity resulting from the vehicle’s positional
shifts is described using u, v, and w, whereas the rotational velocity pertaining to the USV’s
attitude is delineated by the angular velocities p, q, and r.

The motion of the USV in the body coordinate system can be expressed through vector
υ, υ = [υ1,υ2]

T, υ1 = [u, υ, w]T , υ2 = [p, q, r]T , encapsulating both the positional and
orientational dynamics of the USV.

Although the USV exhibits motion across six degrees of freedom when navigating
in water, establishing a mathematical model for a USV that encompasses all six degrees
of freedom proves to be overly complex, complicating the analysis of kinematics and
dynamics, as well as the design of corresponding controllers. Moreover, in practical
applications, the motion amplitude of unmanned vessels in the heave, pitch, and roll
degrees of freedom is relatively minor and is generally not considered. Therefore, it
becomes necessary to simplify the six-degree-of-freedom mathematical model, focusing
instead on the study of the USV’s motion in the surge, sway, and yaw degrees of freedom.
Figure 12b shows the three degrees of freedom of motion in the horizontal plane of a USV.
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When transitioning from a six-degree-of-freedom model to a three degrees of freedom
model, the following assumptions are considered:

1. Neglecting the movements associated with heave, pitch, and roll degrees of freedom,
the unmanned vessel’s locomotion is confined to the horizontal plane, w = p = q =
z = ϕ = θ = 0.

2. The mass distribution of the USV is uniform, with the vessel’s hull exhibiting bilateral
symmetry about both its longitudinal and transverse axes. Furthermore, the vessel’s
center of gravity coincides with the origin of the attached body coordinate system,
aligning with the principal axes in the direction towards the bow, starboard side, and
vertically downwards towards the center of the Earth.

3. The dynamics model neglects higher-order hydrodynamic terms and the off-diagonal
elements within the damping matrix.

Based on the aforementioned analysis, the kinematic model of the USV can be delin-
eated as follows:

.
η = J(η)υ (1)

where η = [x, y, ψ]T denotes the position and orientation vector of the USV, with x, y, and
ψ representing the vessel’s coordinates in the inertial coordinate system (specifically, X and
Y coordinates, and the yaw angle), υ = [u, v, r]T signifies the velocity vector of the USV.
Furthermore, u, v, and r correspond to the surge velocity, sway velocity, and yaw rate in the
body coordinate system, respectively. The transformation between the inertial coordinate
system and the body coordinate system is also considered.

The matrix J(η) is represented as:

J(η) =

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

 (2)

By substituting Equation (2) into Equation (1), the kinematic model of the USV can be
obtained as follows: 

.
x = u cos ψ − v sin ψ
.
y = u sin ψ + v cos ψ

.
ψ = r

(3)

The standard mathematical model for USV comprises both kinematic and dynamic
components. Kinematics addresses the geometric relationships associated with the motion
of the USV, while dynamics deals with the effects of forces and moments on the vehicle’s
motion. According to reference [25], the three-degree-of-freedom (DoF) dynamic model for
a USV is presented as follows:

M
.
υ+ C(υ)υ+ D(υ)υ = τ+ τE (4)

In the equation, M represents the system’s inertia matrix, C(υ) denotes the matrix of
Coriolis and centripetal force coefficients, D(υ) is the first-order linear damping matrix,
and τ = [τu, 0, τr]

T represents the thrust and torque vectors of the USV, with τu denoting
thrust and τr representing torque. τE = [du, dv, dr]

T signifies the positional disturbances
induced by external fluid flow.

The specific representations of each matrix are as follows:

M =

m11 0 0
0 m22 0
0 0 m33

, C(υ) =

 0 0 −m22
0 0 m11u

m22v −m11u 0

, D(υ) =

d11 0 0
0 d22 0
0 0 d33

 (5)

The detailed explanations for each parameter in the aforementioned formula are
extensively elucidated in reference [26]. In Equation (5), m11 = m − X .

u, m22 = m −
Y .

v, m33 = Iz − N.
r; d11 = −Xu, d22 = −Yv, d33 = −Nr. m denotes the mass of the
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USV. X .
u represents the longitudinal added mass coefficient due to the USV’s longitudinal

acceleration. Y .
v denotes the lateral added mass coefficient resulting from the USV’s lateral

acceleration. N.
r denotes the lateral added mass coefficient due to the USV’s bow angle

acceleration. Xu represents the longitudinal linear damping coefficient due to longitudinal
acceleration. Yv indicates the lateral linear damping coefficient arising from the lateral
vessel velocity, and Nr denotes the bow linear damping coefficient resulting from angular
velocity. Substituting Equation (5) into Equation (4) yields the dynamic model of the USV
as follows: 

.
u = m22

m11
vr − d11

m11
u + 1

m11
(τu + du)

.
v = −m11

m22
ur − d22

m22
v + 1

m22
dv

.
r = m11−m22

m33
uv − d33

m33
r + 1

m33
(τr + dr)

(6)

4.2. Line-of-Sight (LOS) Guidance Principles

The principle of line-of-sight (LOS) guidance for USV was introduced by Fossen
et al. [27], encapsulating the relationship between helmsman actions and the dynamic
behavior of maritime vessels. Specifically, if the heading angle of a controlled USV can
be precisely aligned with the line-of-sight angle, and if appropriate velocity control is
applied, the vessel can be guided to a desired waypoint, achieving effective tracking
performance. In the realm of autonomous maritime surface vessel path tracking control,
the most extensively applied algorithms are based on the LOS method and its enhanced
variants. These methodologies are predominant due to their structural simplicity and
ease of implementation, making them highly suitable for practical applications in today’s
maritime operations [28].

Figure 13 shows a schematic of line-of-sight (LOS) guidance based on lookahead dis-
tance. Incorporating the USV’s kinematic mathematical model as delineated in Equation (3),
it is assumed that the USV tracks a parameterized path. With the current position of the
USV denoted as (x, y), and the path tangent at point defined as Pk(xk, yk), the tangent angle
between this tangent and the OEXE axis is αk. Through geometric calculations, the lateral
tracking error can be determined as ye:

ye = −(x − xk) sin(αk) + (y − yk) cos(αk) (7)

The lookahead distance, denoted as ∆, is defined to be twice the length of the USV.
Furthermore, the desired heading angle of the USV is defined as χd:

χd = αk + arctan(−ye

∆
) (8)

Due to environment disturbances encountered during navigation, the USV may expe-
rience lateral drift velocity, denoted as v, resulting in an actual combined velocity, denoted
as U:

U =
√

u2 + v2 (9)

between the actual motion direction of the USV and the direction of the vehicle’s bow yaw
angle. This condition results in the emergence of a minor sideslip angle, designated as β:

β = arctan2(v, u) (10)

Hence, with the consideration of the sideslip angle β, the desired bow yaw angle for
the USV is established as ψd:

ψd = αk + arctan(−ye

∆
)− β (11)

This adjustment ensures that the actual motion direction of the vehicle aligns with the
desired heading angle χd, aiming towards PLOS(xLOS, yLOS).
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In summary, the control task of the line-of-sight (LOS) guidance method for tracking
parameterized paths is to ensure:

lim
t→∞

ye = 0, lim
t→∞

ψ = ψd (12)
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4.3. USV Circumnavigation Control Algorithms

The conventional line-of-sight (LOS) method, when applied to curve tracking, may
encounter limitations due to visual range, resulting in significant lateral errors in the
tracking path [29]. In order to enhance coordination with the gimbal-based buoy image
tracking system, refinements are requisite in the trajectory tracking methodology of the
USV. These enhancements are aimed at better aligning with the task requirements of buoy
inspection missions. An additional control loop can be introduced to refine the USV’s
adherence to the circular path by adjusting based on the radial distance to the circle’s center,
enhancing convergence to the desired trajectory.

The artificial potential field (APF) method represents a widely utilized algorithm for
local path planning, which conceptualizes obstacles within the environment as virtual
potential fields exerting forces on the moving entity [30]. These fields are employed to steer
the entity towards its objective while circumventing obstacles. Artificial potential fields
are categorized into attractive fields, drawing the robot towards the target, and repulsive
fields, deterring the robot from obstacles. The attractive potential field guiding the robot
towards its goal can be mathematically represented as follows:

Uatt(q) =
1
2

kpG
2(q) (13)

In the formula presented, Uatt(q) denotes the numerical value of the gravitational
field, pG(q) represents the distance of the moving object to the target location, and k is
defined as the gravitational gain constant.

Obstacles impose a repulsive potential field, which acts to push the moving object
away from the obstacle. This phenomenon is commonly represented by the function Ureq,
where the potential energy value is directly proportional to the distance between the robot
and the obstacle:

Urep(q) =

{
1
2 η

(
1

p(q) −
1
p0

)2
, p(q) ≤ p0

0 , p(q) > p0

(14)
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In the equation, the Ureq signifies the numerical value of the repulsive force field, p(q)
denotes the distance between the moving object and the obstacle, η represents the repulsive
force gain constant, and p0 indicates the effective range of influence of the obstacle.

The direction of motion is determined by the negative gradient of the force field
function, as illustrated in Equations (15) and (16).

Fatt(q) = −kpG(q) (15)

Frep(q) =

{
η
(

1
p(q) −

1
p0

)
1

p2(q)∇p(q) , p(q) ≤ p0

0 , p(q) > p0
(16)

In the equations, Fatt(q) is designated as the attractive force, and Frep(q) as the repul-
sive force. The total field is the superposition of the gravitational and repulsive fields. By
calculating the gradient of the resultant field, one obtains the direction in which the object
should move, as depicted in Equations (17) and (18).

U(q) = Uatt(q) + Urep(q) (17)

F(q) = −∇U(q) (18)

Inspired by the artificial potential field method, this study innovatively integrates the
concept of the artificial potential field with the line-of-sight (LOS) path tracking control
method for USV navigating and tracking circular paths around buoys. This integration
addresses the challenges identified in unmanned surface vehicle path tracking, such as
limited line-of-sight distance and difficulty in converging effectively to circular paths. The
enhanced LOS buoy circumnavigation control algorithm is described as follows.

Assuming the necessity for a buoy, around which inspection is to be conducted, to
generate an attractive potential field is Ubuoy, this can be mathematically expressed as
follows:

Ubuoy =
1
2

kbuoy(∥PU − PB∥ − R2)
2

(19)

In the equation, kbuoy denotes the gravitational gain coefficient of the buoy’s attractive
potential field, PU represents the current coordinates of the unmanned vessel, PB indicates
the current coordinates of the buoy, and R is the predetermined radius for circumnavigating
the buoy. The magnitude of the attractive potential field Ubuoy can be illustrated through
Figure 14a.
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∂
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Substituting the current coordinates PU(xU , yU) of the unmanned vessel and the
coordinates PB(xB, yB) of the buoy into Equation (19) yields the following result:

Ubuoy =
1
2

kbuoy((xU − xB)
2 + (yU − yB)

2 − R2)
2

(20)

As depicted in Figure 14b, it is assumed that when a USV approaches a buoy requiring
inspection and prepares to initiate circumnavigation, it is subjected to a force FLOS generated
by the line-of-sight (LOS) guidance method and an attractive force FBuoy emanating from
the buoy’s attraction potential field. The superposition of these two forces results in a
resultant force F. The expected heading angle ψAPF of the buoy, induced by the buoy
attraction potential field, can be mathematically expressed as follows:

ψAPF = arctan2(−
∂Ubuoy

∂yU
,−

∂Ubuoy

∂xU
) (21)

In the equation, a partial derivative is taken with respect to the attractive potential
field Ubuoy, yielding the following result:

∂Ubuoy

∂yU
=

1
2

kbuoy(4xU − 4xB)(−R2 + (xU − xB)
2 + (yU − yB)

2) (22)

∂Ubuoy

∂xU
=

1
2

kbuoy(4yU − 4yB)(−R2 + (yU − yB)
2 + (yU − yB)

2) (23)

From the aforementioned equation, the specific value of the desired pitch angle ψAPF
for the buoy can be computed. The final pitch angle ψD for the control of the USV can be
determined using the following formula:

ψD = ω1 · ψLOS + ω2 · ψAPF (24)

In the equation, ω1 and ω2 are constants, representing the weights attributed to the
two desired pitch angles, ψLOS and ψAPF, respectively. The specific values of these weights
will be discussed in the Section 5 through simulations conducted in Matlab 2020a.

The overall control algorithm schematic for buoy circumnavigation is depicted in
Figure 15.
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Following the parameterization of the circular path to be tracked, the path points
are inputted into both the line-of-sight (LOS) and the artificial potential field (APF) al-
gorithms. Then, utilizing the current coordinates of the unmanned vessel obtained via
GPS, the calculations for pitch angles ψLOS and ψAPF are performed. The resulting values,
when multiplied by their respective weights and subsequently summed, yield the final
desired pitch angle ψD. This desired pitch angle is then fed into the USV’s pitch control
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through a PID controller, with the current pitch angle ψU being measured by the onboard
magnetometer.

Derived from Equations (3) and (6), Equation (25) specifies that the desired pitch angle
ψD is input into the USV through a PID controller, which adjusts the USV’s pitch angle.
This adjustment enables the vessel to effectively track circular path points.

τr = −dr + d33r + m33
..
ψD − Kpψe − Kiψe − Kdψe (25)

In the equation, ψe = ψU − ψD, Kp, Ki, and Kd represent the three control parameters
of the pitch angle PID controller. τr= (F PL − FPR)DP, FPL and FPR denote the thrust values
of the left and right propellers, DP denotes the lateral distance from the propeller shaft axis
to the centerline of the USV.

5. Experiments and Discussion
5.1. Buoy Image Tracking Experiment

Upon powering up the tracking system, the performance of the system is evaluated
using buoy images. The results are shown in Figure 16 below. It can be observed that as the
buoy image moves, the system demonstrates proficient tracking capabilities, maintaining
the buoy image consistently at the center of the camera frame, thus achieving the intended
tracking objective.
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5.2. Buoy Detection Algorithm Based on YOLOv7 Experiment

Building upon the in-depth analysis presented in Section 3, a series of tests were con-
ducted on the buoy target detection model. The model underwent training over 300 epochs,
a duration strategically chosen to ensure comprehensive learning of buoy characteristics,
thereby achieving a higher detection accuracy. Due to the imbalance in the quantity of
images across different navigational types within the dataset, a specialized design was
implemented for the loss function, as expressed by Equation (26). This design addresses
the issue of data imbalance by adjusting the loss function to weight the contributions of
different types of images differently, ensuring a more equitable learning process across
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all image categories. Such an approach enhances the model’s performance in the face of
data imbalance, ensuring that even navigational types represented by fewer images are
effectively learned. This method contributes to improved overall detection accuracy and
enhances the model’s generalization capabilities.

loss = −∑
i

ω · yi · log(log itsi) + (1 − yi) · log(1 − log itsi) (26)

Within this formulation, the parameter ω serves as a weight factor, pre-calculated
based on the dataset, to modulate the contribution of different sample types to the loss
function. Specifically, this parameter assigns greater weight to sample types that are less
numerous, thereby compensating for the effects of data imbalance. Here, yi represents the
true label of the sample, with a value of 0 or 1 indicating whether the sample belongs to
the positive class, and log itsi denotes the log-odds of the probabilities. The loss function
underscores the importance of accurate predictions for minority classes, ensuring a more
equitable treatment across all categories during the training process. This approach allows
the model to focus more on those categories that are underrepresented, thus enhancing
their detection performance.

To facilitate a faster convergence to the optimal solution, Stochastic Gradient Descent
(SGD) with a momentum term was selected as the optimization algorithm [31]. The
inclusion of the momentum term helps to mitigate fluctuations in gradient updates to
some extent, thereby stabilizing the training process and accelerating convergence. To
assess model performance and conduct comparative analysis, experiments were not only
conducted on the original dataset but also on a dataset subjected to contour enhancement.
The contour-enhanced dataset aims to improve the model’s ability to recognize targets by
enhancing the contour information of objects in the images. The experimental results are
illustrated in Figure 17a,b (see below), which depict the loss and accuracy curves of the
model on these two datasets.
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To further verify the effectiveness of the algorithm presented in this paper, we com-
pared it with several common algorithms, with their average accuracy and recognition
speed shown in the following Table 3. As can be seen from the table, the YOLOv7 algorithm
slightly outperforms other algorithms in terms of recognition accuracy and speed.

Table 3. Comparison with common object detection algorithms.

Method FPS mAP@0.5% Params(M)

YOLOv3 53 81.4 61.53
YOLOv4 55 80.6 52.5
YOLOv5 86 84.6 20.9
YOLOv7 99 91.8 36.39
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The final recognition outcome is illustrated in the figure below. Figure 18 shows the
buoy under normal conditions, demonstrating a high confidence level in the detection
results. This indicates that the target detection algorithm is capable of accurately identifying
the buoy in its normal state.
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Figure 18. Normal buoy detection results.

Figure 19 presents the detection results for buoys under abnormal conditions. It is
observed that when buoys are tilted or damaged, they are identified by the target detection
algorithm as anomalies. The outcomes of the detection align with the actual state of the
buoys, demonstrating the algorithm’s applicability in real-world scenarios.
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Figure 19. Abnormal buoy detection results.

However, due to the impossibility of encompassing all real-world scenarios within
the training dataset, there may be instances in complex real-world aquatic environments
where the detection results exhibit low confidence, as shown in Figure 20a,b, or cases of
missed detections (c) and false positives (d). Testing with the test dataset has demonstrated
that the detection results for the majority of navigation marks are satisfactory.
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5.3. Buoy Circumnavigation Control Algorithm Experiment

As analyzed in Section 4, the simulation of the USV’s buoy circumnavigation control
algorithm was conducted in Matlab 2020a. The design of the parameters in Equation (5)
during the simulation is as shown in Table 4:

Table 4. Simulated hydrodynamic parameters.

Hydrodynamic Parameters

m11 = 25.2 kg m22 = 32.6 kg m33 = 5.8 kg
d11 = 11 kg d22 = 16 kg/s d33 = 0.8 kg·m2/s

Based on the desired yaw angle (see Equation (25)) for the buoy circumnavigation
control algorithm, simulation tests were conducted to evaluate the impact of different
numerical values of ω1 and ω2 on the control algorithm. The values of ω1, ω2, the USV’s
forward-looking distance ∆, and the lateral drift speed u under various conditions are
presented in Table 5:

Table 5. Simulation parameter settings.

Scenarios ω1 ω2 ∆ (m) u (m/s)

1 0.2 0.8 2.4 1
2 0.4 0.6 2.4 1
3 0.6 0.4 2.4 1
4 0.8 0.2 2.4 1
5 1 0 2.4 1

The path tracking performance and errors of the USV’s buoy circumnavigation motion
control algorithm under the aforementioned five scenarios are shown in Figure 21a,b.
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Based on the simulation results, it is evident that the best path tracking performance
with the smallest lateral error occurs in the fourth scenario, where ω1 = 0.8 and ω2 = 0.2,
for the USV. An analysis of the other scenarios reveals that as the value of ω2 increases,
meaning that the weight of ψAPF in determining the final desired yaw angle increases, the
actual path of the unmanned surface vehicle tends to be closer to the buoy, resulting in
larger errors. In the fifth scenario, where ω2 = 0, the final desired yaw angle of the USV is
entirely determined by ψLOS, corresponding to the traditional line-of-sight (LOS) guidance
algorithm. A comparison between the fourth and fifth scenarios indicates that the modified
LOS guidance algorithm outperforms the traditional LOS algorithm in the context of buoy
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circumnavigation path tracking, yielding a smaller lateral error ye. The changes in course
angle and vessel speed across the five scenarios are shown in Figure 22a,b.
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5.4. USV Field Test Experiment

To validate the practical navigation and obstacle avoidance efficacy of the USV, field
tests were conducted at the Jinan University Zhuhai Campus, situated at the Day Moon
Lake, as depicted in Figure 23.
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Figure 23. Field test.

Initially, a straight-line cruising test of the USV was conducted. Waypoints were set up
at the ground station, enabling the vehicle to autonomously cruise to these points before
returning. The image transmitted by the fixed front-facing camera was clear and stable, as
shown in the Figure 24.
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Following the completion of straight-line cruising tests, obstacle avoidance assess-
ments were conducted as shown in Figure 25. The unmanned surface vessel (USV) was
initially positioned within an obstacle-laden environment, with the navigation endpoint set
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outside the obstacle region. The objective was to observe the USV’s obstacle avoidance per-
formance. The results indicate that the USV effectively detected obstacles and successfully
navigated around them, reaching the target endpoint.
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The results indicate that the circumnavigation control algorithm exhibits certain er-
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Figure 25. (a) USV obstacle avoidance; (b) USV reached the target point.

Due to minimal surface disturbances on the lake, we conducted circumnavigation
tests at a coastal location in Zhuhai to validate the performance of the buoy circumnav-
igation control algorithm in real-world conditions. The coordinates 22.292655 latitude
and 113.578515 longitude were designated as the circumnavigation point. Subsequently,
12 waypoints were manually configured. Following waypoint configuration, the USV
commenced circumnavigation maneuvers around the designated points under the control
of the buoy circumnavigation control algorithm, as shown in the Figure 26. The yellow dot
represents the detour point, and the yellow line represents the tracking path in Figure 26.
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The coordinates of the USV at each waypoint were exported and used to plot the path
tracking and error curves, as shown in Figure 27.
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The results indicate that the circumnavigation control algorithm exhibits certain errors,
which can be attributed to the disturbances caused by coastal waves on the USV. Overall,
the circumnavigation algorithm still demonstrates satisfactory tracking performance.

6. Conclusions

To mitigate the low efficiency prevalent in manual buoy inspection processes, this
study proposes the design of an autonomous unmanned surface vehicle (USV) tailored for
buoy inspection tasks, followed by comprehensive field trials encompassing navigation,
buoy target tracking, and detection. The findings indicate that, supported by the Robot
Operating System (ROS) navigation framework, the USV autonomously navigates and
maneuvers through obstacles, while the YOLOv7 buoy target detection algorithm exhibits
exceptional performance in buoy identification, even under challenging conditions such as
tilt and damage, ensuring high-precision buoy detection. Moreover, in conjunction with the
Kalman Consensus Filter (KCF)-based target tracking gimbal and an enhanced line-of-sight
(LOS) path control algorithm, the USV achieves comprehensive circumnavigation of buoys
for thorough inspection, thus presenting a viable direction towards the automation and
intelligence enhancement of traditional manual buoy inspection practices.

However, in real-world maritime environments, the USV is subject to disturbances,
with significant hull motion affecting the efficacy of target detection algorithms. Further-
more, substantial wave disturbances can impede the performance of the target tracking
gimbal, highlighting deficiencies in one-dimensional gimbal systems. Future endeavors
will entail field trials of the USV in maritime channels and the augmentation of the dimen-
sionality of target tracking gimbals, alongside optimizations of target detection algorithms
to address these challenges.
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