An Improved Method for Retrieving Subsurface Temperature Using the ConvLSTM Model in the Western Pacific Ocean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
2.3. Experimental Setup
3. Results
3.1. Results Retrieved Directly from Sea Surface Data with Standard ConvLSTM Model
3.2. Results Retrieved from Improved Method with 50 m Layer’s Output as Input
4. Discussion
4.1. Pearson Correlation Coefficient Analysis
4.2. Analysis of Significant Improvement at 100 m Layer
4.3. Possibility That Result Was Obtained by Chance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roemmich, D.; Alford, M.H.; Claustre, H.; Johnson, K.; King, B.; Moum, J. On the future of Argo: A global, full-depth, multi-disciplinary array. Front. Mar. Sci. 2019, 6, 00439. [Google Scholar] [CrossRef]
- Roemmich, D.; Johnson, G.; Riser, S.; Davis, R.; Gilson, J.; Owens, W.B. The Argo program: Observing the global oceans with profiling floats. Oceanography 2009, 22, 34–43. [Google Scholar] [CrossRef]
- Klemas, V.; Yan, X.H. Subsurface and deeper ocean remote sensing from satellites: An overview and new results. Prog. Oceanogr. 2014, 122, 1–9. [Google Scholar] [CrossRef]
- Talley, L.D.; Pickard, G.L.; Emery, W.J.; Swift, J.H. Data analysis concepts and observational methods. In Descriptive Physical Oceanography, 6th ed.; Elsevier: London, UK, 2011; pp. 147–186. [Google Scholar]
- Chen, X.; Tung, K.K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science 2014, 345, 897–903. [Google Scholar] [CrossRef]
- Meng, L.; Zhuang, W.; Zhang, W.; Yan, C.; Yan, X.H. Variability of the shallow overturning circulation in the Indian Ocean. J. Geophys. Res. Ocean. 2020, 125, C015651. [Google Scholar] [CrossRef]
- Yan, X.H.; Boyer, T.; Trenberth, K.; Karl, T.R.; Xie, S.P.; Nieves, V.; Tung, K.K.; Roemmich, D. The global warming hiatus: Slowdown or redistribution? Earth’s Future 2016, 4, 472–482. [Google Scholar] [CrossRef]
- Ali, M.M.; Swain, D.; Weller, R.A. Estimation of ocean subsurface thermal structure from surface parameters: A neural network approach. Geophys. Res. Lett. 2004, 31, 20308. [Google Scholar] [CrossRef]
- Wu, X.; Yan, X.H.; Jo, Y.H.; Liu, W.T. Estimation of Subsurface Temperature Anomaly in the North Atlantic Using a Self-Organizing Map Neural Network. J. Atmos. Ocean. Technol. 2012, 29, 1675–1688. [Google Scholar] [CrossRef]
- Su, H.; Wu, X.; Yan, X.H.; Kidwell, A. Estimation of subsurface temperature anomaly in the Indian Ocean during recent global surface warming hiatus from satellite measurements: A support vector machine approach. Remote Sens. Environ. 2015, 160, 63–71. [Google Scholar] [CrossRef]
- Su, H.; Huang, L.; Li, W.; Yang, X.; Yan, X.H. Retrieving Ocean Subsurface Temperature Using a Satellite-Based Geographically Weighted Regression Model. J. Geophys. Res. Ocean. 2018, 123, 5180–5193. [Google Scholar] [CrossRef]
- Cheng, H.; Sun, L.; Li, J. Neural Network Approach to Retrieving Ocean Subsurface Temperatures from Surface Parameters Observed by Satellites. Water 2021, 13, 388. [Google Scholar] [CrossRef]
- Su, H.; Zhang, T.; Lin, M.; Lu, W.; Yan, X. Predicting subsurface thermohaline structure from remote sensing data based on long-short-term memory neural networks. Remote Sens. Environ. 2021, 260, 112465. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Chapman, C.; Charantonis, A.A. Reconstruction of Subsurface Velocities from Satellite Observations Using Iterative Self-Organizing Maps. IEEE Geosci. Remote Sens. Lett. 2017, 14, 617–620. [Google Scholar] [CrossRef]
- Uitz, J.; Claustre, H.; Morel, A.; Hooker, S.B. Vertical distribution of phytoplankton communities in open ocean: An assessment based on surface chlorophyll. J. Geophys. Res. Ocean. 2006, 111, C08005. [Google Scholar] [CrossRef]
- Charantonis, A.A.; Badran, F.; Thiria, S. Retrieving the evolution of vertical profiles of Chlorophyll-a from satellite observations using Hidden Markov Models and Self-Organizing Topological Maps. Remote Sens. Environ. 2015, 163, 229–239. [Google Scholar] [CrossRef]
- Han, M.; Feng, Y.; Zhao, X.L.; Sun, C.J.; Hong, F.; Liu, C. A Convolutional Neural Network Using Surface Data to Predict Subsurface Temperatures in the Pacific Ocean. IEEE Access 2019, 7, 172816–172829. [Google Scholar] [CrossRef]
- Meng, L.; Yan, C.; Zhuang, W.; Zhang, W.; Yan, X.H. Reconstruction of three-dimensional temperature and salinity fields from satellite observations. J. Geophys. Res. Ocean. 2021, 126, C017605. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In Proceedings of the 29th Annual Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12 December 2015. [Google Scholar]
- Song, T.; Li, Y.; Meng, F.; Xie, P.; Xu, D. A Novel Deep Learning Model by BiGRU with Attention Mechanism for Tropical Cyclone Track Prediction in Northwest Pacific. J. Appl. Meteorol. Climatol. 2021, 61, 3–12. [Google Scholar] [CrossRef]
- Chang, L.; Xu, J.; Tie, X.; Wu, J. Impact of the 2015 El Nino event on winter air quality in China. Sci. Rep. 2016, 6, 34275. [Google Scholar] [CrossRef]
- Zhai, P.; Yu, R.; Guo, Y.; Li, Q.; Ren, X.; Wang, Y.; Xu, W.; Liu, Y.; Ding, Y. The strong El Niño of 2015/16 and its dominant impaction global and China’s climate. J. Meteorol. Res. 2016, 30, 283–297. [Google Scholar] [CrossRef]
- Kawamura, R. A Rotated EOF Analysis of Global Sea Surface Temperature Variability with Interannual and Interdecadal Scales. J. Phys. Oceanogr. 1994, 24, 707–715. [Google Scholar] [CrossRef]
- Pan, Y.H.; Oort, A.H. Global Climate Variations Connected with Sea Surface Temperature Anomalies in the Eastern Equatorial Pacific Ocean for the 1958–73 Period. Mon. Weather Rev. 1983, 111, 1244–1258. [Google Scholar] [CrossRef]
- Lanzante, J.R. Lag Relationships Involving Tropical Sea Surface Temperatures. J. Clim. 1996, 9, 2568–2578. [Google Scholar] [CrossRef]
- Hsiung, J.; Newell, R.E. The Principal Nonseasonal Modes of Variation of Global Sea Surface Temperature. J. Phys. Oceanogr. 1983, 13, 1957–1967. [Google Scholar] [CrossRef]
- Anderson, D.L.T.; McCreary, J.P. Slowly Propagating Disturbances in a Coupled Ocean-Atmosphere Model. J. Atmos. Sci. 1985, 42, 615–630. [Google Scholar] [CrossRef]
- Schopf, P.S.; Suarez, M.J. Vacillations in a Coupled Ocean–Atmosphere Model. J. Atmos. Sci. 1988, 45, 549–566. [Google Scholar] [CrossRef]
- Hurrell, J.W. Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science 1995, 269, 676–679. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Nino Modoki and its possible teleconnection. J. Geophys. Res. 2007, 112, C11007. [Google Scholar] [CrossRef]
- Zhou, S.; Xie, W.; Lu, Y.; Wang, Y.; Zhou, Y.; Hui, N.; Dong, C. ConvLSTM-Based Wave Forecasts in the South and East China Seas. Front. Mar. Sci. 2021, 8, 680079. [Google Scholar] [CrossRef]
- Yao, L.; Wang, X.; Zhang, J.; Yu, X.; Zhang, S.; Li, Q. Prediction of Sea Surface Chlorophyll-a Concentrations Based on Deep Learning and Time-Series Remote Sensing Data. Remote Sens. 2023, 15, 448. [Google Scholar] [CrossRef]
Hyperparameters | Optimal Values | |
---|---|---|
Network parameters | num_layers_ConvLSTM2D | 2 |
kernel_size_ConvLSTM2D | 3 × 3 | |
activation_ConvLSTM2D | Relu | |
num_layers_Conv3D | 1 | |
kernel_size_Conv3D | 3 × 3 × 3 | |
activation_Conv3D | Relu | |
Optimized parameters | time_step | 3 |
batch_size | 32 | |
training_epoch | Customized | |
learning_rate | 0.001 | |
optimizer | Adam | |
Regularization parameter | dropout | 0.3 |
Month | 100 m | 150 m | 200 m | 300 m | 500 m | |||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | |
1 | 0.69 | 0.91 | 0.80 | 0.95 | 0.72 | 0.96 | 0.31 | 0.98 | 0.20 | 0.86 |
2 | 0.70 | 0.77 | 0.77 | 0.93 | 0.70 | 0.95 | 0.36 | 0.98 | 0.20 | 0.87 |
3 | 0.46 | 0.73 | 0.81 | 0.81 | 0.53 | 0.96 | 0.33 | 0.98 | 0.18 | 0.88 |
4 | 0.53 | 0.85 | 0.97 | 0.87 | 0.68 | 0.95 | 0.45 | 0.97 | 0.22 | 0.84 |
5 | 0.53 | 0.71 | 0.71 | 0.88 | 0.63 | 0.95 | 0.30 | 0.98 | 0.22 | 0.83 |
6 | 0.61 | 0.68 | 0.68 | 0.88 | 0.71 | 0.94 | 0.31 | 0.98 | 0.19 | 0.87 |
7 | 0.49 | 0.76 | 1.02 | 0.86 | 0.60 | 0.97 | 0.27 | 0.99 | 0.19 | 0.87 |
8 | 0.58 | 0.75 | 0.83 | 0.89 | 0.70 | 0.95 | 0.34 | 0.98 | 0.21 | 0.83 |
9 | 0.59 | 0.63 | 0.65 | 0.92 | 0.75 | 0.94 | 0.33 | 0.98 | 0.20 | 0.84 |
10 | 0.58 | 0.75 | 0.53 | 0.96 | 0.54 | 0.97 | 0.35 | 0.98 | 0.19 | 0.85 |
11 | 0.65 | 0.63 | 0.78 | 0.89 | 0.62 | 0.96 | 0.29 | 0.98 | 0.21 | 0.80 |
12 | 0.60 | 0.80 | 0.61 | 0.95 | 0.64 | 0.96 | 0.34 | 0.98 | 0.18 | 0.87 |
Average | 0.59 | 0.75 | 0.76 | 0.90 | 0.65 | 0.96 | 0.33 | 0.98 | 0.20 | 0.85 |
Month | 100 m | 150 m | 200 m | 300 m | 500 m | |||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | RMSE | R2 | |
1 | 0.72 | 0.91 | 0.94 | 0.94 | 0.77 | 0.96 | 0.28 | 0.98 | 0.18 | 0.89 |
2 | 0.54 | 0.89 | 0.75 | 0.93 | 0.66 | 0.96 | 0.31 | 0.98 | 0.19 | 0.88 |
3 | 0.41 | 0.80 | 0.63 | 0.88 | 0.54 | 0.96 | 0.30 | 0.98 | 0.18 | 0.88 |
4 | 0.60 | 0.79 | 0.69 | 0.93 | 0.65 | 0.96 | 0.45 | 0.96 | 0.21 | 0.85 |
5 | 0.42 | 0.81 | 0.75 | 0.87 | 0.63 | 0.95 | 0.29 | 0.99 | 0.20 | 0.85 |
6 | 0.46 | 0.86 | 0.81 | 0.82 | 0.68 | 0.95 | 0.27 | 0.99 | 0.19 | 0.88 |
7 | 0.49 | 0.74 | 0.68 | 0.93 | 0.60 | 0.97 | 0.30 | 0.98 | 0.18 | 0.88 |
8 | 0.58 | 0.79 | 0.76 | 0.91 | 0.69 | 0.96 | 0.31 | 0.98 | 0.20 | 0.86 |
9 | 0.48 | 0.81 | 0.91 | 0.86 | 0.67 | 0.95 | 0.27 | 0.99 | 0.18 | 0.87 |
10 | 0.41 | 0.87 | 0.65 | 0.94 | 0.53 | 0.97 | 0.30 | 0.98 | 0.17 | 0.88 |
11 | 0.52 | 0.77 | 0.81 | 0.89 | 0.62 | 0.96 | 0.29 | 0.98 | 0.19 | 0.84 |
12 | 0.58 | 0.83 | 0.77 | 0.91 | 0.60 | 0.96 | 0.31 | 0.98 | 0.17 | 0.88 |
Average | 0.52 | 0.82 | 0.76 | 0.90 | 0.64 | 0.96 | 0.31 | 0.96 | 0.18 | 0.87 |
Case | Standard ConvLSTM Method | Improved Method | ||
---|---|---|---|---|
RMSE (°C) | R2 | RMSE (°C) | R2 | |
Case 1 | 0.64 | 0.74 | 0.61 | 0.76 |
Case 2 | 0.61 | 0.77 | 0.59 | 0.80 |
Case 3 | 0.52 | 0.78 | 0.50 | 0.80 |
Case 4 | 0.59 | 0.72 | 0.49 | 0.80 |
Case 5 | 0.50 | 0.76 | 0.47 | 0.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, Y.; Kong, Y.; Hu, P. An Improved Method for Retrieving Subsurface Temperature Using the ConvLSTM Model in the Western Pacific Ocean. J. Mar. Sci. Eng. 2024, 12, 620. https://doi.org/10.3390/jmse12040620
Zhang Y, Liu Y, Kong Y, Hu P. An Improved Method for Retrieving Subsurface Temperature Using the ConvLSTM Model in the Western Pacific Ocean. Journal of Marine Science and Engineering. 2024; 12(4):620. https://doi.org/10.3390/jmse12040620
Chicago/Turabian StyleZhang, Yuyuan, Yahao Liu, Yuan Kong, and Po Hu. 2024. "An Improved Method for Retrieving Subsurface Temperature Using the ConvLSTM Model in the Western Pacific Ocean" Journal of Marine Science and Engineering 12, no. 4: 620. https://doi.org/10.3390/jmse12040620