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Abstract: In animal husbandry applications, segmenting live pigs in complex farming environ-
ments faces many challenges, such as when pigs lick railings and defecate within the acquisition
environment. The pig’s behavior makes point cloud segmentation more complex because dynamic
animal behaviors and environmental changes must be considered. This further requires point cloud
segmentation algorithms to improve the feature capture capability. In order to tackle the challenges
associated with accurately segmenting point cloud data collected in complex real-world scenarios,
such as pig occlusion and posture changes, this study utilizes PointNet++. The SoftPool pooling
method is employed to implement a PointNet++ model that can achieve accurate point cloud seg-
mentation for live pigs in complex environments. Firstly, the PointNet++ model is modified to make
it more suitable for pigs by adjusting its parameters related to feature extraction and sensory fields.
Then, the model’s ability to capture the details of point cloud features is further improved by using
SoftPool as the point cloud feature pooling method. Finally, registration, filtering, and extraction are
used to preprocess the point clouds before integrating them into a dataset for manual annotation.
The improved PointNet++ model’s segmentation ability was validated and redefined with the pig
point cloud dataset. Through experiments, it was shown that the improved model has better learning
ability across 529 pig point cloud data sets. The optimal mean Intersection over Union (mIoU) was
recorded at 96.52% and the accuracy at 98.33%. This study has achieved the automatic segmentation
of highly overlapping pigs and pen point clouds. This advancement enables future animal husbandry
applications, such as estimating body weight and size based on 3D point clouds.

Keywords: point cloud segmentation; PointNet++; 3D point cloud processing; SoftPool

1. Introduction

With the rapid development of computer vision and artificial intelligence, 3D scene
analysis has emerged as a critical research area across various disciplines. Among them,
point cloud data, as a representation that can accurately capture 3D geometric information,
has received widespread attention. Point cloud data consists of many discrete points,
each containing essential information, such as the position, shape, and surface features
of an object, so point cloud segmentation has been widely used in 3D computer vision
scenarios [1]. For example, good results have been achieved in urban planning and design,
medical data processing, architectural modeling, precision flight of unmanned aircraft, and
autonomous driving [2–7]. In intelligent agriculture, a depth camera is used to collect the
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point clouds of plants. Then, the collected data are sent to neural networks to segment
the leaves and stems of plants, which helps in selective breeding and trait analysis [8]. A
secondary segmentation method for point clouds based on 2D images and depth infor-
mation was proposed to extract fruits’ contours in complex backgrounds [9]. In animal
husbandry, an efficient and automated method was developed for measuring beef cattle
body dimensions, facilitating the collection of reliable phenotypic data throughout the
fattening process and directly integrating it into the breeding strategy [10]. A 3D surface
reconstruction and pig size measurement system based on a multi-view RGB-D camera
was developed to measure pig dimensions [11]. In these applications, accurate point cloud
segmentation is one of the critical steps towards object recognition, environment perception,
and scene understanding.

With the rapid development of modern animal husbandry, precise and intelligent
farm management has become a critical factor in improving production efficiency, ensuring
animal welfare, and achieving sustainable development. In this context, 3D point cloud
data, within a data type that can provide spatial geometric information, have shown great
potential for application in animal husbandry [12]. Point cloud data can effectively capture
the 3D structure of pigs and their surroundings, thus providing necessary information sup-
port for behavior analysis, health monitoring, and environmental optimization, particularly
in the pig farming environment.

However, in livestock applications, traditional point cloud segmentation techniques
still have many limitations when dealing with the point cloud data of pigs in complex
environments. Dense and disorganized point cloud data often complicate effective feature
extraction and segmentation. In addition, the irregularity and diversity of pig movements
further increase the difficulty of point cloud segmentation, especially in improving com-
putational efficiency while maintaining segmentation accuracy [13]. For example, in the
process of pig point cloud acquisition, it is necessary to use the railing to control the pigs
within the acquisition environment; however, because pigs are unfamiliar with the environ-
ment during the acquisition process, partial occlusion and gesture changes will occur and,
also, the background of the farm will affect the quality of the collected point cloud data, e.g.,
the pigs will lick the railing, defecate within the acquisition environment, and so on. The
complexity makes it difficult for traditional rule-based and feature-engineering methods to
achieve satisfactory results. Therefore, there is an urgent need for a point cloud segmenta-
tion method with more powerful feature extraction and representation capabilities.

To address these challenges, deep learning techniques have made significant break-
throughs in point cloud segmentation [14–17]. Early deep learning methods viewed point
clouds as unordered sets of points by learning features for each point, e.g., PointNet. Mean-
while, PointNet++ proposes layer-by-layer feature extraction and aggregation on this basis,
which can better capture local and global geometric information. In addition, convolu-
tional neural network (CNN)-based approaches have also achieved some success, such as
using 3D convolution for processing point clouds [18–20]. In particular, PointNet++, an
advanced deep learning architecture, can better cope with segmentation tasks in complex
environments by extracting local and global features from point cloud data. Leveraging
PointNet++, this study aims to refine the accuracy of pig point cloud segmentation in
practical settings, like pig farms, thereby offering advanced management tools for the
animal husbandry sector.

This study aims to leverage the advantages of PointNet++ and address the challenges
posed by complex environments, exploring methods to segment live pig point clouds based
on such complexities while enhancing the accuracy and robustness of segmentation. We
adjusted the parameters and structure of the traditional PointNet++ model by utilizing
point cloud data collected in real-world scenarios. Additionally, we introduced the SoftPool
pooling method as a replacement for the original max pooling for down-sampling. This
approach led to the development of an improved PointNet++ model tailored for the
semantic segmentation of live pig point clouds in complex environments. The model
achieved finer segmentation of railings and pig bodies. Through experiments, we validated
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the effectiveness of this method in addressing complexities, such as occlusion and posture
changes, thereby achieving more accurate segmentation of live pig point clouds. Compared
to previous methods, the SoftPool pooling technique allows for smoother feature extraction,
which helps in retaining more local details. This is especially important for processing
complex point cloud data. The improvement in feature extraction enables the model to
capture the nuances of the pig and its surroundings more accurately, leading to better
segmentation accuracy. Furthermore, the SoftPool pooling method aggregates information
by weighted averaging, which makes the improved PointNet++ network better suited for
handling irregularly distributed and noisy point cloud data. In farming environments, point
cloud data can be highly irregular due to factors such as animal activity and equipment
errors. Therefore, the SoftPool pooling method can help the model better cope with these
challenges. This provides a powerful tool for processing point cloud data in precision
agriculture and lays a strong foundation for future research and technology development
in this field.

2. Materials and Methods

The technical pipeline in this study is illustrated in Figure 1. When pigs enter the col-
lection area, the infrared grating is triggered to issue a synchronized acquisition command.
Five Kinect DK cameras positioned at different angles (left, upper-left, right, upper-right,
and overhead) simultaneously capture the local point clouds of the pigs. Subsequently,
the acquisition devices transmit these point cloud data to the control computer. The com-
puter’s three-dimensional point clouds from different perspectives are aligned through
contour-based analysis in respective coordinate systems. Point cloud data from other cam-
eras are registered globally. Live pig point cloud data preprocessing is optimized through
pass-through filtering, background removal, and point cloud labeling. Following this, the
improved PointNet++ neural network model is utilized to segment the processed live pig
point cloud data and the model is trained accordingly. Finally, the visualization of the
segmentation results is generated.

2.1. Point Cloud Acquisition of the Pig Body

In this study, the Open NI (Natural Interaction) Library and Point Cloud Library (PCL)
were installed on the Visual Studio 2022 platform running on the Windows 11 operating
system. The C++ language was used to register, filter, and segment pig point clouds. The
experimental equipment used Kinect DK as an RGB-D depth camera device, which has
a depth image resolution of 512 × 512 pixels, a horizontal viewing angle of 120◦, and
a vertical viewing angle of 120◦; it supports a maximum of 30 frames/s for depth data
acquisition and the viewing distance is between 0.25 and 2.88 m.

The data were collected at Tieluqishi Guanghui Breeding Farm, Guanghui County,
Mianyang City, Sichuan Province, China. Three-dimensional point cloud data of live pigs
were acquired using Kinect DK cameras. Pigs aged between 60 and 120 days were selected
for this study. Due to the young age of the pigs (30-day-old piglets), compactly collecting
data could lead to issues such as high data repeatability. Hence, a multi-batch phased
collection scheme was adopted, with the pig point cloud collection plan spanning six
cycles, each lasting five days, totaling one month. This collection scheme allows space for
the growth of the piglets, with a weight gain of approximately 50 pounds expected over
30 days. Multiple batches of collection ensure a sufficient volume of data.

Kinect DK cameras were set up at each of the five positions A, B, C, D, and E of the
acquisition channel in the test site. To avoid incomplete data collection, only one pig was
allowed to enter the acquisition channel at a time. When the target pig entered the data
collection area, the infrared grating was triggered and the trigger signal reached the control
box instantly, driving the RFID reader to read the ear tag number of the pig. Point clouds
were simultaneously captured from five directions when the valid ear tag was read. After
collecting a certain number of times per pig, the pig was herded back to the pen and the
start and end times of the collection were recorded corresponding to the ear tag to prevent
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double collection of the same pig. Finally, pigs that had not been collected were driven
into the collection environment. Upon entering the collection area, the collected pig point
clouds varied significantly due to individual differences and different postures. Figure 2
shows the CAD framework of the pig three-dimensional point cloud collection device. The
data collection and verification scenes are depicted in Figure 3.
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2.2. Multi-Angle Pig Point Cloud Registration

Point cloud registration involves converting multiple local point clouds, acquired
from various depths and viewpoints, into a unified world coordinate system. The 3D point
cloud data in different viewpoint coordinate systems are converted to the same coordinate
system through coordinate transformation to generate a global point cloud [21]. Point
cloud registration is divided into two steps: rough registration and fine registration. Rough
registration, i.e., the initial registration of the point cloud, provides an initial value of the
rotation and translation matrix for fine matching so that two point clouds with different
positions can be registered as much as possible. Fine registration refers to the further
computation of the approximate rotational translation matrix of the two-point clouds based
on the initial registration. During the rough registration process, it becomes challenging
to obtain the initial estimates used for the fine registration in the absence of apparent
markers, point cloud overlaps, or geometric features. Since the railings are rectangular,
in this paper, the railings are used as the registration standard. Then, the matrices of the
different point clouds are computationally transformed to the same coordinate system
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by rotational translation. The railing’s point cloud is acquired from multiple viewpoints
without the pig, allowing for the extraction of geometric feature points to compute the
railing’s rotation and translation matrix. Finally, the rotational translation matrix of the
railing is utilized to register the pig point cloud. The 3D reconstructed pig point cloud map
obtained after the registration fusion is shown in Figure 4f.
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We define the point cloud captured by camera A as P (x, y, z) and the point clouds
captured by cameras B, C, D, and E as P′ (x′, y′, z′) and the relationship between point P
and point P′ is denoted as (1):

P′ = R × P + T = RxRyRz ×

 x
y
z

+

 tx
ty
tz

 (1)

where R is the rotation matrix, T is the translation matrix, Rx is the rotation matrix of the
x-axis, Ry is the rotation matrix of the y-axis, Rz is the rotation matrix of the z-axis, tx is the
translation distance of the x-axis, ty is the translation distance of the y-axis, and tz is the
translation distance of the z-axis. The rotation translation matrix obtained by using the
railings as a registration criterion has strong robustness and high accuracy.

2.3. Target Point Cloud Extraction

After registration, the original point cloud data of the pig point cloud are too large,
with many irrelevant point cloud data, so the non-essential point cloud needs to be deleted.
First, the original point cloud is filtered using pass-through filtering to obtain the point
cloud of the best observation area; the remaining point cloud mainly consists of the target
pig to be measured, the railing, and the ground, in addition to some noise points. Here, the
Random Sample Consensus (RANSAC) detects the ground point cloud [22].
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The RANSAC algorithm uses a fixed threshold parameter set according to how well
different parameters remove the ground. The results show that the RANSAC algorithm
effectively removes the ground point cloud and extracts the target point cloud. Figure 5
shows the comparison results of preprocessing before and after point cloud filtering; most
of the noise is eliminated and the overall outline of the pig is clearly retained.
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2.4. Pig Point Cloud Segmentation Model Based on the Improved PointNet++

Due to pigs biting and licking the railing during data collection, manifested in the
point cloud as the pig point cloud and the railing point cloud being connected, the RANSAC
algorithm cannot remove the railing, resulting in extracted target point clouds containing
pig bodies and railing. Given this complex situation, an improved PointNet++ model is
employed in this study to segment both pig body and railing point clouds.

The improvements made to the classical PointNet++ model in this paper mainly
include (1) adjustments to the model structure, such as the number of network layers,
sampling radius, and feature extraction quantity, to make the model more suitable for live
pig point cloud data and (2) in terms of pooling methods, SoftPool being utilized as the
point cloud feature down-sampling method, replacing the original max pooling, to enhance
the model’s ability to extract point cloud features.

2.4.1. Classical PointNet++ Point Cloud Segmentation Models

PointNet++ introduces a recursive hierarchical structure, continuously subdividing
local regions and aggregating features to achieve multi-scale feature extraction [23]. This
enables PointNet++ to handle point cloud data better in complex scenarios, such as oc-
clusion and pose variations. PointNet++ can extract rich local feature representations
without losing global structural information through layer-by-layer feature transformation
and pooling.

The network architecture of PointNet++ is illustrated in Figure 6. PointNet++ uti-
lizes a hierarchical network structure consisting of set abstraction (SA) layers, sampling
layers, grouping layers, and feature extraction layers, forming hierarchical point set fea-
ture learning to gradually extract both local and global features of the point cloud. This
allows PointNet++ to capture better the hierarchical structure and local information of
point clouds. The set abstraction layer of PointNet++ performs regional feature modeling
on each subsampled point cloud, thus better capturing local information. This improves
performance in tasks such as point cloud classification and segmentation. The sampling
layer subsamples the input point cloud to reduce its complexity, effectively reducing com-
putational load. The grouping layer is a critical operation used for local feature modeling.
It divides the input point cloud into multiple groups for local feature extraction. The
sampling layer utilizes Farthest Point Sampling (FPS) to select partial feature points of the
point cloud data. The grouping layer selects neighboring points of the sampling center
points using the Ball Query method, sending the chosen subpoint clouds to the feature
extraction layer to encode information from the local regions into feature vectors. The
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feature extraction layer employs Multi-Layer Perceptrons (MLPs) to extract features from
the local point sets computed by the grouping layer.

Agriculture 2024, 14, x FOR PEER REVIEW 9 of 21 
 

 

 

Figure 6. PointNet++ segmentation network structure. 

2.4.2. Improved Point Cloud Segmentation Model for Pigs with PointNet++ 

Improvements Based on the Set Abstraction Layer 

To improve PointNet++ based on the SA layer, we have to understand the role of the 

SA layer, which is the critical component in PointNet++. It selects a certain number of key 

points by sampling and then defines a spherical region around these critical points. The 

points within this region are used as a grouping, to which PointNet is applied for feature 

extraction. In order to improve the model’s ability to capture the local details of the pig 

body, the structure of multi-level feature extraction is further strengthened based on 

PointNet++. Repeatedly applying SA layers at different scales can capture features from 

local to global more efficiently, which is especially important for point cloud data pro-

cessing in complex environments. The classical PointNet++ segmentation model is de-

signed for the ShapeNet dataset, where the target size to be segmented is small [24]. The 

model uses three SA modules and three FP modules, where the second SA module has 

the largest sampling radius of 0.4 m. The last layer of the SA modules only performs MLP 

operations. This results in the classical PointNet++ segmentation model with a maximum 

sensory field of 0.4 m, which cannot satisfy the semantic segmentation task of the pig point 

cloud. 

Therefore, the original network structure of the classical PointNet++ segmentation 

model is not directly applicable to the pig point cloud data. After analyzing the pig point 

cloud data, this study adjusts the model structure of the classical PointNet++ segmentation 

model; the adjusted model parameters are shown in Table 1. 

Table 1. The layers, radius, and number of samplings of the proposed model. 

Layer 
PointNet++ Improved PointNet++ 

Npoint Radius Nsample Npoint Radius Nsample 

SA1 512 0.2 32 256 0.08 16 

SA2 128 0.4 64 64 0.16 32 

SA3 None None None 16 0.32 64 

SA4 None None None None None None 

Figure 6. PointNet++ segmentation network structure.

For segmentation networks, PointNet++ adopts an Encoder–Decoder structure, where
features are connected through skip link concatenation. Interpolation targets segmentation
networks because segmentation results require assigning a semantic label to each point
cloud. However, only the features of the down-sampled point cloud are obtained after
the SA layer. The purpose of interpolation is to obtain the features of the points ignored
during the down-sampling process. Unit PointNet consists of the MLP and Rectified Linear
Unit (ReLU) and constitutes the subsequent MLP operation after the max pooling in the
PointNet layer.

2.4.2. Improved Point Cloud Segmentation Model for Pigs with PointNet++
Improvements Based on the Set Abstraction Layer

To improve PointNet++ based on the SA layer, we have to understand the role of the
SA layer, which is the critical component in PointNet++. It selects a certain number of
key points by sampling and then defines a spherical region around these critical points.
The points within this region are used as a grouping, to which PointNet is applied for
feature extraction. In order to improve the model’s ability to capture the local details of the
pig body, the structure of multi-level feature extraction is further strengthened based on
PointNet++. Repeatedly applying SA layers at different scales can capture features from
local to global more efficiently, which is especially important for point cloud data processing
in complex environments. The classical PointNet++ segmentation model is designed for
the ShapeNet dataset, where the target size to be segmented is small [24]. The model uses
three SA modules and three FP modules, where the second SA module has the largest
sampling radius of 0.4 m. The last layer of the SA modules only performs MLP operations.
This results in the classical PointNet++ segmentation model with a maximum sensory field
of 0.4 m, which cannot satisfy the semantic segmentation task of the pig point cloud.

Therefore, the original network structure of the classical PointNet++ segmentation
model is not directly applicable to the pig point cloud data. After analyzing the pig point
cloud data, this study adjusts the model structure of the classical PointNet++ segmentation
model; the adjusted model parameters are shown in Table 1.
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Table 1. The layers, radius, and number of samplings of the proposed model.

Layer
PointNet++ Improved PointNet++

Npoint Radius Nsample Npoint Radius Nsample

SA1 512 0.2 32 256 0.08 16
SA2 128 0.4 64 64 0.16 32
SA3 None None None 16 0.32 64
SA4 None None None None None None
FP4 None None None None None 1280
FP3 None None 1280 None None 384
FP2 None None 384 None None 320
FP1 None None 150 None None 150

As can be seen from Table 1, the improvement of the classical PointNet++ is mainly
conducted in 2 aspects: (1) increasing the depth of the model as the deeper model has
stronger feature extraction ability and, also, facilitates the smooth reduction in the radius
of the receptive field; (2) reducing the radius of the model’s receptive field as the smaller
receptive field can improve the model’s ability to perceive the detailed features of the pigs.
The structure of the improved point cloud segmentation model for pigs with PointNet++ is
shown in Figure 7.
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Improvements Based on Pooling Methods

The pooling layer is a commonly used layer structure in deep learning and its central
role is to reduce the computation while keeping the main features, reduce the redun-
dancy of the features, and prevent the model from overfitting. In addition, keeping the
transformations non-deformed, including translation, scale, and rotation, is also one of its
roles. When dealing with complex pig point cloud segmentation tasks, PointNet [25] and
PointNet++ [13], two state-of-the-art deep learning models, usually rely on max pooling to
perform pooling operations. Although these methods have achieved remarkable success in
several domains, their limitations in terms of fineness of feature extraction, adaptability to
complex data distributions, robustness, and preservation of spatial relationships remain
problematic. To address these issues, we use the SoftPool pooling method to replace max
pooling to serve as the pooling layer of the network and improve the model’s performance
in handling the task of pig segmentation in a complex environment.

SoftPool is a fast and efficient exponentially weighted activation down-sampling
method [26]. SoftPool is differentiable and is based on a softmax weighting method to
preserve the basic attributes of the inputs while amplifying the activation of features of
greater intensity. Relative to other pooling methods, SoftPool is a method for pooling that
assigns weights instead of simply selecting the maximum or average value. This approach
preserves more information and makes the model differentiable.

This way, SoftPool is better able to retain information about the location of features
and is more sensitive to anomalous data. The ratio of the natural index of the activation
values in the local domain to the sum of the indices of all activation values in the domain is
the weight and all weights in the domain are weighted and activated cumulatively to obtain
the output of the pooling operation [27]. The weight calculation formula and weighted
activation formula are (2) and (3):

Wi =
eai

∑
j∈R

eai
(2)

∼
a = ∑

i∈R
Wi ∗ ai (3)

where R is the maximum approximation in the activation domain; ai is the activation values
of the ith element; Wi is the weight of the ith element after activation; and ã is the output of
the pooling operation.

SoftPool uses a normalization factor to calculate the weights of activation values. This
ensures that all weights of activation values sum to 1. The weight of each activation value
depends on its value relative to its neighboring activation values. Unlike maximum pooling,
it does not completely ignore the other values. So, the larger the activation value, the higher
the corresponding weight; however, it still considers other values. After calculating the
weights, they are applied to the respective activation values, resulting in a weighted
activation output. SoftPool retains more feature information than a maximum value.

Figure 8 shows the SoftPool down-sampling process. A feature map is input and the
colored portion of the map represents the 3 × 3 sized region being sampled. Using the
weighting formula, the weight of each element in the selection is calculated and each weight
is multiplied with the corresponding activation value and accumulated to obtain the final
result, in which the weights are non-linearly transformed along with the corresponding
activation values.

The improved PointNet++ network model based on the SoftPool pooling method
used in this paper has the following four main features: (1) smoothing feature extrac-
tion: by calculating the weighted average within a neighborhood to perform information
aggregation, SoftPool pooling can capture the local details in the point cloud in a more
subtle way, which reduces the loss of information; this smoothing feature is crucial for
accurately depicting the morphological and structural characteristics of the pigs; (2) adapt
to irregular distribution: the natural state of the pigs in the farming environment results
in a non-uniform and anisotropic distribution of the point cloud data; SoftPool pooling’s
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weighted averaging mechanism can naturally cope with such a situation and its flexibil-
ity allows the model to process such data more efficiently and accurately; (3) enhance
robustness: due to the inevitable noise and outliers in the aquaculture environment, the
robustness of the model becomes an important indicator for assessing its usefulness; the use
of SoftPool pooling reduces the influence of outliers and enhances the model’s immunity
to noise, thus demonstrating better stability in the face of real-world data; (4) preservation
of spatial relationships: unlike the traditional pooling approach that only considers feature
values, SoftPool pooling also considers the spatial relationships between feature points;
this retention of spatial information is critical to understanding the 3D structure of the
point cloud data and it helps the model to distinguish better and recognize the pigs and
their environment.
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In summary, the improvement based on SoftPool pooling brings multiple advantages
to the PointNet++ network, especially in smoothing feature extraction, adapting to irregular
data distribution, improving anti-interference ability, and better utilizing spatial context
information. These improvements enhance the accuracy and efficiency of pig point cloud
segmentation and provide a reliable basis for further research and applications.

2.5. Data Annotation

In deep learning point cloud segmentation methods, making datasets requires manual
labeling of the original data. The manually labeled data are affected by subjective factors
and different poses of the pig and the point cloud data labeled by two people will have
slight differences. In order to reduce the influence of manual subjective factors and posture
changes, the manually labeled experimental dataset is labeled by the same person.

The training dataset was prepared and labeled using CloudComparev2.13 software.
According to the localization of the key points, a total of two parts of the pig body and the
railings were labeled, sequentially, with the railings marked with “0” and the pig body
marked with “1”. As shown in Figure 9, the blue area is the point cloud of the railings
containing the acquisition environment and the red area is the annotated point cloud of
the pig body. A challenge, as depicted in Figure 9b, arises when the pig body comes into
contact with the railings during the point cloud annotation process, leading to inaccuracies
in the annotations, Fortunately, this phenomenon exists less and, for the deep learning
model, it is still possible to learn the full picture of the point cloud of the railings shown in
Figure 9a and it does not have much impact on the results.
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Figure 9. Annotation results for some pig bodies; (a,b) are annotated data.

3. Results and Discussion

To identify the optimal model for pig body segmentation in complex environments,
we trained and tested two models: PointNet and the enhanced version, PointNet++.
The system environment for training the models in this paper is Intel Xeon Platinum
8375C CPU from Intel Corporation, Santa Clara, USA, NVIDIA RTX A6000 GPU from
NVIDIA Corporation, Santa Clara, USA, 48GB graphics memory, deep learning framework
Pytorch1.12.0, and Cuda11.3. The learning rate of the model was set to 0.001; the learning
rate decay to 0.5, the number of rounds decayed every 20 iterations; the batch size of the
model training was set as 2; and each model was trained 251 times to ensure convergence.
We divided the 529 sets of data with segmentation labels into three different sets: 423 sets
for the training set, 53 sets for the validation set, and 53 sets for the test set. The data
from the training set were sent to the neural network for deep learning and the parameters
were tuned in the validation set. The model parameters saved in the validation set with
the best segmentation results were used to segment all data parts. Select the model that
performs best on both the training and test sets as the optimal model. The performance of
both models was evaluated based on accuracy and mIoU metrics [28,29]. The calculation
equation of accuracy is as follows (4):

Accuracy =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(4)

The mIoU denotes the overlap ratio between the ground truth region and the predicted
region after segmentation, which is used to measure the segmentation accuracy. The
calculation equation of mIoU is as follows (5):

mIoU =
1

k + 1∑k
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(5)

In Equations (4) and (5), k + 1 is the total number of classes (including the empty class);
pii is the number of correctly predicted points; and pij and pji represent the number of false
negatives and false positives, respectively. In general, mIoU is calculated on a class-by-class
basis; after calculations are performed for each class of debits, they are accumulated and
averaged to obtain an overall evaluation.

For the ablation experiments, Figures 10 and 11 compare the mIoU versus accuracy
changes of the PointNet++ network using different modules with the PointNet++ base
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network during the training process. As shown in Figures 10 and 11, the improved Point-
Net++ obtains a better learning ability and has almost converged after about 40 rounds of
training, with an optimal mIoU of 96.52% and accuracy of 98.33% in 251 rounds of training.
In contrast, the original PointNet++ network only gradually converged after 50 rounds
of training, with an optimal mIoU of 92.98% and accuracy of 96.37% in 251 rounds of
training. The experimental results demonstrate that the improved PointNet++ network has
a stronger learning ability on the pig body point cloud dataset.
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To further validate the effectiveness of the improvements made to the PointNet++
network in this study, we conducted ablation experiments with different module com-
binations, including using plane fitting to compute normal vectors (+Normal) on top of
the basic PointNet++ model, modifying the network structure and parameters in the set
abstraction module (+SA), and employing SoftPool pooling in the feature extraction module
(+SoftPool). Table 2 summarizes the results of these experiments. Table 3 presents the
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segmentation results under different module combinations. From Table 3, it is observed that
compared to the segmentation results of the basic PointNet++ model, incorporating normal
vector information through plane fitting (+Normal) leads to improvements in both mIoU
and accuracy. The normal vector, as an attribute of each point in the point cloud, contains
important spatial information and the geometry of the surface can be reconstructed more
accurately. Modifying the network structure and parameters in the set abstraction module
(+SA) enhances the segmentation accuracy to some extent; it is significantly less effective
than the improvement in the pooling method using SoftPool in the feature extraction mod-
ule (+SoftPool). However, the SA layer continuously adjusts the feeler fields for feature
extraction by iteratively sampling the local structure of the point cloud. It may not be as
acceptable to capture details as SoftPool assignments of weights for pooling. However,
after adopting SoftPool pooling in the feature extraction module (+SoftPool), the mIoU and
accuracy of the network are further improved by 3.16% and 1.78%, respectively, compared
to the original PointNet++ model. SoftPool facilitates down-sampling and retains more
feature information, which is more conducive to subsequent feature extraction. Moreover,
when modifying the network structure in the set abstraction module and using SoftPool
pooling along with normal vectors (SoftPool–PointNet++), the overall mIoU and accuracy
are increased by 3.54% and 1.96%, respectively, compared to the original PointNet++ model.
During the process of ablation experiments, it is evident that each module contributes
to the performance improvement of the network model. However, this improvement
effect is not directly cumulative but rather involves minor enhancements built upon an
improved foundation.

Table 2. Description of the different modules used for ablation experiments.

Module (in Software) Clarification

PointNet++ Basic model

+Normal Calculate the normal vector using plane fitting

+SA Deepening the feature extraction network in
PointNet++ by one layer

+SoftPool Adoption of SoftPool Pooling

SoftPool-PointNet++ Improved PointNet++ network based on
SoftPool pooling approach

Table 3. Results of ablation experiments.

Model
Testing Sets

Avg Accuracy(%) Avg mIoU (%)

PointNet++ 96.37 92.98
+Normal 96.79 93.27

+SA 97.68 95.21
+SoftPool 98.15 96.14

SoftPool-PointNet++ 98.33 96.52

The information presented in Table 4 compares the model size and inference time
for various modules. The inference time has been increased because of the utilization
of the plane fitting method for computing the normal vector information (+Normal).
Additionally, +Normal has observed an improvement based on the set abstraction module
(+SA). However, due to the increase in the depth of the model, both the model size and
inference time have also increased. As the depth and size of a model increase, the inference
time also increases. Additionally, the reference time of the model also increases. Moreover,
the feature extraction module’s change to SoftPool pooling, as implemented by +SoftPool,
could potentially lead to longer processing times per point. This is because it involves an
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exponentially weighted cumulative activation and the retention of more information in the
down-sampled activation mapping. SoftPool increases the inference time; however, it also
enhances the network’s performance by retaining more information. When using SoftPool
pooling in combination with a deep network model, like SoftPool–PointNet+, the accuracy
and mIoU improve by 0.18% and 0.38% respectively. In contrast, the inference time increases
by 53.97 ms compared to the SoftPool-only pooling approach, which may be attributed
to the fact that each additional SA layer, additional feature extractions, and aggregation
operations are required for the point cloud data. These operations include calculating the
distance between points, searching for nearest neighbor points, and performing feature
transformations, which are relatively time-consuming computational steps. Meanwhile, the
FPS of the sampling layer will select the surrounding points to form a region around each
center point when selecting the center point and then process them as input samples. This
process requires multiple iterations, each of which may involve complex computations,
thus increasing the inference time. It is worth noting that improving either the SA layer
or the SoftPool pooling approach results in improved performance based on the original
PointNet++ model. There is a need to optimize the model for better performance without
compromising the segmentation effect.

Table 4. Model size and inference time for different modules.

PointNet++ +Normal +SA +SoftPool SoftPool–PointNet++

Model size (MB) 5.36 5.36 5.96 5.36 5.96

Inference time (ms) 165.58 177.69 217.39 189.58 243.55

Figure 12 demonstrates the comparison of the visualization effect of the pig point cloud
using the improved PointNet++ network model after segmentation and the traditional
PointNet++ network model with manually labeled data. The segmentation results show
that the improved PointNet++ network model effectively segments the point clouds of
the pig and the railing, even for the data with overlapping point clouds of the pig and
the railing, and can complete the segmentation task well for the different postures of the
pig while the traditional PointNet++ network model for the overlapping problem will
appear to divide a part of the pig’s body into the railing. From the point cloud of the pig
in Column 3, the basic PointNet++ model is not good enough to segment the part of the
pig’s body that probes the railings, such as the pig’s snout shown in the figure; although
the improved PointNet++ network model splits the point cloud of the pig that has too
much contact with the railings, there is still a part of the pig’s snout that is not recognized
and the segmentation of some details is still insufficient. SoftPool–PointNet++ has a more
accurate segmentation effect and the removal of the segmentation boundary is comparable
to manual labeling.

To evaluate the effectiveness and advantages of the method presented in this paper,
SoftPool–PointNet++ segmentation results were compared with various point cloud seg-
mentation algorithms on our collected dataset. The comparison results are shown in Table 5.
Even though PointNet has the ability to capture the overall information of the point cloud,
it struggles to extract detailed local features. This implies that it may not be able to provide
enough information when dealing with complex tasks that require a finer-grained analysis
of local features, such as object detection or complex scene understanding. PointCNN [30]
is an extension and generalization of the classical convolutional neural network and its
core operation is X-Conv. X-Conv first weights and displaces the input points to capture
the spatial-local associations in the point cloud. Finally, the high-level abstract features
are transformed into the final output by one or more fully connected layers. Kernel point
convolution (KPConv) [31] is a convolutional neural network for processing point cloud
data whose core idea is to perform a weighted summation operation similar to planar con-
volution through a set of predefined kernel points. The core idea is to perform a weighted
summation operation similar to planar convolution through a set of predefined kernel
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points. KPConv can efficiently capture the spatial structure and local relationships of point
cloud data by defining kernel points and correlating relationships. SoftPool–PointNet++,
proposed in this paper, has introduced a new methodology to enhance the feature extrac-
tion process and improve the segmentation ability. In this approach, the SA layer has been
increased to refine the feature information and improve the depth of the model. Then,
SoftPool has been utilized to reduce the computation and prevent feature redundancy while
retaining more features. Figures 13 and 14 show our method’s mIoU vs. accuracy variation
with different point cloud segmentation algorithms for the training process on our collected
dataset. In the pig body point cloud segmentation experiments, the SoftPool–PointNet++
network algorithm outperforms the other methods. Figures 13 and 14 illustrate the mIoU
versus accuracy variation with different point cloud segmentation.
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Figure 12. Comparison of point cloud segmentation visualization effect of a pig body in some
postures in a complex environment. The first and second columns are top and flat views of the point
cloud segmentation visualization of the pig body, the third column is an enlarged view of the point
cloud segmentation visualization of the part of the pig body exploring the railing, and the fourth
column is a visualization of the segmentation effect of the part of the pig body overlapping with the
railing. Circles show the differences between the different visualizations. (a) Manually labeled data
of pig point cloud; (b) PointNet++ segmentation results of pig point cloud; (c) Modified PointNet++
segmentation results of pig point cloud.

Table 5. Performance comparison of each algorithm on our dataset.

Model
Testing Sets

Avg Accuracy(%) Avg mIoU (%)

PointNet 88.48 79.88
PointCNN 94.41 88.97
PointNet++ 96.37 92.98

KPConv 97.52 94.91
SoftPool–PointNet++ 98.33 96.52

SoftPool–PointNet++ has achieved good results in pig point cloud segmentation
in complex environments. However, any method that relies on point cloud data may
face challenges in highly complex or heavily occluded scenarios where the data may
be incomplete or noisy. Additionally, unknown factors occurring during point cloud
acquisition will affect the quality of collected pig point cloud data, which increases the
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difficulty of point cloud acquisition due to unpredictable pig actions during the process.
To address this problem, it is necessary to optimize the acquisition scheme. Furthermore,
the introduction of SoftPool will increase the computation and complexity of the network,
which may pose challenges in applications requiring real-time processing. Future work
should also consider the effect of different pig poses on segmentation results as the pig’s
point cloud will be collected in various poses after entering the acquisition environment.
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4. Conclusions

There are certain parts in the pig and railing point cloud that overlap excessively,
causing PointNet++ to divide the overlapping part into the railing point cloud. This
could be due to dust present during the data collection process, slight camera occlusion
while taking pictures, or the pig’s violent reaction due to fear during data collection. As a
result, the detailed features of the railing and the pig’s body might have been inaccurately
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extracted. To overcome this challenge, we propose a novel point cloud segmentation
method for pigs in complex environments. The proposed method improves the capability
of capturing local features of large livestock, such as pigs, in a free-motion state. It also
achieves automatic segmentation of two types of point clouds, namely, the overlapping
pig point cloud and the fence point cloud, with an accuracy of 98.33% and mIoU of 96.52%.
The results of the experiment demonstrate that the SoftPool–PointNet++ network can
accurately segment the point cloud data of pigs in various postures, with visualization
effects almost identical to those of manual labeling. However, the network’s ability to
segment the part of the pig that pokes out of the pen is still inadequate. This may be due to
the fact that this part of the pig’s body is usually the edge part, making it difficult to extract
features. The acquisition environment will be better optimized in the subsequent work.
The research contributes to the advancement of 3D point cloud segmentation technology in
animal husbandry, offering new perspectives and methods for subsequent research. This is
particularly useful for segmentation tasks involving highly dynamic and irregularly shaped
objects. In this study, we examine the potential of PointNet++, a traditional point cloud
processing model, to handle more intricate and dynamic real-world settings. Our research
offers an effective point cloud processing approach for precision livestock management
in agriculture.
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