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Abstract: In this study, a set of accurate dispersive nonlinear wave equations is established, using
the wave velocity and free surface elevation as variables. These equations improve upon previous
equations in which the velocity potential is used as a variable by considering the rotational wave
motion and by adding a second-order bottom slope term that applies to general situations, allowing
the equations to consider the influence of rapidly changing, horizontal, two-dimensional bottom
topographies. The problem of the inaccuracy of the integral calculations used in previous equations
in nearshore areas is solved by approximating the integral calculations into differential calculations,
and a set of coupled wave equations is established by keeping the free surface elevation and the
horizontal velocity constant, thus allowing the calculation of nearshore wave-generated currents.
The benefits of the current model are confirmed through comparisons with corresponding laboratory
experimental findings and are illustrated through a comparison with the numerical outcomes of other
pertinent models.

Keywords: nonlinear; accurate dispersion; free-surface elevation; wave equation

1. Introduction

Waves are an important hydrodynamic factor in marine environments. In coastal
engineering and certain practical problems, it is necessary and crucial to accurately deter-
mine the wave field (the spatial and temporal distribution of wave elements such as wave
height, period, and wave direction) of wave propagation and deformation. Wave equation
calculation models are a basic research topic in ocean engineering, and the results obtained
from this research not only have important academic value for further understanding of
this natural law, but also provide technical support for research on coastal engineering,
shipping, offshore marine environmental protection, and marine resource development.

The commonly used wave equations in ocean engineering are the mild-slope equa-
tion [1–5] and the Boussinesq equation [6–12]. However, the mild-slope equation only
considers regular waves or narrow-spectrum irregular waves. The dispersion of the Boussi-
nesq equation is approximate, but it can be improved by adding derivatives of an order
of five or higher or via water depth stratification models [13,14]; however, this also in-
creases the computational load and introduces difficulties into the numerical calculations.
The stability and computational accuracy of certain higher-order derivative terms in the
high-order Boussinesq equation can also be problematic in areas with complex terrain.
Improving previous equations improves performance but still does not fundamentally
achieve complete accuracy in equation dispersion. Therefore, it is necessary to continue to
develop accurate and dispersive nonlinear wave equations so that they can be applied to a
wide range of frequency domains with broad spectra.

There are two methods of developing the classical gradual-slope equation into a
method suitable for broad-spectrum analysis in the current research. One is the discrete-
spectrum multi-mode method, and the other is the continuous-spectrum method. The
multi-mode method uses multiple sine wave modes to construct the velocity potential
or velocity, and it establishes equations based on this. Therefore, the resulting equations
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are coupled equations of multiple modes, which require large amounts of computation.
Nadaoka et al. [15] established a set of multi-mode mild-slope equations with weak non-
linearity, which can provide accurate results for irregular situations when the number of
modes is N ≥ 2. Tang and Ouellet [16] established a multi-mode, weakly nonlinear, mild-
slope equation expressed via the velocity potential. Belibassakis and Athanassoulis [17]
established a multi-mode, slow-slope equation expressed via the velocity potential by
applying the Luke variational principle. In recent research, Kim and Kaihatu [18] also pro-
posed a multi-mode, parabolic, mild-slope equation. Compared to the above multi-mode
models, the continuous-spectrum model has the advantage of a relatively small compu-
tational complexity, as the consideration of continuous spectra is implemented through
the integration of the kernel functions, and the corresponding model only has a set of
equations. Schäffer [19] established a set of linear wave models with accurate dispersion
for the case of horizontal, one-dimensional conditions, based on the increase in the wave
surface and velocity at the still-water surface. The model was established by transform-
ing the relationship between the vertical velocity component and the horizontal velocity
component at the still water surface from a wave-number space to a physical space. Von
Groesen [20] used consistent variational modelling to obtain and verify an accurate model
for uni-directional surface water waves. Mei [21] derived a modified Zakharov equation
for a simple nonlinear dispersion system that takes into account the random scattering of
broadband waves. Natanael [22] provides an alternative methodology for analysis of three-
wave interactions under the exact dispersion relation associated with gravity waves in fluid
of intermediate depth. Karambas and Memos [4] established a set of continuous-spectrum
models of the same type but with weak nonlinearity. The application of these models can
simulate irregular wave propagation on submerged breakwaters. Zou et al. [5] established
a set of horizontal, two-dimensional, nonlinear wave equations with accurate dispersion.
The nonlinearity is approximated to the fourth order, and the second-order water-slope
term in the one-dimensional case is also considered. The second-order water-slope term
is established by extending the method of adding a rapidly varying water-depth term
in the classical mild-slope equation proposed by Kirby [23] to a wide-spectrum model.
The model also provides the corresponding wave dispersion and second- and third-order
nonlinear response functions through perturbation analysis. Numerical simulations of
Bragg reflection experiments on sandbar terrain were performed, and the effectiveness
of the second-order water bottom slope term was verified. Except for Zou et al. [5], who
considered the second-order bottom slope term, other models only consider the first-order
bottom slope term. For the establishment of the first-order bottom slope term, see Bingham
and Agnon [24].

In this study, we establish a new set of nonlinear wave equations with accurate
dispersion by using the wave velocity and free surface elevation as variables. This equation
only approximates nonlinearity in the continuity equation, while the momentum equation
is completely accurate without any approximation. The equation does not make any
assumptions about water depth during the derivation process, so it applies to irregular
waves under all water depth conditions. This equation overcomes the shortcomings of
previous equations that are unable to consider rotational wave motion and adds a second-
order water bottom slope term that applies to general situations. The establishment of a
coupled model through the continuity of free surface elevation and velocity can simulate
physical phenomena such as nearshore circulation. The organization of this study is as
follows: Section 2 presents the derivation processes of the equations; Section 3 extends the
equations in the nearshore region and establishes the coupled model; Section 4 presents
the numerical method; Section 5 validates the model with relevant laboratory experiments;
and the conclusions are drawn in Section 6.

2. Derivations of Government Equations

The government equations established in this section include the momentum equation
and the continuity equation. The derivation of the momentum equation in Section 2.1 is
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based on expressing the Euler equation at the free surface. The derivation of the continuity
equation in Section 2.2 is based on the free surface boundary conditions, and the equation
is closed by approximating the vertical velocity with horizontal velocity and free surface
elevation. The continuity equation includes the derivation of a new second-order bottom
slope term.

2.1. Derivation of Momentum Equation

A Cartesian coordinate system with the origin at the still-water level and the z-axis
pointing vertically upward is adopted. The fluid is assumed to be uniform, ideal, and
incompressible, and the surface tension is neglected. To make the equation suitable for
rotational flow, it is derived from Euler’s equation:

∂u
∂t

+ (u · ∇)u + w
∂u
∂z

= −∇p
ρ

, −h ⩽ z ⩽ η, (1)

∂w
∂t

+ u · ∇w + w
∂w
∂z

= −1
ρ

∂p
∂z

− g, −h ⩽ z ⩽ η, (2)

where u = (u, v) is the horizontal velocity vector, w is the vertical velocity, p is the fluid pres-
sure, ρ is the fluid density, g is the acceleration due to gravity, t is the time, ∇ = (∂/∂x, ∂/∂y)
is the horizontal gradient operator, and η is the wave surface elevation. In order to express
(1) and (2) at the free surface, the derivative relation is introduced, as follows:

∇q̃ = (∇q)z=η + (
∂q
∂z

)
z=η

∇η, (3)

∂q̃
∂t

= (
∂q
∂t

)
z=η

+ (
∂q
∂z

)
z=η

∂η

∂t
, (4)

where q̃ is the free surface variable. Using the above formula, Equations (1) and (2) can be
expressed as follows:

∂ũ
∂t

− ∂u
∂z

∂η

∂t
+ (ũ · ∇)ũ − ∂u

∂z
(ũ · ∇η) +

∂u
∂z

w̃ = −∇ p̃
ρ

+
1
ρ

∂p
∂z

∇η, (5)

∂w̃
∂t

− ∂w
∂z

∂η

∂t
+ ũ · ∇w̃ − ∂w

∂z
ũ · ∇η +

∂w
∂z

w̃ = −1
ρ

∂p
∂z

− g. (6)

The pressure term on the right side of (5) can be eliminated by substituting (6) into (5)
and using p̃ = 0:

∂ũ
∂t

− ∂u
∂z

(
∂η

∂t
+ ũ · ∇η − w̃) + (ũ · ∇)ũ = −[

∂w̃
∂t

− ∂w
∂z

(
∂η

∂t
+ ũ · ∇η − w̃) + ũ · ∇w̃ + g]∇η. (7)

Then, using the boundary conditions at the free surface,

∂η

∂t
+ ũ · ∇η = w̃, (8)

and eliminating w̃ from (7) yields the following:

∂ũ
∂t

+ (ũ · ∇)ũ + g∇η = −(
∂ũ
∂t

· ∇η)∇η − 2(ũ · ∇∂η

∂t
)∇η − [

∂2η

∂t2 + ũ · ∇(ũ · ∇η)]∇η. (9)

Equation (9) is the momentum equation to be established.

2.2. Derivation of Continuity Equation

The establishment of the continuity equation is based on (8), which requires expressing
w0 in terms of ũ. This can be performed by first expressing w̃ in terms of the vertical velocity
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(w0) and horizontal velocity (u0) at the still-water level, and then expressing u0 in terms of
ũ. The specific procedure is given below.

The Taylor expansions of w and u on the still-water level are as follows:

w(x, z, t) =
∞

∑
n=0

(
∂nw
∂zn )

z=0
, (10)

u(x, z, t) =
∞

∑
n=0

(
∂nu
∂zn )z=0

. (11)

Using the continuity equation

∇ · u +
∂w
∂z

= 0, (12)

and the equation of zero horizontal vorticity,

∂u
∂z

−∇w = 0. (13)

Let w and u be represented by w0 and u0, as follows:

w =
∞

∑
n=0

(−1)n(
z2n

(2n)!
∇2nw0 −

z2n+1

(2n + 1)!
∇2n+1 · u0), (14)

u =
∞

∑
n=0

(−1)n(
z2n+1

(2n)!
∇2n+1w0 −

z2n

(2n + 1)!
∇2n · u0). (15)

In the formula, when ∇2n acts on a vector, the divergence is calculated first, and
then the gradient is calculated. When ∇2n acts on a scalar, the gradient is calculated first
and then the divergence is calculated. Taking z = η in (14) completes the first step; w̃ is
expressed in terms of w0 and u0.

To complete the second step, it is necessary to establish the relationship between
w0 and u0. The following vertical integration of Equation (12) is performed, and using
the Leibniz formula and the water bottom boundary condition (w−h = u · ∇h) yields
the following:

w0 = ∇ ·
∫ 0

−h
udz. (16)

In order to obtain the expression of w0, which contains the second-order term of the
water bottom slope required for this study, it is necessary to determine the expression of u
in (16). Here, the expression of u needs to be accurate to the first-order term of the water
bottom slope. The expression used, given by Xu et al. [25], is as follows:

u = cosh k(z+h)
cosh kh u0 − 1

k2
sinhkz

cosh2 kh
∇h∇ · u0 + [ (khtanhkh−1)sinhkz

k cosh2 kh

+ (1−2khcoth2kh)(kzsinhk(z+h)−sinhkhsinhkz)
2nk cosh khsinh2kh ]∇(∇h · u0),

(17)

where n = 1/2 + kh/sinh2kh. Substituting (17) into (16) yields the following:

w0 = −∇ · ( tanhkh
k

u0)−∇ · (A0∇(∇h · u0 − A1∇h∇ · u0)), (18)

where

A0 =
(khtanhkh − 1)(1 − cosh kh)

k2 cosh2 kh
+

1 − 2kh/tanh2kh
2k2n cosh kh

(n − 1
cosh kh

), (19)
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A1 =
1 − cosh kh
k2 cosh2 kh

. (20)

To separate the water-depth gradient term included in (18) by order, w0 is expanded
with the water-depth slope (∇h) as a small parameter, as follows:

w0 = w(0)
0 + w(1)

0 + w(2)
0 = (W(0)

0 + W(1)
0 + W(2)

0 )eik·x, (21)

where w(0)
0 , w(1)

0 , and w(2)
0 are the zero-order, first-order, and second-order bottom slope

terms, respectively; W(0)
0 , W(1)

0 , and W(2)
0 are their Fourier transforms; k = (kx, ky) is the

wave-number vector; and x = (x, y) is the horizontal coordinate vector. Correspondingly,
u0 and w0 are also expressed in the wave-number space:

u0(x, t) = U0eik·x, (22)

w0(x, t) = W0eik·x, (23)

where U0 and W0 are the Fourier transforms of u0 and w0. Substituting (22) and (23) into
(21) yields the following:

W0eik·x = −[k−1tanhkhik · U0 +∇(k−1tanhkh) · U0 + k−1tanhkh∇ · U0]eik·x

+∇ · [A1∇h∇ · (U0eik·x)]−∇ · [A0∇(∇h · U0eik·x)],
(24)

In the above formula, when ∇ acts on U0, it is necessary to consider the change
in U0 with the water depth. In order to obtain the expression of U0, it is necessary to
express (8) at the still water level and retain the linear term, substitute η = Aei(k·x−ωt) and
u0(x, t) = U0ei(k·x−ωt) into the simplified (8) to obtain U0 = (g/ω)(kA − i∇A), and take
the divergence of U0 to obtain ∇ · U0 = (g/ω)(k · ∇A + A∇ · k − i∇2 A). The expressions
of U0 and ∇ · U0 are substituted into (10), and the zero-order, first-order, and second-order
bottom slope terms are separated. The zero-order term is as follows:

W(0)
0 = −k−1tanhkh(ik · U0), (25)

The first-order term is as follows:

W(1)
0 = −βk−1tanhkh∇ · (kA)−∇(k−1tanhkh) · U0 + β(A0 − A1)k−2 Ak · ∇h, (26)

The second-order term is as follows:

W(2)
0 = −k−3tanhkh(ik · U0)[(

∂Γ
∂h − Γ2)(∇h)2 + Γ∇2h]− βi∇ · (A1∇hk2 A)

+βik · (A1∇hk · ∇A)− βik · [A0∇(∇h · kA)]− β∇ · (A0ik∇h · kA)
−βik · (A0k∇h · ∇A) + βik · [A1∇h∇ · (kA)],

(27)

where β = g/ω, Γ = αs/h. The expression for αs is given by (A5) in Appendix A. The
first-order term above can be written in the following simple form (see Bingham and
Agnon [24]):

W(1)
0 = −1 − khtanhkh

cosh2 kh
∇h · U0. (28)

Zou et al. [5] performed the inverse Fourier transform on the zero-order and first-order
terms, obtaining the Fourier integral expressions for w(0)

0 and w(1)
0 in the xy plane:

w(0)
0 = −

∫ ∞

∞

∫ ∞

∞
∇ · u0G0(χ)dx′, (29)

w(1)
0 = −∇h ·

∫ ∞

∞

∫ ∞

∞
u0G1(χ)dx′, (30)
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where χ = |x − x′| , x′ = (x′, y′) is the integral point coordinates, and G0(χ) and G1(χ) are
the zero-order and first-order kernel functions, the expressions of which are as follows:

G0(χ) =
1

2π

∫ ∞

0
tanhkhJ0(kχ)dk, (31)

G1(χ) =
1

2π

∫ ∞

0

1 − khtanhkh
cosh2 kh

J0(kχ)kdk, (32)

where J0(x) = 1
2π

∫ 2π
0 eix cos θdθ is the zero-order Bessel function of the first kind. The

second-order term can also be expressed in a form similar to the one above. To achieve
this, the results of (27) need to be organized in the following steps: (1) Separate ∇ from
A, so that A is not affected by ∇, such as ∇ · (kA) = k · ∇A + A∇ · k, where ∇A can be
expressed in terms of A using Equation (A4) in Appendix A. (2) Combine like terms (that is,
combine all the terms into three major terms: ∇2h, (∇h)2, and ∇h · k). In order to facilitate
the establishment of a second-order kernel function, the same small-angle assumption
as the one in Appendix A is used for ∇h · k, which can be approximately expressed as
∇h · k = hxky + hyky = hxk cos α + hyk sin α ≈ hxk (because α and |∇h| are of the same
order under the small-angle assumption, and cos α ≈ 1 and sin α ≈ 0 can be taken in the
above expression when approximating to the second-order bottom slope term). (3) Express
A in terms of U0, so that the resulting expression for w(2)

0 is expressed in terms of u0. The
approach is to ignore the term ∇A proportional to ∇h in the expression for U0 described
above, resulting in A = (ω/gk2)k · U0. (4) Perform an inverse Fourier transform on (27),
expressing the result in the wave-number domain as the result in the xy domain. The
following substitutions can be made during the Fourier transformation:

U0 =
∫ ∞

−∞

∫ ∞

−∞
u0e−ik·xdx, (33)

ik · U0 =
∫ ∞

−∞

∫ ∞

−∞
∇ · u0e−ik·xdx. (34)

After step (4), the expression of w(2)
0 can be obtained as follows:

w(2)
0 = (∇h)2∫ ∞

−∞

∫ ∞
−∞ ∇ · u0G21(χ)dx′ +∇2h

∫ ∞
−∞

∫ ∞
−∞ ∇ · u0G22(χ)dx′

+(hx)
2∫ ∞

−∞

∫ ∞
−∞ ∇ · u0G23(χ)dx′ + hxx

∫ ∞
−∞

∫ ∞
−∞ ∇ · u0G24(χ)dx′,

(35)

where G21, G22, G23, and G24 are the second-order kernel functions, and the expressions are
as follows:

G21(χ) =
1

2π

∫ ∞
0 [−k2tanhkh( ∂Γ

∂h − Γ2) + k ∂A1
∂h

− 4k2 A1
sinh2kh+2kh + kΓ(A0 − A1)]J0(kχ)dk,

(36)

G22(χ) =
1

2π

∫ ∞

0
(−k2tanhkhΓ + A1k)J0(kχ)dk, (37)

G23(χ) =
1

2π

∫ ∞

0
[(A1 + 3A0)

2k
sinh2kh + 2kh

+ 2ΓA0 −
∂A0

∂h
)]kJ0(kχ)dk, (38)

G24(χ) = −2
1

2π

∫ ∞

0
kA0 J0(kχ)dk, (39)

Substituting the above results into Equation (21), w0 can be expressed in terms of the
integral–differential operator E (i.e., w0 = −Eu0), which is given as follows:

E =
∫ ∞
−∞

∫ ∞
−∞ ∇ · φG0(χ)dx′ +∇h ·

∫ ∞
−∞

∫ ∞
−∞ φG1(χ)dx′

−(∇h)2∫ ∞
−∞

∫ ∞
−∞ ∇ · φG21(χ)dx′ −∇2h

∫ ∞
−∞

∫ ∞
−∞ ∇ · φG22(χ)dx′

−(hx)
2∫ ∞

−∞

∫ ∞
−∞ ∇ · φG23(χ)dx′ − hxx

∫ ∞
−∞

∫ ∞
−∞ ∇ · φG24(χ)dx′,

(40)
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where φ represents the variable being integrated. Based on the relationship between w0
and u0 established above, u0 is expressed as ũ. Substituting w0 = −Eu0 into (14) and taking
z = η, we can obtain w̃ at the free surface. This allows w̃ to be expressed in terms of u0.
Then, taking z = η in (15), the right-hand side expression of the equation is ũ. Through
continuous iteration, u0 is expressed in terms of ũ. Substituting the resulting expression
for u0 into (14) gives an expression for w̃, which allows (14) to be combined with the
nonlinearity to the fifth order (O(η5)). Substituting the resulting expression for w̃ into (8)
gives a continuity equation, which can be written together with the momentum equation
to obtain the wave equation to be established, as follows:

∂η

∂t
+∇ · [(h + η)ũ] = F1 + F2 + F3 + F4 + F5, (41)

∂ũ
∂t

+ (ũ · ∇)ũ+ g∇η = −(
∂ũ
∂t

· ∇η)∇η − 2(ũ · ∇∂η

∂t
)∇η − (

∂2η

∂t2 + ũ · ∇(ũ · ∇η))∇η, (42)

where
F1 = −Eũ +∇ · (hũ), (43)

F2 = −E(η∇Eũ), (44)

F3 = −[E(η2∇2ũ)]/2 − η∇ · (η∇Eũ)− E[η∇E(η∇Eũ
)
] + (η2∇2Eũ)/2, (45)

F4 = −{E(η2∇2[η∇Eũ)]}/2 − E[η∇E(η∇Eũ)]− E{η∇E[η∇E(η∇Eũ)])}
+[η2∇2E(η∇Eũ)]/2 − [∇ · (η3∇2ũ)]/3 −

{
E[η∇E(η2∇2ũ)]}/2

+[E(η3∇3Eũ
)
]/6 − η∇ · [η∇E(η∇Eũ)],

(46)

where F2, F3, and F4, are the second-, third-, and fourth-order nonlinear terms, respectively,
and F1 is the linear term, which is introduced to maintain the similarity between the left-
hand side of the equation and the continuous equation in integral form. To further illustrate
the characteristics of the equation, the following transformation is made by expressing
ũ in terms of the velocity potential (ϕη) at the free surface, which is ũ = ∇ϕη − w̃∇η.
Equations (41) and (42) are transformed into accurate dispersive nonlinear wave equations
expressed by the velocity potential at the free surface established in the literature (Zou
et al. [5]), as follows:

∂η

∂t
+∇ · [(h + η)∇ϕη ] = F′

1 + F′
2 + F′

3 + F′
4, (47)

∂ϕη

∂t
+

1
2
∇ϕη · ∇ϕη + gη =

1
2
(1 +∇η · ∇η)−1(

∂η

∂t
+∇ϕη · ∇η)

2
, (48)

where
F′

1 = − E′ϕη +∇ ·
(
h∇ϕη), (49)

F′
2 = − E′ (ηEϕη), (50)

F′
3 = −(∇η)2 E′ϕη − η∇2(η E′ϕη) + [η2 E′(∇2ϕη)]/2

−
[

E′ (η2∇2ϕη)]/2 − E′ [η E′ (η E′ϕη)],
(51)

F′
4 = − E′ [η2∇2(η E′ϕη)]/2 − E′ [η E′(η2∇2ϕη)

]
/2 − E′ {η E′ [η E′(η E′ϕη)]}

−(∇η)2η∇2ϕη + (η3∇4ϕη)/6 − η∇2[η E′(η E′ϕη)] + [η2 E′∇2(η E′ϕη)]/2
−(∇η)2[ E′(η E′ϕη)] + E′ [η3 E′ (∇2ϕη)]/6 − [η∇2(η2∇2ϕη)]/2,

(52)

where E′ = E∇. The accurate dispersion, nonlinearity (approximated to the fourth order),
and shallowing effect of (47) and (48) have been proven in the literature (Zou et al. [5]), that
is, the dispersion, nonlinearity (wave amplitude dispersion, second-order and third-order
transfer functions, etc.), and shallowing effect of the equation are consistent with theoretical
Stokes waves (the shallowing performance satisfies the wave energy conservation equation).
The transformation from (41) and (42) to (47) and (48) indicates that the Equations (41)
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and (42) established in this study under potential flow conditions are consistent with the
Equations (47) and (48), with the velocity potential as a variable. Therefore, the dispersion,
nonlinearity (approximated to the fourth order), and shallowing effect performance of
Equations (41) and (42) established in this study are completely accurate and consistent
with theoretical Stokes waves. Unlike the latter set of equations, the newly established
equations are derived based on Euler equation, assuming only that the horizontal vorticity
is zero. Therefore, the flow considered by the equations can have vertical vorticity, that is,
the motion in the horizontal plane can be rotational, which is one of the advantages of the
new equations.

3. Nearshore Coupling Equations

We established the accurate dispersive wave equation above. This equation is of the
integral–differential type, the integral calculation of which requires a symmetric integral
domain relative to the control point. The calculation of the integral value at the control
point requires the values of the integrand function at each point in the integral domain.
Therefore, this equation cannot be used to calculate problems such as waves climbing
on the coast with dynamic boundaries. In order to solve this problem, it is necessary to
convert the integral kernel function into a differential form in the nearshore region so that
the integral–differential calculation contained in the equation only contains the differential
calculation. Based on Equations (41) and (42), in this section, we present a set of weakly
dispersive coastal wave equations that make up for the lack of accurate dispersive wave
equations in coastal boundary calculations. By coupling these two equations, a set of
coupled wave models is established, where the accurate dispersive wave equation is used
for the calculation of areas with relatively large water depths, and the coastal wave equation
is applied to the calculation of nearshore areas.

3.1. Equation Derivation

In order to convert the integral kernel function into a differential form in the nearshore
region, the continuous Equation (42) needs to be degenerated in the nearshore region into
the coastal wave equation that applies to the nearshore region. Because the coastal wave
equation is used in the coupled model for the calculation of the nearshore shallow water
region, here, the dispersion of Equation (41) is refined to O(µ2), and all the nonlinear terms
are retained, resulting in the following:

∂η
∂t + ũ · ∇η = −Eũ − 1

2 E(η2∇2ũ)− E(η∇Eũ
)
− η∇ · ũ

−η∇ · (η∇Eũ) + η2

2 ∇2Eũ − 1
3∇ · (η3∇2ũ).

(53)

In order to simplify the kernel function, the hyperbolic function contained in the
kernel function is Taylor-expanded, which obtains tanhkh = kh − (kh)3/3 + 2(kh)5/15,
cosh kh = 1 + 2(kh)2 + (kh)4/24, using the following formula:

1
2π

∫ ∞

−∞
k2n+1 J0(kr)dk = (−1)n∇2nδ(r). (54)

Transforming (31) and (32) into the following form and retaining terms up to O(µ2),
we obtain the following:

G0(χ) = (h +
1
3

h3∇2)δ(χ), (55)

G1(χ) = (1 + 2h2∇2)δ(χ). (56)

Substituting (55) and (56) into (40), we obtain the following:

Eq = ∇ · (hq) +
1
3

h3∇2∇ · q + 2h2∇h · (∇∇ · q), (57)
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where q is the integrand. Through the above derivation, the operator E is converted from
the integral–differential form to the differential form. Substituting Equation (57) into
Equation (53) and retaining the terms up to O(µ2), we obtain the following:

∂η
∂t + ũ · ∇η = −∇ · (hũ) + 1

6∇ · (h3∇B)− 1
2∇ · [h2∇∇ · (hũ)]− 1

2∇ ·
(
hη2∇∇ · ũ)

−∇ · [hη∇∇ · (hũ)]− η∇ · ũ∇η · ∇h − η2∇∇ · ũ · ∇h − ηh∇η · ∇∇ · ũ
−η2∇h · ∇∇ · ũ − η2h∇ · (∇∇ · ũ)− η∇ · ũ + η2(∇∇ · ũ) · ∇h

+ η2

2 [h∇ · (∇∇ · ũ)]− 1
3∇ · (η3∇∇ · ũ).

(58)

According to Xu et al. [25], this equation is degenerated into a weakly dispersive
equation. Similarly, after expanding and approximating (56), we can obtain the following:

∂η
∂t +∇ · [(h + η)ũ] = 1

6∇ · (h3∇∇ · ũ)− 1
2∇ · (h2∇∇ · (hũ))− 1

2∇ ·
(
hη2∇∇ · ũ)

−∇ · (hη∇∇ · (hũ))− 1
2∇ · (η2∇∇ · (hũ))− 1

3∇ · (η3∇∇ · ũ).
(59)

Equation (59) is the continuity equation in the coastal equation. Because the momen-
tum (43) contains a quadratic derivative term of the free surface elevation with respect to
time, which is prone to numerical oscillations at the coast, Equation (44) is converted at the
coast by separating the vorticity contained in the equation, which yields the following:

∂ũ
∂t + (ũ · ∇)ũ + g∇η = − ∂

∂t (
∂η
∂t + ũ · ∇η)∇η − ũ × (∇η ∂

∂z × ũ)
−∇( ∂η

∂t + ũ · ∇η)(ũ · ∇η).
(60)

where × is the cross-product. By substituting Expression (59) into the expression above,
only up to O(µ2), we obtain the following:

∂ũ
∂t + (ũ · ∇)ũ + g∇η − ∂

∂t [∇ · (hũ)]∇η − ∂
∂t (∇ · ũ)η∇η + 1

2∇[∇ · (hũ) + η∇ · ũ]2

+∇∇ · (hũ) ∂η
∂t + η∇∇ · ũ ∂η

∂t + ũ × (∇η ∂
∂z × ũ) = 0.

(61)

The weakly dispersive coastal wave equation established in this section consists
of Equations (59) and (61). This equation is based on the accurate dispersion equation
established in Section 2, converting the integral kernel function into a differential form.

3.2. Matching of Coupling Equations

In this section, the wave Equations (41) and (42) with accurate dispersion established in
Section 2 for any water depth are coupled with the coastal Equations (59) and (61) presented
in Section 3.1 for shallow coastal waters to form a new coupled model. The planar layout
of the coupled computational domain is shown in Figure 1, with the origin of the Cartesian
coordinate system located at one end of the incident boundary and the positive direction of
the x-axis consistent with the wave propagation direction. In this section, the computational
domain is divided into three regions: region 1 is the computational domain for the accurate
dispersion wave Equations (41) and (42), which has no limitation on the depth range and
is responsible for the main computational work; region 3 is the computational domain
for the coastal Equations (59) and (61), which is responsible for the computation of the
shallow-water areas near the coast; and region 2, composed of both regions, is the coupling
region, which is responsible for the exchange of variables. The interface between region
1 and region 3 is the coupling interface, as marked in Figure 1. Region Ω2 is responsible
for providing the variables required for the integration and differentiation of the accurate
dispersive wave equation for region 1, while region Ω1 is responsible for providing the
variables required for the differentiation of region 2. In addition, boundary layers are set at
the virtual grid cells on both sides to provide variables for the kernel function integration.
L1 is the grid number required for the coastal equation differential, and L2 is the grid
number required for the accurate dispersion equation integration.



J. Mar. Sci. Eng. 2024, 12, 778 10 of 25

J. Mar. Sci. Eng. 2024, 12, 778 11 of 27 
 

 

for the kernel function integration. L1 is the grid number required for the coastal equation 

differential, and L2 is the grid number required for the accurate dispersion equation inte-

gration. 

 

Figure 1. Layout plan of the coupling model. 

In the coupled model, the wave velocity and free surface elevation at the free surface 

are used as the variables; thus, the matching condition for the coupling region maintains 

the continuity of the wave velocity and free surface elevation. The variables calculated in 

region 1 are 1u  and 1 , and the variables calculated in region 3 are 2u  and 2 . The pro-

cess of information transfer depends on the requirements of the integral and differential 

calculations. The variables in regions 1 and 3 are transferred to region 2. In order to meet 

the requirements of the differential calculations in region 3, the 1u  and 1  variables, cal-

culated via the accurate dispersion equation in region 1, are transferred from interval L2 

to region 3, as follows: 

2 1 2 1 1          , .    in domain = =u u  (62) 

In order to satisfy the requirements of the integral calculation for region 1, the 2u  

and 2  variables, calculated via the coastal wave model, pass from region L1 to region 1, 

as follows: 

1 2 1 2 2          , .    in domain = =u u  (63) 

The calculation steps of the coupled model are as follows. 

1. Step 1: Assign 2u  and 2  on time layer n  in region 2  to 1u  and 1 , which can 

satisfy the integration calculation requirements at the boundaries of the accurate dis-

persion Equations ((41) and (42)). Use 1u  and 1  on time layer n  to calculate 1u  

and 1  at time ( 1n + ). 

2. Step 2: Assign 1u  and 1  on time layer 1n +  in region 1  to 2u  and 2 , and use 

2u   and 2   outside the boundary of time layer 1n +   to calculate the 2u   and 2  

on time layer 1n +  in the coastal Equations ((59) and (61)). 

3. Step 3: Update the information by assigning values from time layer 1n +  2u  and 2  

in region 2  to time layer n  and by assigning values from time layer 1n +  1u  and 

1  in region 1  to time layer n . Repeat the above steps until the solution is com-

plete. 

  

Figure 1. Layout plan of the coupling model.

In the coupled model, the wave velocity and free surface elevation at the free surface
are used as the variables; thus, the matching condition for the coupling region maintains
the continuity of the wave velocity and free surface elevation. The variables calculated
in region 1 are ũ1 and η1, and the variables calculated in region 3 are ũ2 and η2. The
process of information transfer depends on the requirements of the integral and differential
calculations. The variables in regions 1 and 3 are transferred to region 2. In order to meet the
requirements of the differential calculations in region 3, the ũ1 and η1 variables, calculated
via the accurate dispersion equation in region 1, are transferred from interval L2 to region
3, as follows:

ũ2 = ũ1 , η2 = η1 in domain Ω1 . (62)

In order to satisfy the requirements of the integral calculation for region 1, the ũ2
and η2 variables, calculated via the coastal wave model, pass from region L1 to region 1,
as follows:

ũ1 = ũ2 , η1 = η2 in domain Ω2. (63)

The calculation steps of the coupled model are as follows.

1. Step 1: Assign ũ2 and η2 on time layer n in region Ω2 to ũ1 and η1, which can satisfy
the integration calculation requirements at the boundaries of the accurate dispersion
Equations (41) and (42). Use ũ1 and η1 on time layer n to calculate ũ1 and η1 at time
(n + 1).

2. Step 2: Assign ũ1 and η1 on time layer n + 1 in region Ω1 to ũ2 and η2, and use ũ2 and
η2 outside the boundary of time layer n + 1 to calculate the ũ2 and η2 on time layer
n + 1 in the coastal Equations (59) and (61).

3. Step 3: Update the information by assigning values from time layer n + 1 ũ2 and η2 in
region Ω2 to time layer n and by assigning values from time layer n + 1 ũ1 and η1 in
region Ω1 to time layer n. Repeat the above steps until the solution is complete.

4. Numerical Methods

The coupled equations are solved using finite difference methods. From the ex-
pressions of the two sets of equations, it can be seen that the continuity Equation (41)
in the accurate dispersion wave equation is in an explicit form, while the momentum
Equation (42) contains ũt and ṽt simultaneously in a component equation, which cannot be
directly solved explicitly. It is necessary to combine the two component equations, taking
them as variables to be solved, and to obtain their expressions separately before deriving
explicit solutions. The continuity Equation (41) and momentum Equation (42) in the coastal
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wave equation only contain a linear time term; thus, they can also be solved explicitly. The
coupled equations have the following common form:

ηt = E∗
1 , (64)

ũt = F∗
1 + Fb f + Fwb + Fbs, (65)

ṽt = G∗
1 + Gb f + Gwb + Gbs, (66)

where E∗
1 , F∗

1 , and G∗
1 are the remaining terms in the two equations except for the linear

time term, and (Fb f , Gb f ), (Fwb, Gwb), and (Fbs, Gbs) are the internal wave source term,
bottom friction term, wave breaking term, and mixed subgrid effect term, respectively.
The specific expressions for these terms can be found in the FUNWAVE model [11]. In
terms of the numerical format, it is necessary to ensure both high numerical accuracy
for discretizing the equations and stability during computation. Therefore, the equations
are discretized using a fifth-order Adams–Bashforth predictor–corrector Adams–Moulton
(ABM) scheme in time and a five-point finite difference scheme in space [6–12]. Due to
the complexity of the equations and numerical implementation, it is difficult to analyze
the stability and convergence of the numerical model. In order to maintain computational
stability in numerical calculations, the numerical filtering method proposed by Shapiro [26]
is used here, with the expression

f ∗i =
1

256
(186 fi + 56( fi+1 + fi−1)− 28( fi+2 + fi−2) + 8( fi+3 + fi−3)− ( fi+4 + fi−4)), (67)

where f represents the original value of each calculation point, and f ∗ represents the new
value after filtering. Numerical filtering can ensure the stability of numerical calculations.
This article uses the Fortran programming language’s numerical simulation.

The boundary conditions used in the numerical solution process include a fully re-
flective boundary, periodic boundary, and sponge layer absorption boundary. For the
treatment of a moving coastal boundary, here, we use the narrow-slit method [11]. The
numerical wave making method is divided into boundary wave making and internal wave
making. Boundary wave making is based on the theoretical solution of waves, providing
the velocity and free surface elevation at the incident boundary to achieve wave mak-
ing. The advantage of this method is that the waves generated through wave making
are nonlinear waves, which can be used to study nonlinear problems more easily. Their
disadvantage is that when encountering structures, the incident waves will be reflected,
forming secondary reflections at the wave making boundary. Internal wave making adds
a mass source term to the right side of the fluid continuity equation. The mass source
terms of various waveforms can be obtained by integrating the wave surface equation.
Since incident waves and reflected waves flow out from the left and right boundaries,
respectively, the secondary reflection problem can be effectively eliminated. However, there
is the problem of waveform instability when the relative wave height is large. This study
adopts the internal wave making method adopted by Kim et al. [27], which is expressed as

fs = DsS1tan h(
t

2T
) sin(yky − ωt), (68)

where

DS =
H0kxccg

ωS2
, (69)

S1 = exp[−βs(x − xs)
2], (70)

S2 =

√
π

βs
exp(− k2

x
4βs

), (71)

where H0 is the incident wave height, xs is the location of the wave source, and βs is
the wave width parameter, βs = 20/L2. When S1 < exp(−5), the effect of the source
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function can be ignored. Adding fs to the right side of Equation (62) can achieve internal
wave generation.

5. Results

The wave equations established in this study are characterized by their accurate
dispersion. In order to reflect this characteristic in the numerical results, in this section,
we compare the simulation results of the high-frequency case with those of the high-order
Boussinesq equations to illustrate that more accurate numerical results can be obtained
with the former model than with the latter. The high-order Boussinesq equations selected
in this section are a set of high-order Boussinesq equations derived from Zou and Fang [12]
based on Euler’s equation. The dispersion of this equation is similar to that of Padé [4, 4]
and retains the fully nonlinear equation of O(µ4), referred to as the N4D4 model.

In this section, we compare the results of the N4D4 model with those of the higher-
order Boussinesq equation by considering three situations: (1) the theoretical solution of
the fifth-order Stokes wave; (2) a one-dimensional submerged breakwater experiment; and
(3) a two-dimensional shoal experiment. In the comparison, the same difference schemes,
spatial step sizes, and time step sizes are used for the numerical calculations. The accuracy
of the dispersion in the calculated results of this model also depends on the accuracy of the
difference scheme. Therefore, in this section, we present the different numerical schemes
used in this study to investigate the impact of their accuracies on the calculated results. In
addition, we also present the application of the second-order bottom slope term added to
the equation to simulate the propagation (Bragg reflection) of waves in rapidly varying
water depths. Then, the model is applied to simulate the propagation and breakup of
waves on a coast with a flat slope verify its climbing performance. Finally, the model is
applied to simulate coastal currents and rip currents under regular and irregular wave
conditions to investigate its applicability to this situation.

5.1. Comparison with the Higher-Order Boussinesq Equation

(1) The theoretical solution of the fifth-order Stokes wave: in order to prove that the
accurate dispersion characteristics of this model can provide better computational results at
high frequencies than the high-order Boussinesq equation, the following comparison was
made between the wave surface elevations of the two models and the theoretical solution
of the fifth-order Stokes wave for a water depth of 0.4 m, an incident wave height of
0.04 m, and periods of 0.5 s and 1.0 s, respectively. The theoretical solution of the fifth-order
Stokes [28] wave was used as the incident wave at the incident boundary. The spatial step
size was ∆x = L/40 (L = 2π/k is the wavelength), and the time step size was ∆t = T/80.

As can be seen from Figure 2, there is a phase difference between the free surface
elevation of the high-order Boussinesq equation and the theoretical solution when T = 0.5 s
and kh = 5.89, while the present model is in full agreement with the theoretical solution.
When T = 1.0 s and kh = 1.72, both models’ wave surface elevations are in agreement with
the theoretical solution, indicating that the high-order Boussinesq equation is also accurate
for this larger wave period. The following further comparison of the wavelength (the
distance between two adjacent peaks) in the calculation with the theoretical solution further
demonstrates that the present model is superior to the high-order Boussinesq equation in
high-frequency situations. Table 1 gives the wavelengths corresponding to the calculation
results in Figure 1, as well as the theoretical Stokes wavelengths (with the theoretical
wavelengths of the present model) and the wavelengths obtained from the dispersion
relation (ω2

0/k2h = (1/9(kh)2 + 1/945(kh)4)/(4/9(kh)2 + 1/63(kh)4)) of the high-order
Boussinesq equation (N4D4), which agree with those of Padé [4, 4]. Comparing these
results, it can be seen that, compared to the theoretical wavelength of the fifth-order Stokes
wave, both the present model and the high-order Boussinesq equation have an error of
approximately 0.4% when T = 0.5 s and T = 1.0 s, respectively. This indicates that the
error of the high-order Boussinesq equation is also small at T = 1.0 s, which is close to
that of the present model. However, at T = 0.5 s, the error of the high-order Boussinesq
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equation is larger, far exceeding that of the present model. The reason for this larger error
can be directly seen in the table, as the wavelength given by the dispersion relation of the
high-order Boussinesq equation in the table also has an error of the same magnitude as
the Stokes theoretical wavelength, indicating that this larger error is due to errors in the
dispersion relation of the high-order Boussinesq equation. The dispersion property of this
model is completely accurate, so there is no such error in calculating wavelengths, even in
the high-frequency situation when T = 0.5 s.
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Table 1. Theoretical wavelengths and calculated wavelengths.

T (s) Stokes Wave This Model (Calculation) N4D4 (Theory) N4D4 (Calculation)

0.5 0.427 m 0.429 m 0.435 m 0.438 m
1.0 1.473 m 1.478 m 1.479 m 1.482 m

(2) One-dimensional submerged breakwater experiment: In order to prove that the
model is more accurate than the high-order Boussinesq equation for simulating wave
propagation in complex topographies, the following comparison with the experimental
results [29] of the wave propagation on a submerged breakwater is presented (in the State
Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology,
China). The experimental arrangement is shown in Figure 2, with a front slope of 1:10 and
a rear slope of 1:5. The experimental wave conditions were a water depth of 0.4 m, an
incident wave height of 0.02 m, and a period of 1.3 s. In the calculation, the spatial step
length was ∆x = 0.02 m, the time step length was ∆t = 0.01 s, and ε = kA.

Figure 3 shows the experimental free surface elevation results at six wave gauges
from the top of the submerged breakwater to 15 m behind it alongside the calculated
results of the two models. Due to the close agreement between the two calculated results
at the front slope and the flat bottom in front of the breakwater, they are not shown
here. From the results shown in the figure, for the two wave gauges on the top of the
breakwater (x = 8.5 m and 9.5 m), the calculated results of the two models are closer to the
experimental results, indicating that this model does not exhibit a better computational
accuracy than the high-order Boussinesq equation. This is due to the fact that the higher-
order harmonics in the time series of the free surface elevation at the breakwater top mainly
exist in the form of bound waves, which correspond to special solutions of the wave
equation and have the same propagation velocity as first-order waves. Therefore, the error
in the propagation velocity caused by higher-order harmonics is masked by first-order
waves and cannot be revealed. However, this is not the case for the wave conditions
behind the submerged breakwater slope and behind the slope. The calculated results of
the higher-order Boussinesq equation show larger errors than those of this model, as is
clearly shown in the enlarged portion of the figure. The reason for these larger errors is
that the higher-order harmonics in the region behind the submerged breakwater slope and
behind the slope not only contain bound waves but also generate large-amplitude free
waves, which correspond to homogeneous wave equation solutions and have different
propagation velocities than first-order waves. Therefore, their wave surfaces cannot be
covered by first-order waves and instead emerge from the main wave surface elevation.
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Figure 3. Experiment setup (upper) and comparison of wave surface elevations of two models
(below). Solid circles, measurements; solid lines, this model; dash lines, N4D4 model.

The higher-order Boussinesq equation has larger errors in calculating the propagation
velocity of these free waves at high frequencies due to its large dispersion error. This
error is precisely why there is a large deviation between the results of the higher-order
Boussinesq equation and the experimental results, namely, the large error in calculating the
propagation velocity of free waves (especially for third-order (kh = 4.23) and fourth-order
(kh = 7.62) harmonics). This error causes a large phase difference between the free waves
and actual free waves in experiments, resulting in a large deviation in the overall shape of
the time series of the calculated wave surfaces from the experimental results, as shown in
the results of the last four wave gauges in Figure 3. However, this dispersion is completely
accurate in this model, and there is no dispersion error problem; thus, its calculated results
are closer to the experimental results.

In order to quantitatively compare the numerical results with the experimental results,
the error index proposed by Wilmott [30] is used for description:

WIA = 1 −

N
∑

i=1
[y(j)− x(j)]2

N
∑

i=1
[|y(j)− x|+ |x(j)− x|]2

, (72)

where x(j) is the experimental result, y(j) is the numerical result, x is the average value of
the experimental result, and WIA is the error index between the numerical result and the
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experimental result (WIA = 1 means that the numerical result is in complete agreement
with the experimental result, and WIA = 0 means that the numerical result is in complete
disagreement with the experimental result). According to the above formula, Table 2 gives
the error index between the numerical result and the experimental result of the two models
at different locations. From Table 2, it can be seen that the error index between the numerical
result and the experimental result of this model at different locations is greater than that
of the high-order Boussinesq equation, and the locations with significant differences are
at x = 11.8 m (difference value: 0.03) and x = 13.5 m (difference value: 0.02), which also
quantitatively illustrates that more accurate results can be obtained with this model than
with the high-order Boussinesq equation in the back slope and back area of the submerged
breakwater.

Table 2. Comparison of WIA values between this model and N4D4 model for submerged breakwater
terrain.

Model
x Locations

8.5 m 9.5 m 10.25 m 10.85 m 11.8 m 13.5 m

This model 0.992 0.990 0.976 0.988 0.992 0.991
N4D4 model 0.986 0.983 0.961 0.972 0.962 0.971

The accuracy of the dispersion in the above calculation results of this model also
depends on the accuracy of the difference scheme. Because this model adopts a fifth-order
accuracy difference scheme for the time derivative and a fourth-order accuracy difference
scheme for the spatial derivative, it can better ensure the realization of accurate dispersion
in the calculation results. To illustrate this point, Figure 3 shows another comparison
between the wave surface time series of the wave gauges at different locations using a
lower-precision, second-order accuracy difference scheme (leap-frog scheme) (using the
same spatial and temporal steps as above) and the calculation results using the higher-
precision difference scheme in Figure 4. As can be seen, the former difference scheme
leads to significant errors in the calculation results compared to the experimental results,
indicating that the calculation accuracy of this model in Figure 4 is also guaranteed by
using the high-precision difference scheme mentioned above.
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Figure 4. Comparison of wave surface elevations of two difference schemes. Solid circles, Mea-
surements; solid lines, ABM scheme of fifth-order prediction and sixth-order correction; dash lines,
leap-frog scheme.

(3) Two-dimensional shoal experiment: The above examples are one-dimensional
horizontal cases. For two-dimensional horizontal cases, Whalin [31] conducted wave
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propagation experiments on shoals for computational simulation. In the experiment, a
three-dimensional focused terrain was placed in a 25.603 m× 6.1 m water tank (see Figure 5).
The water depth on the deep water side of the tank was 0.457 m, and the shallow water
depth at the end was 0.152 m. Three wave conditions were simulated, using incident
wave heights of 0.0212 m, 0.0212 m, and 0.0298 m, with a period of 2.0 s. The width of
the computational domain was consistent with that of the experiment, and the length was
larger than that of the experiment, with an additional portion for a wave-absorbing sponge
layer. The spatial step size was ∆x = ∆y = 0.078 m, and the time step size was ∆t = 0.03 s.
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Figure 5. Experimental setup (upper) and comparison of the harmonic amplitudes of the two models
(below). Experiment: solid circles, first harmonic; solid triangles, second harmonic; solid squars,
third harmonic. Computation: solid lines, includes second-order slope term; dotted lines, does not
include second-order slope term; dash lines, N4D4 model.

Figure 5 shows the comparison of the calculation results of this model with and without
the second-order bottom slope term with different wave heights and also shows the high-
order Boussinesq equation results and the experimental results. These comparisons not
only illustrate that this model has higher-accuracy calculation results than the high-order
Boussinesq equation, but they also illustrate the influence of the second-order bottom slope
term on wave deformation. From the results shown in the figure, it can be seen that, in the
region of x = 15–22 m, the calculation results using the second-order bottom slope term are
more consistent with those of the experimental results, indicating that these terms can also
improve the accuracy of the calculation results for wave propagation on this shoal. From
the results shown in the figure, it can also be seen that the accuracy of the amplitude of each
harmonic from the first to third order in this model with the second-order bottom slope
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term is better than that of the high-order Boussinesq equation, that is, the former is closer to
the experimental results than the latter, especially for the third-order (kh = 4.32) amplitude.
This indicates that for the calculation of high-frequency wave components, the accurate
dispersion characteristics of this model make it superior to the high-order Boussinesq
equation, which is approximate in the high-frequency range and has a certain impact on
the accuracy of the results of calculating high-frequency wave components. In order to
quantitatively illustrate this issue and quantitatively compare it with the results of the high-
order Boussinesq equation, Table 3 presents the error index (see (64)) for each harmonic
amplitude. From the table, it can be seen that after adding the second-order bottom slope
term to this model, the A values of each harmonic amplitude increased, with the largest
difference appearing in the third harmonic (a difference of 0.055) for H = 0.015 m. The A
values of this model are all greater than those calculated via the high-order Boussinesq
equation, and the largest difference appears in the second harmonic (a difference of 0.074)
for H = 0.0212 m.

Table 3. Comparison of WIA values between this model and the N4D4 model for shallow terrain.

Model
H = 0.015 m H = 0.0212 m H = 0.0298 m

First/Second/Third Order First/Second/Third Order First/Second/Third Order

Model with second-order slope term 0.960/0.973/0.948 0.937/0.977/0.989 0.914/0.947/0.980
Model without second-order slope term 0.940/0.950/0.893 0.932/0.967/0.972 0.858/0.934/0.959

N4D4 model 0.958/0.968/0.939 0.915/0.915/0.915 0.872/0.915/0.945

5.2. Calculation Results of Bragg Reflection

The inclusion of the new second-order bottom slope term in the continuity equation
allows for a consideration of the impact of rapidly changing bottom topographies, such as
Bragg reflection. This phenomenon refers to the backscattering of waves from an undulating
seabed due to a resonant interaction between the waves and the sea bottom, where the
wavelength of the incident wave is half that of the bed’s undulation wavelength (assuming
an infinite number of ripples). The capability of the current model to account for this
feature was confirmed through simulations replicating the Bragg reflection experiments
conducted by Davies and Heathershaw [32] for single sinusoidal ripples and Guazzelli
et al. [33] for double sinusoidal ripples. The expression for the corresponding water depth
remains unchanged:

h(x) =


h0, x ≤ 4Lw,

h0 − Ab
N
∑

j=1
sin[ 2π

Lbj
(x − xs)], 4Lw < x < 4Lw + nb1Lb1,

h0, x ≥ 4Lw + nb1Lb1,

(73)

For singly sinusoidal ripples, N = 1, and for doubly sinusoidal ripples, N = 2. h0
represents the water depth in the region of constant depth, while Ab stands for the ripple
amplitude. Lw and Lbj (j = 1, 2) correspond to the incident wavelength and the wavelength
of the jth sinusoidal ripples, respectively. nb1 refers to the number of initial sinusoidal
ripples, and xs represents the x coordinate of the starting point of the ripple patch. The
numerical simulations take place in the computational domain shown in Figure 6, using a
space step denoted by ∆x = Lw/40 and a time step denoted by ∆t = T/80 (where T is the
incident wave period). Six experimental cases were selected for the simulations, as outlined
in Table 4, with reference to the parameters detailed in (73).
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Table 4. Experimental cases of single and double sinusoidal ripples.

Case Lb1/Lb2 (m) nb1 h0 (m) Ab (m)

Case 1 1/- 2 0.156 0.05
Case 2 1/- 4 0.156 0.05
Case 3 1/- 10 0.313 0.05
Case 4 0.12/0.06 4 0.04 0.01
Case 5 0.12/0.06 4 0.025 0.01
Case 6 0.06/0.04 8 0.025 0.005

Figure 7 shows a comparison of the reflection coefficients between the numerical and
experimental results for singly and doubly sinusoidal ripples. As can be seen from the
figure, for the single sandbar case, when 2k/kb1 = 1, the model’s calculation results and
the experimental reflection coefficients both reached their maximums. For the double
sandbar case, the model’s calculation results and the experimental reflection coefficients
both reached their maximums at 2k/kb1 = 1 and 2k/kb2 = 1, respectively, indicating that
at this point, the waves resonated, resulting in Bragg reflection. The above indicates that
the newly derived second-order bottom slope term in this study can be applied to rapidly
changing terrain at the bottom of the water.

5.3. Propagation of Regular Waves on Flat-Sloped Coasts

In this section, we verify the ability of the coupled models to simulate wave breaking
and climbing. As the wave approaches the breaking point, the wave height gradually
increases. When the critical breaking point is reached, the wave exhibits strong nonlinearity,
with the wave crest becoming steeper and the wave trough becoming flatter. Therefore, by
simulating the change in the elevation of the free surface, the ability of the coupled models to
simulate wave breaking and climbing can be effectively verified. In this section, we describe
a physical model experiment based on Ting and Kirby’s [34] planar beach experiment. The
experiment took place in a two-dimensional wave tank with a bottom slope of 1:35 and a
consistent water depth of 0.4 m in the quiet water zone. The experimental layout is shown
in Figure 8, in which the origin is located at the starting point of the topographic slope and
the x-axis points in the direction of the shore. The numerical simulation used the same
computational domain as that of the experiment, with the following experimental wave
conditions: an incident wave height of 0.127 m and a period of 2.0 s. The spatial step size
selected for numerical simulation was ∆x = 0.05 m, and the time step size was ∆t = 0.01 s.
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Figure 7. Reflection coefficients (CR) for single and double sinusoidal ripples. Solid circles, Experi-
mental results; solid lines, numerical results.
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linear characteristics of wave propagation and breakup on slopes. Although there is a slight 

difference in the wave surface at the trough, at the wave crest, where the nonlinearity is 

Figure 8. Experimental arrangement.

Figure 9 shows the free surface elevation time series at wave height gauge points
1, 4, 5, and 7. The selected measuring points are located at x = −1.25 m in front of the
slope, at x = 3.5 m from the non-breaking point, at x = 6.4 m from the breaking point,
and at x = 9.1 m in the wave breaking zone. From the results shown in the figure, it can
be seen that the waveforms of the two models are similar at the four wave height gauge
points. At wave height gauge points 1 and 4, the numerical results of the coupled model
at the wave trough position are better than those of the N4D4 model, which is in good
agreement with the experimental results. At wave height gauge point 5, there is a slight
difference between the numerical results of the two models and the experimental results at
the wave trough position; however, relatively speaking, the results of the coupled model
are closer to the experimental results. At wave height gauge point 7 in the wave breaking
zone, there is a certain deviation between the two models and the experimental results at
the wave trough position. The reason for this may be that bubbles appeared during the
experiment in the wave breaking zone, which cannot be simulated by numerical models
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due to the conservation of flow. These bubbles will be superimposed onto the free surface
elevation as water bodies; thus, the numerical simulation results will show a higher wave
surface elevation.
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The above results show that the coupled model can accurately describe the strong
nonlinear characteristics of wave propagation and breakup on slopes. Although there is a
slight difference in the wave surface at the trough, at the wave crest, where the nonlinearity
is strong, the coupled model can well simulate its changes. Due to the precise dispersion
characteristics of the coupled model, it can better describe the wave propagation process
during and after wave breaking compared to the higher-order Boussinesq equation.

5.4. Numerical Simulation of Gently Sloping Coastal Rip Flow

The results of the experiment were taken from Peng and Zou [35] and were collected
at the wave basin of the State Key Laboratory of Coastal and Offshore Engineering at
Dalian University of Technology. The harbor basin is 55 m long, 34 m wide, and 0.7 m
deep. In order to generate oblique incident waves and increase the length of the coastal
model, we arranged the coastal model at a 30-degree angle with the wave making plate.
The slope of the coast was 1:40, and the flat bottom still water depth in front of the slope
was 0.45 m. The slope section above the still water line retained a distance of 3 m to ensure
the wave climbing length. The spur dike was arranged on the edge of the upstream coastal
model and perpendicular to the shoreline, extending to the top of the slope. Because the
measurement of the wave field and velocity field in the experiment was based on the spur
dike as a reference, the origin of the coordinate system was the intersection point of the
spur dike and the still water line. The x direction was perpendicular to the still water line
and pointed in the direction away from the shore, while the y direction was perpendicular
to the spur dike and pointed in the upstream direction. The sandbar on the coast was a
Gaussian sandbar with a width of 2 m. The sandbar located 1–2 m away from the spur dike
was removed to form a split-flow trench. The wave field in the experiment was formed
by superimposing oblique incident waves and reflected waves after reflection from the
spur dike. The superimposed wave field consisted of a standing wave system composed of
many rhombuses, with the vertex and midpoint of each rhombus being the nodes of the
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standing waves along the coast. The wave field simulated in this study had a period of
1.5 s; thus, the standing wave wavelength was 2.71 m, and the positions of the nodes were
1.36 m and 4.07 m away from the spur dike. In the numerical simulation, the positions of
the nodes were 0 m (0.1 m in the numerical simulation) and 2.71 m away from the spur
dike. The wave field was measured using a wave meter, located at both nodes, while the
split-flow field was measured using acoustic Doppler velocity measurement (ADV) and
float video tracking methods, as shown in Figure 10.
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In the numerical calculation, the same calculation domain setting as that of the experi-
ment was used, and the total reflection boundary was used at one side of the groin. The
simulated wave case was a regular wave with a period of 1.5 s and an incident wave height
of 4.1 cm. The coupling surface was 16 m away from the wave making position. The space
step was ∆x = ∆y = 0.05 m, and the time step was ∆t = 0.01 s. The simulation duration
was 720 s, and the 120–720 s time series data were selected to count the wave height, water
increase and decrease, and time-averaged flow field.

Figure 11 illustrates the spatial arrangement of both the experimental and numerical
average velocity vectors over time, along with the respective vorticity fields. The red arrows
shown in the figure are the flow velocities measured by the float in the experiment, the black
arrows are the flow velocities calculated by numerical calculation, and the vorticity field is
calculated from the flow velocities using the expression Ω = ∇× U. The resolution of the
experimental results in the figure is (28 × 9). In order to compare with the experimental
results, the numerical results also use the same grid resolution. Figure 11 was generated
by MATLAB software (MathWorks USA, Inc., Natick, MA, USA; version: MATLAB 9.14).
The vorticity results in the figure reveal the presence of two prominent pairs of large-scale
vortices. The first pair emerges at the channel’s edges, located precisely at the sides of
the initial node line, where it aligns with the channel’s central line. Similarly, the second
pair forms adjacent to the second node line. These distinct vortex pairs are attributed
to the swift decrease in the wave breaking height from the channel’s edges towards the
node line or the channel’s centerline, which is caused by longshore standing waves or
reduced water depths within the channel. The formation of large-scale vortices around
these reduction points, as indicated by Peregrine [36], is effectively captured by both the
experimental observations and numerical simulations in the figure. Further validation is
presented in Figure 12, where a comparison of the experimental and numerical cross-shore
and alongshore velocities along the bar crest showcases the model’s accuracy in simulating
vortex motion induced by wave breaking in the surf zone.
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Figure 11. The time-averaged flow field and the vorticity field (color). (a) Experiment (left); (b) simu-
lated (right). Red arrows: experimental velocities; black arrows: simulated velocities.
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6. Conclusions

In this study, we developed a set of wave equations with accurate dispersion in terms
of free surface velocity and wave surface elevation. The nonlinearity of the equations is
accurate to the fourth order, and the dispersion is completely accurate. The continuity
equations of the model maintain a spin in the vertical vortex field during derivation, and
the momentum equations were derived directly from the Euler equations without omission,
so that the model can simulate the nearshore circulation generated by wave breaking, such
as eddy motion in the rift current. To overcome the inability of the equation to simulate
wave creep in the nearshore region, the equation was expanded in the nearshore region,
and the dispersion of the equation was preserved to order, thereby converting the integral
calculations contained in the equation into differential calculations.

The accurate dispersion equation was coupled to the expanded equation, and a cou-
pled model was developed that applies the accurate dispersion model in deep water and
the nearshore model in shallow water. The coupled model has several advantages over
other models: (1) The present equation can simulate wave–current interaction phenomena,
such as coastal currents and nearshore circulation, compared with velocity potential equa-
tion. (2) Compared with the Boussinesq equation, the accurate dispersion model applied
to deep-water regions is derived without any assumptions about the water depth and
without any coefficients related to the wave number; thus, it can be applied to arbitrary
water depths. (3) The present equation is a nonlinear model compared to the gentle slope
equation, and it can therefore simulate the nonlinear effects of waves.

The present model was validated against the relevant physical model experiments.
The numerical results were compared with the experimental results of the submerged dike,
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and the results show that the accurate dispersion model has high accuracy in terms of
nonlinearity and dispersion and is able to describe the wave propagation deformation well.
A comparison of the numerical results with the amplitude results for shallow beach terrain
further demonstrates that the accurate dispersion model can be applied to wave propaga-
tion in complex terrain. The numerical results were compared with the experimental results
for flat beaches, where the coupled model described the free surface elevation well in the
breaking zone, indicating that the coupled model also has highly accurate nonlinearity. The
numerical results were compared with the experimental results of the rip current flow, and
the results show that the coupled model can effectively simulate the vortices generated by
the rip current flow field.

In future studies of this model, its computational accuracy will be improved using
more accurate numerical methods, and its reliability can be verified using more exper-
imental results. Sensitivity analyses of each of the model’s parameters will be carried
out to determine the parameters and their effects on the simulation results. In the fu-
ture, the model will also be used to study nearshore circulation, pollutant transport, and
wave–structure interaction and will be applied to different physical environments.
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Appendix A. Expression of A Gradient

The expression of ∇A required for the text is given here. The wave energy conservation
equation for a stable wave field is as follows:

∂

∂x
(Ecg cos α) +

∂

∂y
(Ecg sin α) = 0, (A1)

where E = ρgA2/2 is the wave energy, cg is the group velocity, and α is the wave angle.
A small-angle assumption is introduced into this equation, which assumes that the α
and ∇h are of the same order of magnitude. This allows the term corresponding to the
second-order term in the text to be neglected in (A1), which allows for the approximations
cos α = 1 − α2/2! + · · · ≈ 1 and sin α = α − α3/3! + · · · ≈ 0. Therefore, (A1) can be
approximated as follows:

∂

∂x
(Ecg cos α) = O(∇h)2. (A2)

Integrating the above formula with respect to x, we obtain the following:

Ecg = C(y) + O(∇h)2, (A3)

where C(y) is the integral constant, assuming that the partial derivative of C(y) with
respect to y is a small amount of the square of the water depth gradient and can be ignored.
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Because the y direction is perpendicular to the direction of the wave propagation, assuming
that the amplitude change is small, such as in the case of a flat coast, wave refraction causes
the waves to be perpendicular to the coast, with a small directional angle (the angle on the
x-axis) and a small amplitude change along the coast. Taking the horizontal gradient of the
Equation (A3) yields the following [37]:

∇A = −αs A
h
∇h, (A4)

where
αs =

s

(1 + s)2 (1 −
1
2

s(1 − s cosh 2kh)), (A5)

s =
2kh

sinh2kh
. (A6)

References
1. Berkhoff, J.C.W. Computation of combined refraction-diffraction. In Proceedings of the 13th Coastal Engineering Conference,

Vancouver, BC, Canada, 10–14 July 1972; Volume 1, pp. 471–490. [CrossRef]
2. Beji, S.; Nadaoka, K. A time–dependent nonlinear mild slope equation for water waves. Proc. R. Soc. A Math. Phys. Eng. Sci. 1997,

453, 319–332. [CrossRef]
3. Mei, C.C. Mild-Slope Approximation for Long Waves Generated by Short Waves. J. Eng. Math. 1999, 35, 43–57. [CrossRef]
4. Karambas, T.V.; Memos, C.D. Boussinesq model for weakly nonlinear fully dispersive water waves. J. Waterw. Port Coast. Ocean

Eng. 2009, 135, 187–199. [CrossRef]
5. Zou, Z.; Jin, H.; Zhang, L.; Xie, M.; Lv, J.; Zhang, Y. Horizontal 2D fully dispersive nonlinear mild slope equations. Ocean Eng.

2017, 129, 581–604. [CrossRef]
6. Gobbi, M.F.; Kirby, J.T. Wave evolution over submerged sills: Tests of a high-order Boussinesq model. Coast. Eng. 1999, 37, 57–96.

[CrossRef]
7. Mesloub, S.; Gadain, H.E. On Some Initial and Initial Boundary Value Problems for Linear and Nonlinear Boussinesq Models.

Symmetry 2019, 11, 1273. [CrossRef]
8. Wingate, B.A.; Rosemeier, J.; Haut, T. Mean Flow from Phase Averages in the 2D Boussinesq Equations. Atmosphere 2023, 14, 1523.

[CrossRef]
9. Von Groesen, E.; Andonowati. Hamiltonian Boussinesq formulation of wave–ship interactions. Appl. Math. Model. 2016, 42,

133–144. [CrossRef]
10. Von Groesen, E.; Westhuis, J.H. Modelling and simulation of surface water waves. Math. Comput. Simul. 2002, 59, 341–360.

[CrossRef]
11. Kirby, J.T.; Wei, G.; Chen, Q.; Kennedy, A.B.; Dalrymple, R.A. FUNWAVE 1.0 Fully nonlinear Boussinesq wave model docu-

mentation and user’s manual. In Research Report CACR-98-06; Center for Applied Coastal Research, Department of Civil and
Environmental Engineering, University of Delaware: Newark, DE, USA, 1998.

12. Zou, Z.; Fang, K.Z. Alternative forms of the higher-order Boussinesq equations: Derivations and validations. Coast. Eng. 2008, 55,
506–521. [CrossRef]

13. Liu, Z.B.; Fang, K.Z. A new two-layer Boussinesq model for coastal waves from deep to shallow water: Derivation and analysis.
Wave Motion 2016, 67, 1–14. [CrossRef]

14. Liu, Z.B.; Fang, K.Z.; Cheng, Y.Z. A new multi-layer irrotational Boussinesq-type model for highly nonlinear and dispersive
surface waves over a mildly sloping seabed. J. Fluid Mech. 2018, 842, 323–353. [CrossRef]

15. Nadaoka, K.; Beji, S.; Nakagawa, Y. A fully dispersive weakly nonlinear model for water waves. Proc. R. Soc. A Math. Phys. Eng.
Sci. 1997, 453, 303–318. [CrossRef]

16. Tang, Y.; Ouellet, Y. A new kind of nonlinear mild-slope equation for combined refraction-diffraction of multifrequency waves.
Coast. Eng. 1997, 31, 3–36. [CrossRef]

17. Belibassakis, K.A.; Athanassoulis, G.A. A coupled-mode system with application to nonlinear water waves propagating in finite
water depth and in variable bathymetry regions. Coast. Eng. 2011, 58, 337–350. [CrossRef]

18. Kim, I.-C.; Kaihatu, J.M. A consistent nonlinear mild-slope equation model. Coast. Eng. 2021, 170, 104006. [CrossRef] [PubMed]
19. Schäffer, H.A. Another step towards a post-Boussinesq wave model. In Proceedings of the 29th International Conference on

Coastal Engineering, Lisbon, Portugal, 19–24 September 2004; pp. 132–144. [CrossRef]
20. Von Groesen, E.; Andonowati; Liam, L.S.; Lakhturov, I. Accurate modelling of uni-directional surface waves. J. Comput. Appl.

Math. 2010, 234, 1747–1756. [CrossRef]
21. Mei, C.C. Note on modified Zakharov’s equation accounting for scattering in disordered media. Eur. J. Mech. B Fluids 2014, 47,

158–165. [CrossRef]

https://doi.org/10.1061/9780872620490.027
https://doi.org/10.1098/rspa.1997.0018
https://doi.org/10.1023/a:1004387531805
https://doi.org/10.1142/9789814277426_0019
https://doi.org/10.1016/j.oceaneng.2016.10.034
https://doi.org/10.1016/s0378-3839(99)00015-0
https://doi.org/10.3390/sym11101273
https://doi.org/10.3390/atmos14101523
https://doi.org/10.1016/j.apm.2016.10.018
https://doi.org/10.1016/S0378-4754(01)00416-5
https://doi.org/10.1016/j.coastaleng.2008.02.001
https://doi.org/10.1016/j.wavemoti.2016.07.002
https://doi.org/10.1017/jfm.2018.99
https://doi.org/10.1098/rspa.1997.0017
https://doi.org/10.1016/s0378-3839(96)00050-6
https://doi.org/10.1016/j.coastaleng.2010.11.007
https://doi.org/10.1016/j.coastaleng.2021.104006
https://www.ncbi.nlm.nih.gov/pubmed/35530661
https://doi.org/10.1142/9789812701916_0009
https://doi.org/10.1016/j.cam.2009.08.024
https://doi.org/10.1016/j.euromechflu.2014.02.003


J. Mar. Sci. Eng. 2024, 12, 778 25 of 25

22. Natanael, K. On the method of strained parameters for a KDV type of equation with exact dispersion property. IMA J. Appl. Math.
2015, 80, 893–905. [CrossRef]

23. Kirby, J.T. A general wave equation for waves over rippled beds. J. Fluid Mech. 1986, 162, 171–186. [CrossRef]
24. Bingham, H.B.; Agnon, Y. A Fourier–Boussinesq method for nonlinear water waves. Eur. J. Mech.—B/Fluids 2005, 24, 255–274.

[CrossRef]
25. Xu, J.; Zou, Z.L.; Yan, S. A set of fully nonlinear mild slope equations. Ocean Eng. 2024, 297, 116881. [CrossRef]
26. Shapiro, R.; Dancy, H. Open boundaries in short-wave simulation: A new approach. Coastal Eng. 1983, 7, 285–297.
27. Kim, G.; Lee, C.; Suh, K.-D. Generation of random waves in time-dependent extended mild-slope equations using a source

function method. Ocean Eng. 2006, 33, 2047–2066. [CrossRef]
28. Fenton, J.D. A Fifth-Order Stokes Theory for Steady Waves. J. Waterw. Port Coastal Ocean Eng. 1985, 111, 216–234. [CrossRef]
29. Zou, Z.L.; Zhang, X.L. Numerical model of higher-order Boussinesq equations and comparisons with laboratory measurements.

China Ocean. Eng. 2001, 15, 229–240. [CrossRef]
30. Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [CrossRef]
31. Whalin, R.W. Wave refraction theory in convergence zone. Coast. Eng. Proc. 1970, 1, 139. [CrossRef]
32. Davies, A.G.; Heathershaw, A.D. Surface-wave propagation over sinusoidally varying topography. J. Fluid Mech. 1984, 144,

419–443. [CrossRef]
33. Guazzelli, E.; Rey, V.; Belzons, M. Higher-order Bragg reflection of gravity surface waves by periodic beds. J. Fluid Mech. 1992,

245, 301–317. [CrossRef]
34. Ting, F.C.; Kirby, J.T. Observation of undertow and turbulence in a laboratory surf zone. Coast. Eng. 1994, 24, 51–80. [CrossRef]
35. Peng, S.; Zou, Z.L. Experimental measurement of rip currents with video-tracked drifters. Chin. J. Hydrodyn. Ser. A 2011, 26,

645–651.
36. Peregrine, D. Surf Zone Currents. Theor. Comput. Fluid Dyn. 1998, 10, 295–309. [CrossRef]
37. Fang, K.Z. Fourth-Order Fully Nonlinear Boussinesq Equations and Their Simplified Models; Dalian University of Technology: Dalian,

China, 2008. (In Chinese)

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/imamat/hxu020
https://doi.org/10.1017/s0022112086001994
https://doi.org/10.1016/j.euromechflu.2004.06.006
https://doi.org/10.1016/j.oceaneng.2024.116881
https://doi.org/10.1016/j.oceaneng.2005.08.009
https://doi.org/10.1061/(asce)0733-950x(1985)111:2(216)
https://doi.org/10.1007/s11766-996-0015-2
https://doi.org/10.1080/02723646.1981.10642213
https://doi.org/10.9753/icce.v12.139
https://doi.org/10.1017/s0022112084001671
https://doi.org/10.1017/s0022112092000478
https://doi.org/10.1016/0378-3839(94)90026-4
https://doi.org/10.1007/s001620050065

	Introduction 
	Derivations of Government Equations 
	Derivation of Momentum Equation 
	Derivation of Continuity Equation 

	Nearshore Coupling Equations 
	Equation Derivation 
	Matching of Coupling Equations 

	Numerical Methods 
	Results 
	Comparison with the Higher-Order Boussinesq Equation 
	Calculation Results of Bragg Reflection 
	Propagation of Regular Waves on Flat-Sloped Coasts 
	Numerical Simulation of Gently Sloping Coastal Rip Flow 

	Conclusions 
	Appendix A
	References

