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Abstract: Crop characterization is considered a prerequisite to devising effective strategies for
ensuring successful implementation of sustainable agricultural management strategies. As such,
remote-sensing technology has opened an exciting horizon for crop characterization at reasonable
spatial, spectral, and temporal scales. However, the presence of shadows on croplands tends to distort
radiometric properties of the crops, subsequently limiting the retrieval of crop-related information.
This study proposes a simple and reliable approach for radiometrically compensating crops under
total occlusion using brightness-based compensation and thresholding approaches. Unmanned
aerial vehicle (UAV) imagery was used to characterize crops at the experimental site. In this study,
shadow was demarcated through the computation and use of mean spectral radiance values as the
threshold across spectral channels of UAV imagery. Several image classifiers, viz., k-nearest neighbor
(KNN), maximum likelihood, multilayer perceptron (MLP), and image segmentation, were used to
categorize land features, with a view to determine the areal coverage of crops prior to the radiomet-
ric compensation process. Radiometric compensation was then performed to restore radiometric
properties of land features under occlusion by performing brightness tuning on the RGB imagery.
Radiometric compensation results revealed maize and soil as land features subjected to occlusion. The
relative error of the mean results for radiance comparison between lit and occluded regions revealed
26.47% deviation of the restored radiance of occluded maize from that of lit maize. On the other hand,
the reasonable REM value of soil was noted to be 50.92%, implying poor radiometric compensation
results. Postradiometric compensation classification results revealed increases in the areal coverage of
maize cultivars and soil by 40.56% and 12.37%, respectively, after being radiometrically compensated,
as predicted by the KNN classifier. The maximum likelihood, MLP, and segmentation classifiers
predicted increases in area covered with maize of 18.03%, 22.42%, and 30.64%, respectively. Moreover,
these classifiers also predicted increases in the area covered with soil of 1.46%, 10.05%, and 14.29%,
respectively. The results of this study highlight the significance of brightness tuning and thresholding
approaches in radiometrically compensating occluded crops.

Keywords: radiometric compensation; occluded crops; UAV systems; brightness tuning; thresholding

1. Introduction

The progression in remote-sensing technology has presented the world with invaluable
sources of crop-related information. Through this technology, crops can be better quantified
for their management and yield estimation [1,2]. However, discriminating small-scale
crops requires remotely sensed images with very high spatial resolutions, typically in
centimeters [3,4]. Unmanned aerial vehicle (UAV) systems, in particular, have recently
emerged as a valuable source of high-spatial-resolution remote-sensing data, offering
substantial benefits in relation to cost, adaptability, and precise spatial resolution. UAV
systems fly at a low altitude, allowing acquisition of multispectral images with very
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high spatial resolution (VHSR) [5]. With these advantages, UAV systems are increasingly
developing to be an effective way to complement satellite remote sensing [6,7]. From
a multispectral remote-sensing perspective, detection of features from imagery with an
accurate and computationally efficient approach is one of the foremost modern challenges
in image pattern recognition [8]. From the crop perspective, pixels that make up an image
contain unique information about the nature and type of crop at a particular location. As
such, changes in pixel values across the image become the basis for defining the spatial
pattern of a particular crop in that imagery. Moreover, analysis of the interaction of scene
illumination with the reflectance and geometry of respective illuminated crop types may
serve as the basis for quantifying the amount of the different types of crops.

Just like with any other remote-sensing end products, the quality of the UAV pho-
togrammetric end products still requires serious attention if accurate spectral characteriza-
tion of crops is to be achieved with these products [9]. However, correction of these images
is usually confined to noise reduction and detector errors [10]. UAV data are subjected to
radiometric quality issues as a result of variations in solar radiation, atmospheric effects,
sensor viewing angle, and calibration mistakes [11]. This underscores the need to remove
these errors, with a view to produce illumination-consistent and atmospheric-independent
imagery [12]. Radiometric quality restoration can be defined as the detection and removal
of radiation anomalies recorded by a sensor, with a view to maintain a range of brightness
suitable for the imaged land features. Several studies have been and are still underway to
devise radiometric approaches for enhancing the quality of UAV images [10,13–15].

Although radiometric errors in aerial imagery are a function of the local image contrast,
tonal array, random noise, and radiometric resolution [16], the presence of shadows on
croplands tends to play a role in the alteration of radiometric properties of crops. This
subsequently limits the retrieval of crop-related information. This is true, despite the
substantial amount of beneficial landscape feature information that a shadow provides,
such as shape, relative position, height [17,18], and illumination direction [19]. A shadow
makes image pixels darker, and this may lead to noticeable alteration in spectral patterns
of crops. Subsequently, a partial or a complete loss of spectral information regarding crop
types and condition may occur [20,21]. The occluded crops may subsequently be subjected
to spectral confusion and misclassification, and this may have serious implications on
agricultural-monitoring programs and the attainment of global food security and hunger
alleviation goals. At the crop level, occlusion may occur as a result of the presence of
cast- and self-shadows. Whereas a cast shadow occurs due to the blocking of light by
another object at the scene, a self-shadow occurs due to occlusion by the crop itself, i.e.,
the side of the crop itself that is not exposed to the illumination source [22]. This may
also occur when the top-most leaves of a crop occlude the leaves situated below them.
Therefore, occluded crops must be radiometrically compensated for their accurate and
precise characterization. A reliable radiometric compensation approach must be able to
remove cast shadows while preserving self-shadows as part of the crop. Occluded crops
can be radiometrically compensated via detecting shadow and removing the distortions
from imagery, each of which can be investigated independently of the other [23]. In fact,
the techniques used to radiometrically compensate occluded pixels from remote-sensing
images can be achieved through two main steps: detection of shadows and performing a
de-shadowing process [24].

Radiometric compensation of crops under occlusion can be accomplished using a
thresholding algorithm, modeling, or object-oriented techniques. The thresholding pro-
cess involves determining the optimal threshold value of a digital number by analyzing
histograms to differentiate shadow information from other types of information [25]. Mod-
eling approaches are commonly used since they are less complex than thresholding, which
requires prior knowledge of shadow and mathematical modeling. On the other hand, an
object-oriented technique can also effectively detect shadows but does not operate directly
on individual pixels, as it operates on image fragments [26]. However, modeling and object-
oriented approaches are complicated, and they involve a long sequence of equations [26].
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Although thresholding has demonstrated the capability to radiometrically compensate
occluded regions, this approach is only suitable for compensating regions under partial
occlusion [27,28]. Moreover, studies on radiometric restoration have extensively focused on
built-up environments, neglecting other environmental disciplines [19,28–31]. We envisage
that, when used in conjunction with a brightness-tuning approach, thresholding can aid
in the restoration of radiometric properties of crops under total occlusion. Owing to the
limited ability to effectively handle total occlusion scenarios and the lack of simplicity and
reliability of these radiometric compensation techniques, this study proposes a simple and
reliable approach for radiometrically compensating crops under total occlusion by inte-
grating brightness-based compensation and thresholding techniques. This approach relies
on tuning brightness properties of the imagery while observing the restoration patterns of
spectral information in the occluded region.

2. Material and Methods
2.1. Experimental Site Characterization

The experimental site was situated within the Mutale River catchment in the Limpopo
province of South Africa, which is well known for its agricultural practices. Small-scale crop
farming for supporting local livelihoods and the rural economy is dominant in this area. The
small-scale farms of the study area were found at 22◦47′37.22′′ S, 30◦29′08.41′′ E absolute
location of the Earth. A subtropical climate, with a mean annual rainfall ranging between
300 mm and 1000 mm, characterized the experimental site [32], with a large amount of rainfall
received during the summer season. The experimental site was a part of many small land plots
that cultivated a variety of crops, such as maize, cabbage, sweet potatoes, sugar beans, peas,
green beans, and Solanum retroflexum, across all the seasons due to an available furrow irrigation
system to support crop growth during rain-scarce seasons. The variety of crops cultivated in
this area underscores the need to quantify these crops for yield estimation purposes. Figure 1
shows the location of the experimental site with respect to South Africa and the Mutale River
catchment. The selection of the experimental site was prompted by the presence of a shadow,
which appears as large black spot in the image, created by an adjacent tree.
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2.2. Methods

The following sequence of methods and techniques was carried out to achieve the
purpose of this study (Figure 2).
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UAV Imagery Acquisition

Remotely sensed imagery used in the current study was acquired from a UAV platform.
Prior to the acquisition of the UAV imagery, the weather conditions were assessed to ensure
that the images were acquired during midday and in cloudless conditions to eliminate the
influences of haze, smoke, and clouds on the quality of the imagery. The UAV imagery
was acquired on 30 June 2021. Two drone flight campaigns were surveyed to capture
images during midday (i.e., between 12:00 and 14:00). A DJI Matrice 600 UAV with a
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Mica Red-Edge Multispectral Sensor captured land surface images using an 8.5 cm spatial
resolution. This UAV multispectral sensor captured images in five spectral channels of the
electromagnetic spectrum, i.e., red, green, blue, near-infrared, and red-edge. The flight-
imaging process was carried out at a speed of 10 m per second. The flight plan was designed
such that the imaging process created a minimum lateral and frontal overlap of 75% for
feature matching and mosaicking in postprocessing. The flight altitude for the UAV was
set at 120 m above ground level, capturing images at a spatial resolution of 8.0 cm. Table 1
provides details of the UAV multispectral sensor employed in the study area.

Table 1. Description of the UAV sensor used to acquire the imagery.

UAV Features Description

Platform

Weight 6 kg

Altitude 120 m

Area covered 8711 m squared

Flight time 13 min 28 s

Speed 10 ms−1

Visible satellites 13

Overlap 75%

Side lap 75%

Dimension 1.2 m

Red-Edge Sensor

Spectral bands Red, green, blue, NIR, and red-edge

Focal length 5.5 mm

Field of view 7.2 degrees

Weight 150 g

Image resolution 1280 × 960 mm

Spatial resolution 8.5 cm

2.3. UAV Camera Calibration

Calibration of each camera of the UAV multispectral sensor was performed to remove
the lens distortion and calculate the focal length and principal point of each camera. Each
camera designed and captured a white chess-board target with different roll and pitch
angles to produce convergent images. The multispectral camera was configured to ensure
75% overlap between consecutive images. This was carried out to ensure that all the
portions of the study area were covered during the imaging process and to facilitate an
accurate orthomosaic process. An image of a reflectance calibration panel was captured
before and after each flight to remove the effects of sunlight variation and reflectance
characteristics.

2.4. UAV Image Processing

The raw remotely sensed data collected by unmanned aerial vehicles represent the
Earth’s irregular surface; therefore, georeferencing was utilized to assign map geographic
coordinates to image data. In this study, geometric correction was used to ensure that pixels
or features in an image were in their proper and exact position on the Earth’s surface and
to minimize or reduce geometric distortions between sets of data points. This was achieved
by employing the nearest neighbor resampling techniques in the TerrSet 18.31 geospatial-
monitoring software package. Georeferencing is frequently used in the correction process
because shifting pixels to remove distortion and assigning coordinates to those pixels can
both be performed at the same time.
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2.5. Image Stretching

An image enhancement technique in the form of linear stretching was applied to
rescale the pixel values of each original image band to new values that ranged from 0 to
255. The linear stretching was performed on each UAV band using the Stretch module
embedded in the TerrSet platform based on Equation (1):

Lin_stretch = (IV − IL) ∗
(

OUL−OLL
IUL− ILL

)
+ OLL (1)

IV is the value of a pixel in the input map,
ILL is the lower value of the “stretch from” range,
IUL is the upper value of the “stretch from” range,
OLL is the lower value of the “stretch to” range,
OUL is the upper value of the “stretch to” range.
The input values were determined by the ‘stretch from’ values, and the lower and

upper ‘stretch from’ boundary values were involved in the stretching process. The output
values were then determined using the output domain, the value range, and precision of
this domain.

2.6. Conversion of Digital Number (DN) Values to Radiance

Multispectral images require conversion from digital number (DN) to reflectance data
before they can be interpreted or used as input for image analysis [33]. When reflectance
maps are the intended end products, results can be improved by performing absolute
radiometric sensor correction. This involves converting unitless DN values into at-sensor
radiance L using the following Equation (2):

L =
W

m2 ∗ Sr ∗ nm
(2)

such that

L(x, y) = Vx,y ∗
(

a1

g

)
∗ p(x, y)− pBL(x, y)

te + a2y− a3tey
(3)

where L(x, y) for each x, y pixel is determined in terms of V(x, y), which is the vignetting
correction of the normalized raw DN and normalized black-level DN [34].

a1, a2, and a3 denote radiometric correction factors. The sensor-specific constants a1−3a
may be obtained from the metadata file of the UAV imagery-scanning specification results.

p(x, y) and pBL(x, y) denote pixel radiance at location (x, y),
g denotes the sensor gain,
te denotes the exposure time.
The DN values were converted to calibrated radiance values based on the user-defined

values for Lmin/Lmax for UAV sensor systems. This process was achieved using the image
calculator embedded in the TerrSet 18.31 software package.

2.7. Image Filtering

Shadow has demonstrated the ability to produce sharp discontinuities in an image.
These discontinuities are abrupt changes in pixel intensity, which characterize boundaries
of objects in a scene [35]. In this study, edge pixels were detected via applying a filtering
technique in the form of Gaussian-based Sobel edge detection. This technique uses a pair
of 3 × 3 convolution kernels or masks, Gx and Gy, as shown in Equation (4) adopted from
Yin et al. [36]:

|G| =
√

G2
x + G2

y (4)

where G denotes the Gaussian filter,
x is the resulting image after applying the kernel Kx to the input image,
y is the resulting image after applying the kernel Ky to the input image.
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Kernels Kx and Ky were computed using the matrices in Equation (5) and Equation (6),
respectively:

Kx =

−1 0 1
−2 0 2
−1 0 1

 (5)

Ky =

 1 2 1
0 0 0
−1 −2 −1

 (6)

These convolution kernels are typically fused together to determine the absolute
magnitude and the x- and y-orientations (horizontal and vertical directions) of the gradient.
The selection of the Sobel operator was based on its insensitivity to noise and relatively
small mask in image detection [37].

2.8. Demarcation of Shadow

Demarcation of shadow at the experimental site was achieved using the brightness
statistics of each band of RGB. A total of 100 points were randomly digitized on the occluded
region and superimposed on each spectral band of the UAV imagery. The pixel values on
which the points were overlain were then extracted to compute the brightness statistics of
the occluded region under each spectral band. Upon the successful computation of the
descriptive statistics, the mean radiance value of each spectral band was used as a threshold
for demarcating shadow, such that

Lshadow =

{
1 i f L× (i, j) ≤ T
0, otherwise

(7)

where L is the radiance of shadow, i is the pixel at the i-th location, and j is the pixel at the
j-th location.

This process was carried out in an ArcMap GIS environment.

2.9. Derivation of Color Composite Image

A 24-bit RGB composite image was initially produced to facilitate the identification of
shadow and various crops. This composite image showed features using the proportions
of radiance reflected in three channels of the UAV sensor. A 24-bit false color composite
(FCC) image was also generated based on the NIR, red, and red-edge spectral bands. The
motive behind the FCC image generation was to ensure that the NIR and red-edge spectral
channels to which crops are sensitive also underwent the radiometric restoration process.

2.10. Generation of Spectral Vegetation Indices for Occluded Crop Characterization

Several vegetation indices were generated for the purpose of evaluating their efficacy
in characterizing occluded crops. Table 2 provides a list of the spectral vegetation indices
generated for the purpose of this study. The selection of these spectral vegetation indices
was informed by the spectral resolution of the UAV sensor employed in this study.

2.11. Classification of UAV Imagery

Land cover types were classified using a supervised image classification technique.
Initially, the training site was created for four (4) cover types, namely cabbage, maize,
soil, and shadow. The inclusion of shadow as a land cover class was triggered by the
inability of the composite images and spectral vegetation indices to identify and recognize
crops and soil located in the shadowed region. Four supervised image classifiers, namely
k-nearest neighbor, maximum likelihood, multilayer perceptron neural network, and object-
oriented, were applied to categorize these land cover types based on the spectral bands
prior radiometric compensation. This process was repeated for only three (3) land cover
types, viz., cabbage, maize, and soil, based on a radiometrically compensated RGB image.
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Table 2. List of spectral vegetation indices generated in this study.

Index Equation Author(s)

NDVI NIR− R
NIR + R

(8) Filgueiras et al. [38]

GNDVI NIR− G
NIR + G

(9) Mangewa et al. [39]

SAVI
(

NIR –R
NIR + R + 0.5

)
× (1.5) (10) Wang et al. [40]

OSAVI NIR− R
NIR + R + 0.16

(11) Bastiaanssen et al. [41]

GOSAVI NIR− G
NIR + G + 0.16

(12) Ji et al. [42]

NDRE NIR− RE
NIR + RE

(13) Crema et al. [43]

2.12. Radiometric Compensation

The initial step of radiometric restoration was to compensate the occluded region
by adding the radiation of the occluded region (Ldir(P)) and the diffused radiance from
the region adjacent the occluded region. This was achieved by modifying Equation (14)
adopted from Li et al. [44]:

Lsen(P) = Ldir(P) + Ldi f f + Latm (14)

where Ldir(P) denotes radiation directed to the sensor from the occluded region,
Ldiff denotes the diffused radiance from the adjacent region,
Latm denotes the radiance reflected by the atmosphere without reaching the ground.
The radiometric compensation Equation (14) adopted from Li et al. [44] is relevant

for compensating radiometric properties of occluded regions as imaged with satellite
sensor. As such, the Equation also accounts for the radiation loss (Latm) as a result of
interaction with the atmosphere. In this study, the radiance reflected by the atmosphere
(Latm) was deliberately omitted because the employed UAV system captured the image
while situated below the atmosphere to record the reflected radiation that did not interact
with the atmosphere, such that

Lsen = Ldir + Ldi f f (15)

Subsequently, an iterative thresholding method was applied to further radiometrically
compensate the occluded region of the study area by tuning brightness using both TCC and
FCC images as inputs to the equation. The brightness tuning was achieved via obtaining
the minimum and maximum radiance values of each spectral band fused in both the TCC
and FCC images. The brightness of each image was set at the initial threshold (T0) to divide
each image into foreground and background using Equation (16):

T0 =
(radmax − radmin)

2
(16)

where T0 denotes the initial threshold,
radmax denotes the maximum radiance value of the image,
radmin denotes the minimum radiance value of the image.
The subsequent brightness values of the image were obtained via pushing the thresh-

old to the next level, such that

Tk+1 =
radmax + radmin

2
+ 1 (17)
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where k denotes the spectral channel to be radiometrically compensated, i.e., R, G, and B or
NIR, R, and RE channels.

+1 denotes radiance values at the next threshold level.
This process was repeated until the brightness threshold reached its saturation, such that

Tk =
radmax + radmin

2
+ K (18)

where Tk denotes the k-th threshold.
The brightness threshold saturation was reached when Tk+1 = Tk, denoting the possible

maximum threshold level of the image. However, four threshold levels were applied
in this study. Upon the successful radiometric compensation process, the supervised
image classification process was repeated with the exclusion of shadow as a land cover to
determine the deviation in the area of the cover types under a radiometric compensation
situation for those generated under uncompensated situation.

2.13. Spectral Radiance Evaluation of Compensated Land Features

The compensated radiometric properties of the occluded land features were evaluated
to determine the extent to which they deviated from the same land feature types situated
in the sunlit area of the experimental site. For this purpose, the relative error to the mean
technique was applied to evaluate the radiance of both maize and soil using Equations (19)
and (20) proposed by Thai et al. [45]:

REMmaize =
Litmaize − compensatedmaize

Litmaize
× 100% (19)

REMsoils =
Litsoils − compensatedsoils

Litsoils
× 100% (20)

This method facilitated the measurement of the amount of radiance error in the
restored radiance properties of the occluded land feature types relative to the radiance
amounts of the sunlit land features.

3. Results
3.1. Demarcation of Shadow

In this study, shadow was demarcated via applying mean radiance values computed
from the samples collected from the shaded region of the experimental site. Figure 3
shows the general spectral pattern of the mean radiance data sampled from all the spectral
channels of the UAV imagery. The mean radiance values of shadow, as extracted from blue,
green, red, NIR, and red-edge spectral channels, were observed to be 0.005, 0.005, 0.002,
0.004, and 0.003, respectively.

The computed mean radiance values were then used to demarcate the shadow on the
respective spectral bands, as shown in Figure 4.

3.2. Land Cover Types at the Experimental Site

This study aimed to radiometrically compensate the occluded land cover in imagery
acquired with a UAV system. The original images (TCC and FCC) showing the land cover
types of the experimental site are shown in Figure 5. The existing land cover types in
these images were cabbage, maize, and soil. In these images, maize and soil were noted
to be subjected to occlusion by an adjacent tree. Whereas maize was observed to only be
subjected to occlusion by an adjacent tree, soil was noted to be subjected to occlusion by
both adjacent trees and aboveground maize cover.
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3.3. Comparative Analysis of Spectral Mean Values of Lit Cover and Occluded Cover

A total of 30 pixels from each lit cover type and each occluded cover type were
randomly sampled to determine variations in their spectral radiance values. The mean
radiance values of various UAV spectral channels were computed for each lit cover type
and each occluded cover type to achieve this. Table 3 shows the variations in mean spectral
radiance values across lit and occluded land cover types. The computed descriptive
statistics revealed significant variations in the mean spectral radiance values between lit
and occluded land cover types across the spectral channels of the UAV sensor.

Table 3. Mean spectral values of lit and occluded land cover types.

Land Features Blue Green Red NIR Red-Edge

Lit soil 0.489 0.722 0.596 0.887 0.427
Occluded soil 0.001 0.001 0.001 0.002 0.002

Occluded maize 0.014 0.023 0.002 0.017 0.027
Lit maize 0.336 0.733 0.109 0.791 0.940

3.4. Spectral Vegetation Indices for Crop Characterization

Upon successful derivation of several spectral vegetation indices, it can be noted
through visual interpretation that these indices demonstrated varying sensitivity levels in
characterizing occluded crops (Figure 6). Whereas some spectral vegetation indices, such
as GOSAVI (Figure 6d) and GNDVI (Figure 6f), showed an inability to clearly distinguish
crops from soil, clear distinctions between crops and soil were clearly visible with the NDVI
(Figure 6a), SAVI (Figure 6b), OSAVI (Figure 6c), and NDRE (Figure 6e) spectral vegetation
indices. Although OSAVI demonstrated its ability to draw a clear distinction between crops
and soil, it generalized crops in the occluded region as soil. Subsequently, the occluded soil
was overestimated. Whereas NDVI and NDRE managed to show patterns in crops in the
occluded region, SAVI showed patterns in soil in this region. Whereas NDVI and NDRE
did not associate occluded soil with any of their spectral values, SAVI did not associate
occluded crops with any of its spectral values.
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Subsequently, spectral differences between crops and soil exposed to light and those
in the occluded region were analyzed via comparing the profiled spectral mean radiance
values (Table 4). Based on the mean spectral vegetation index value analysis, NDVI, SAVI,
and OSAVI showed good detection ability of lit maize, with the mean values of 0.762, 0.706,
and 0.643, respectively. The lit soil was better characterized by NDRE, with the mean value
of 0.371. However, the highest mean spectral values of occluded maize were shown by
NDVI and OSAVI (0.078 and 0.07, respectively). The occluded soil, on the other hand, was
noted to stand out with NDRE, with a mean spectral index value of 0.468.

Table 4. Mean spectral index values of the selected vegetation indices.

NDVI SAVI OSAVI GOSAVI NDRE GNDVI

Lit maize 0.762 0.706 0.643 0.041 −0.092 0.047
Occluded maize 0.078 0.023 0.070 −0.026 −0.133 −0.174

Lit soil 0.194 0.243 0.176 0.103 0.371 0.115
Occluded soil 0.086 0.001 0.004 0.006 0.468 0.157

3.5. Spatial Pattern Analysis of Crops and Soil

Upon successful analysis of lit and occluded crops and soil from the selected spectral
indices, the crops and soil were classified to determine the area that they covered. In this
case, shadow was also included as a land cover class due to the inability of the explored
spectral vegetation indices to effectively detect both crops and soil in the occluded region,
i.e., specific indices could only effectively detect either crops or soil or neither soil nor
crops. Figure 7 shows the spatial configuration of the land cover types at the experimental
site. It was noted that the experimental site was characterized by three (3) types of land
cover, i.e., cabbage, maize, and soil. These crop types were generated by employing four
supervised image classification techniques, viz., k-nearest neighbor (KNN) (Figure 7a),
maximum likelihood (Max_Like) (Figure 7b), multilayer perceptron neural network (MLP)
(Figure 7c), and object-oriented (segmentation) (Figure 7d) classifiers. The deployment of
several classifiers in this study was based on the need to evaluate whether these classifiers
could be able to determine crops and soil in the occluded region without having been
trained to recognize them.

The area covered by each land cover type at the experimental site was assessed, with
special attention placed on the occluded region. The main purpose of placing the attention
on the occluded region was because the radiance properties of land features situated within
it were compromised. Analysis of this region provided insight regarding the radiant nature
and extent of the compromised land features. Moreover, areal analyses of different land
features were carried out to evaluate the efficacy of the selected classifiers in estimating
the area occupied by the occluded region or shadow. From Figure 8, it was noted that the
segmentation classifier predicted the occluded region as the largest land feature occupying
the experimental site, with an area of 40.84%. The KNN classifier also predicted a large
area of the occluded region, with an area of 37.57%. The MLP and maximum likelihood
classifiers showed the occluded shadow covering areas of 25.09% and 28.47%, respectively.

3.6. Radiometric Compensation

The radiometric compensation analyses of four threshold levels applied on both
FCC and TCC images are presented in Figures 9 and 10. From Figure 9, the brightness-
tuning results for the FCC image showed increased radiance intensity in the lit region
of the experimental site at the T1, T2, T3, and T4 threshold levels. However, there was
no radiometric restoration noted in the occluded region, as expected. By implication, the
brightness-tuning process did not yield the anticipated results when carried out on the
FCC imagery produced from the fusion of the NIR, red, and red-edge spectral channels of
the UAV sensor. Through visual interpretation of Figure 10, the brightness-tuning results
revealed gradual increases in radiance intensity in both the lit and occluded regions of the
experimental site as threshold level increased. This radiometric compensation technique
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yielded reasonably better results when performed on the TCC image since radiometric
properties of the land features located in the occluded region were reasonably restored.
It was subsequently noted that maize cultivars and soil were the only land feature types
subjected to occlusion.
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3.7. Spectral Analysis of Radiometrically Compensated Maize and Soil

Upon successful restoration of radiometric properties of the occluded land features,
the restored spectral radiance samples of the occluded land futures were collected through
digitization of point shapefiles and extracting restored spectral radiance values on which
the point shapefiles were superimposed. Subsequently, the mean spectral radiance value
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of each occluded land feature was calculated and compared with the ones sampled from
the lit region and occluded region prior to the radiometric restoration process. Table 5
and Figure 10 show the mean spectral radiance values of land features for the lit area and
occluded region precompensation and postcompensation at the fourth threshold level.

Table 5. Mean spectral radiance values of land features for lit area and occluded and compensated areas.

Sunlit Occluded Compensated

Blue Green Red Blue Green Red Blue Green Red

Maize 0.336 0.733 0.109 0.014 0.023 0.002 0.079 0.539 0.267
Soil 0.489 0.722 0.596 0.001 0.001 0.001 0.24 0.141 0.102

From Figure 11, it was noted that the spectral radiance values of both occluded maize
and soil substantially increased. Table 6 shows the relative error of the mean results for
land features at the experimental site. The computed relative error of the mean results for
radiance comparison between the lit and occluded regions revealed 26.47% deviation of the
restored radiance of occluded maize from that of lit maize. On the other hand, radiometric
properties of soil were not accurately restored since the reasonable REM value for this land
feature was 50.92% for the blue channel of the UAV sensor.
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Table 6. The relative error of the mean results for the restored radiance of the occluded land features.

Blue Green Red

REMMaize 76.49 26.47 153.21
REMSoils 50.92 80.47 82.89

3.8. Spatial Configuration of Land Feature Types Postradiometric Compensation

Upon successful analysis of radiometrically compensated land features, land features
were classified again with a view to determine the lost area as a result of occlusion. Figure 12
shows the land feature classes after radiometric compensation of the occluded region as
predicted by (a) KNN, (b) maximum likelihood, (c) MLP, and (d) object-oriented classifiers.
The oval shape in each classified image shows the radiometrically restored land features in
the occluded region of the imagery.
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Moreover, areal analyses of different land features were carried out to evaluate the
deviation of land feature areas post-radiometric compensation process. Table 7 shows the
area covered by each land feature type as predicted prior to radiometric compensation
(land feature types predicted in Figure 6) and post-radiometric compensation (land feature
types predicted in Figure 12).

Table 7. Areal comparison of land feature types before and after radiometric compensation.

Area Covered (%) Precompensation Area Covered (%) Postcompensation

KNN Max_Like MLP Segmentation KNN Max_Like MLP Segmentation

Cabbage 25.09 25.96 24.88 24.36 28.33 32.11 20.56 21.09
Maize 8.81 10.13 12.83 7.92 49.37 28.16 35.25 38.56

Soil 27.36 38.27 35.14 26.06 22.3 39.73 44.19 40.35

From Table 7, the selected image classifiers showed varying ability in classifying
radiometrically compensated land features. However, there was a general increase in the
land feature types under occlusion as predicted by all the classifiers. It was noted that the
areas covered by maize cultivars and soil increased by 40.56% and 12.37%, respectively,
after being radiometrically compensated, as predicted by the KNN classifier. Moreover, the
maximum likelihood, MLP, and segmentation classifiers predicted increases in area covered
with maize of 18.03%, 22.42%, and 30.64%, respectively. Ultimately, these classifiers also
predicted increases in the area covered with soil of 1.46%, 10.05%, and 14.29%, respectively.

4. Discussion

The importance of analyzing the spectral properties of land features has been well re-
ceived across several disciplines, such as crop type and condition assessment [46]. Shadow
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has the ability to cause a loss in radiometric information, leading to pixel misclassifi-
cation and image misinterpretation [47]. Shadows are an unavoidable component of
high-resolution remotely sensed imagery, and the impact of shadows increases as the
spatial resolution of imagery increases [48]. Tomas et al. [49] also noted that accurate
extraction of pure crop and bare soil pixels is always challenging as a result of the influence
of shaded pixels. This study was aimed at proposing a simple approach for radiometrically
compensating crops under occlusion for their improved quantification. The UAV system
facilitated the successful acquisition of high-spatial-resolution imagery for characterizing
crops at the experimental site. Milas et al. [50] noted UAV systems are capable of providing
detailed information about land features, even at a resolution of several centimeters, and
that removing shadow from data acquired using these systems is not easy. This is even
more difficult if the imagery is to be subjected to image classification process, due to a
challenge pertaining to the description of the distinct properties of various land feature
classes using single-level features [44]. Movia et al. [47] also noted that, although high-
spatial-resolution UAV images facilitate the retrieval of many land feature information
types, they are subjected to classification problems as a result of shadow. In this study, dead
pixels were noted when characterizing occluded land feature types with spectral vegetation
indices. In order to achieve accurate and automatic crop detection, along with correct seg-
mentation parameters, it is necessary to find an automatic and efficient method to look for
the fourth-threshold value that sets the breakpoint between vegetation and bare soil. These
pixels appear with no spectral radiance value, especially when characterizing occluded
land feature types with the NDVI, SAVI, NDRE, and GNDVI spectral vegetation indices.

Although Milas et al. [50] also noted a higher sensitivity of several classification
algorithms to shadow at different spatial resolutions, their study attributed this sensitivity
to variations in the texture of land features. Texture would not be properly identified
and, subsequently, the shadow could neither be identified nor eliminated properly. In this
study, the KNN classifier classified some soil as maize, whereas some maize cultivars were
recognized as cabbage with the maximum likelihood classifier. This could be attributed to
radiometric restoration in the imagery. In their study to remove shadow through separated
illumination correction for urban aerial remote-sensing images, Luo et al. [51] also noted
that some road and vegetation fragments in the occluded regions were categorized as
buildings. Moreover, several existing shadow removal methods evaluate their results
quantitatively, as no shadow free-ground truth is available [51]. No technique can deal
with a shadow projected on a complex texture [50]. The results from visual and statistical
assessments indicated a significant difference between soil/vegetation indices in sunlit
and shaded pixels [52]. The areas of discontinuity between illuminated and occluded
land features were not consistent across the experimental site due to variations in the
illumination condition, as also noted in the study of Pons and Padró [53]. The area coverage
of maize was noted to be exaggerated as a result of the spectral similarity between maize and
weeds located among cabbage. Moreover, the REM results of radiometrically compensated
soil revealed the limitation of the proposed approach in completely restoring occluded soil.
It is important to note that, during the radiometric compensation process, the land feature
types in the sunlit area were also subjected to the process. This might have influenced
the accuracy of the classification of land feature types after the radiometric compensation
process. Moreover, this study did not employ field-based measurements to verify the
precision of the estimated areal coverage of occluded crops. As such, the reliability of the
classifiers was evaluated via visual comparison of the classified land cover types with those
shown in the TCC image. However, only ground-based knowledge was employed in the
recognition of land feature types without measurements.

5. Conclusions

This study demonstrated the importance of radiometrically compensating crops for
informed quantification of their areal coverage. This was achieved by employing brightness
compensation and the thresholding of visible spectral bands fused in an RGB composite
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image. The reliability of the proposed approach was evaluated by analyzing the relative
error of the mean results, which compared the mean spectral radiance of the compensated
land features to those in the sunlit area. Image classification results for KNN, maximum
likelihood, MLP, and segmentation classifiers revealed an increase in the area covered by
maize and soil in radiometrically compensated images compared to the area coverage prior
to radiometric compensation. Overall, the results of this study highlighted the significance
of radiometrically compensating occluded crops for their precise quantification. Ultimately,
this study emphasized the ongoing significance of remote-sensing technology in addressing
agricultural issues that hamper the successful attainment of poverty alleviation and food
security goals.
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