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Abstract: At present, clinicians are expected to manage a large volume of complex clinical, laboratory,
and imaging data, necessitating sophisticated analytic approaches. Machine learning-based models
can use this vast amount of data to create forecasting models. We aimed to predict short- and medium-
term functional outcomes in acute ischemic stroke (AIS) patients with proximal middle cerebral
artery (MCA) occlusions using machine learning models with clinical, laboratory, and quantitative
imaging data as inputs. Included were consecutive AIS patients with MCA M1 and proximal M2
occlusions. The XGBoost, LightGBM, CatBoost, and Random Forest were used to predict the outcome.
Minimum redundancy maximum relevancy was used for selecting features. The primary outcomes
were the National Institutes of Health Stroke Scale (NIHSS) shift and the modified Rankin Score (mRS)
at 90 days. The algorithm with the highest area under the receiver operating characteristic curve
(AUROC) for predicting the favorable and unfavorable outcome groups at 90 days was LightGBM.
Random Forest had the highest AUROC when predicting the favorable and unfavorable groups
based on the NIHSS shift. Using clinical, laboratory, and imaging parameters in conjunction with
machine learning, we accurately predicted the functional outcome of AIS patients with proximal
MCA occlusions.

Keywords: ischemic stroke; machine learning; medical decision making; middle cerebral artery;
artificial intelligence

1. Introduction

With 12.2 million new cases yearly, acute ischemic stroke (AIS) is a significant cause of
morbidity worldwide [1]. In approximately 30% of AIS patients, the underlying cause is
large vessel occlusion. Furthermore, the most common artery involved in AIS is the middle
cerebral artery (MCA) [2]. Due to the high incidence of large vessel MCA occlusions and
treatment advancements in M1 and proximal M2 occlusions, outcome prognostication in
patients affected by these specific occlusions has become increasingly significant [3–6].

Research has been conducted to identify methods for enhancing the precision of
clinical predictions of short-term and mid-term outcomes following an AIS, which may
be helpful in treatment decisions and handling the expectations of the patients and their
families. Clinicians are increasingly expected to handle a greater volume of complex clinical,
lab, and imaging data, resulting in the use of more sophisticated analytical approaches. This
significant volume of clinical, lab, and imaging data can be utilized by machine learning
(ML)-based prediction models to generate effective prognostication models. In the future,
it might be possible to incorporate these models into clinical practice, where they can be
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utilized as decision-support aids. ML and deep learning models have been utilized in AIS
research for tasks including diagnosis, radiological outcome prediction, morbidity and
mortality prediction, and functional outcome prediction. Recently, Mainali et al. reviewed
thirteen papers that predicted the functional outcome of AIS patients using ML or deep
learning [7]. Adopting ML algorithms, according to them, allows us to efficiently process
the vast amount of information that surrounds us [7].

According to our review of the literature, no study has investigated the ability of ML
models to predict short-term and mid-term functional outcomes in AIS patients due to
isolated MCA occlusions. As AIS due to MCA occlusions is approximately five times more
prevalent than AIS due to isolated anterior and posterior cerebral artery occlusions, the
development of ML models that predict outcomes in MCA occlusions is beneficial from a
clinical perspective [8]. Functional outcomes in AIS patients with MCA occlusions were
predicted by Forkert et al.; however, magnetic resonance imaging (MRI) scans were used
as the input [9]. In this study, we aimed to predict short-term and mid-term functional
outcomes in AIS patients due to proximal MCA occlusions with ML models using the
clinical, lab, and quantitative imaging data as inputs.

2. Materials and Methods
2.1. The Patient Selection

In this retrospective cohort study, two comprehensive stroke centers including consec-
utive AIS patients admitted to Johns Hopkins Hospital (JHH) and Johns Hopkins Bayview
Medical Center (JHBMC) between 1 October 2017 and 30 September 2022, were evalu-
ated for eligibility. We searched for patients with MCA M1 and proximal M2 occlusions.
The M1 segment of the MCA is defined as the horizontal portion of the proximal MCA
from the bifurcation of the internal carotid artery (ICA) to the genu of the MCA branch
or branches at the entrance to the insula [5]. M2 section was defined as vertical MCA
branches within the Sylvian fissure that extend from the genu to the next genu at the level
of the operculum [5]. Proximal M2 occlusions were defined as occlusions within 1 cm
of the bifurcation of the MCA in the horizontal M2 section [10]. An anterior temporal
artery arising from the horizontal M1 segment was not considered an M2 branch. AIS was
diagnosed clinically and confirmed by brain computed tomography (CT). Patients who
met the following inclusion criteria were included in the study: (1) Admitted within 24 h of
symptom onset; (2) minimum 18 years old; (3) initial non-contrast brain CT scan excluded
intracranial hemorrhage; (4) diagnosed with primary AIS due to M1 and proximal M2
occlusion based on CT angiography (CTA) and CT perfusion (CTP); (5) hypoperfusion
analysis was performed utilizing an automated perfusion software platform based on CTP
(RAPID 4.9, iSchemaView, Menlo Park, CA, USA); and (6) as the outcome measures, the
National Institutes of Health Stroke Scale (NIHSS) shift or modified Rankin Score (mRS)
at 90 days were available as the outcome measures. Patients with missing outcome data,
secondary AIS due to emboli caused by endovascular treatment of another occlusion, and
those discharged with a diagnosis of transient ischemic attack (TIA) were excluded. The
Institutional Review Board at JHH approved the study. The study complied with the Health
Insurance Portability and Accountability Act.

2.2. Data Extraction

From electronic medical records, demographic and clinical information were extracted
retrospectively. The following variables were obtained: Sex, age, race, alcohol consumption,
smoking status, whether JHH or JHBMC was the initial hospital, stroke etiology based
on TOAST criteria [11], medical history (hypertension, diabetes mellitus, atrial fibrillation,
heart disease, dyslipidemia, chronic kidney disease, deep venous thrombosis or pulmonary
embolus at the time of admission, hepatitis C virus [HCV] and human immunodeficiency
virus [HIV] status, sleep apnea, prior stroke or TIA, peripheral vascular disease, obesity,
history of malignancy, anticoagulation or antiplatelet use), admission vitals (heart rate,
systolic blood pressure, diastolic blood pressure, respiratory rate), admission shock in-
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dex (SI), age-related admission SI, admission SpO2, admission body mass index (BMI),
discharge vitals (heart rate, systolic blood pressure, diastolic blood pressure, respiratory
rate), discharge BMI, discharge SpO2, admission NIHSS score, discharge NIHSS score,
intravenous (IV) tissue plasminogen activator (tPA) treatment, mechanical thrombectomy
(MT), and the mRS at 90 days following hospital discharge.

All patients had peripheral venous blood drawn in accordance with our local stroke
care standard protocol at the emergency department. All blood samples were collected,
processed, and analyzed using the same procedures. The following admission and dis-
charge lab parameters were retrospectively extracted: Sodium, potassium, glucose, calcium,
blood urea nitrogen (BUN), creatinine, hematocrit, hemoglobin, white blood cell (WBC)
count, platelet count, and platelet count to WBC count ratio.

To collect radiologic variables, imaging reports were used. In addition, all CTAs
were evaluated by a board-certified neuroradiologist (Vivek Srikar Yedavalli, 6 years of
experience) in conjunction with all available imaging and clinical data for each patient in the
study. The existence and precise location of any AIS were noted. The same neuroradiologist
collected and confirmed the baseline Alberta Stroke Program Early CT Score (ASPECTS), the
occluded vessel, the occluded segment, the occlusion laterality, the presence of hyperdense
MCA on thin cuts, the presence of hemorrhagic transformation, and the type of hemorrhagic
transformation. The time from admission to CT in minutes was extracted retrospectively.

At the discretion of the neurointerventionalist, thrombectomy was performed by one
of four experienced interventional neuroradiologists or endovascular neurosurgeons using
any FDA-approved thrombectomy device. Extracted data included reperfusion grade as
evaluated by the treating interventionalist after the procedure using the modified treat-
ment in cerebral ischemia (mTICI) score, the number of passes during the thrombectomy
procedure, time from admission to groin puncture in minutes, time from groin puncture
to recanalization in minutes, time from admission to recanalization in minutes, and type
of anesthesia during thrombectomy. If IV-tPA was administered, time from admission to
needle time in minutes was extracted.

2.3. Imaging Protocols

Comprehensive CT imaging was performed at JHH and JHBMC from 1 October 2017
to 30 September 2022, utilizing helical scanners on the Siemens Flash and Drive systems
(Siemens Healthineers, Erlangen, Germany). The parameters listed below are applicable
to both Siemens scanners. Parameters for non-contrast CT: Helical mode at 5-mm slice
thickness (ST), 120 kVp, 365 mAs, rotation time 1 s, acquisition time 6–8 s, collimation
128 × 0.6 mm, pitch value 0.55, scan direction CC. CTP parameters: Injection of 50 mL
non-ionic iodinated contrast with 30 mL saline flush at 5–6 mL/s with 70–100 mm coverage
at 5-mm ST. CTP parameters: 70 kVp, 200 mAs effective, rotation time 0.25 s, average
acquisition time 60 s, collimation 48 × 1.2 mm, pitch value 0.70, 4D range 114 mm × 1.5 s.
CTP images are then post-processed with commercial software RAPID 4.9 (IschemaView,
Menlo Park, CA, USA) to generate Tmax maps. CTA head and neck parameters: Non-ionic
iodinated contrast with 50–70 mL injected at 5–6 mL/s from the aortic arch to the vertex
using a bolus-triggered injection technique at 3 mm ST. CTA parameters: 90/150 kVp,
Sn filter, quality reference mAs 180, rotation time 0.25 s, average acquisition time 3–5 s,
collimation 128 × 0.6 mm, pitch value 0.70, scan direction CC.

Extracted data included relative cerebral blood flow (rCBF) < 20%, rCBF < 30%,
rCBF < 34%, rCBF < 38%, time to the maximum of the residue function (Tmax) > 4 s,
Tmax > 6 s, Tmax > 8 s, Tmax > 10 s, cerebral blood volume (CBV) < 34%, CBV < 38%,
CBV < 42%, mismatch volume, mismatch ratio, hypoperfusion index (HI), digital sub-
traction angiography (DSA) collateral score, clot burden score, and single-phase CTA
collateral score [12]. The American Society of Interventional and Therapeutic Neuroradi-
ology/Society of Interventional Radiology (ASITN/SIR) score was used for the collateral
score for DSA. The mismatch volume was calculated by subtracting the perfusion deficit
volume from the ischemic core volume. The mismatch ratio was calculated by dividing the
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perfusion deficit by the infarct core volume. HI is defined as the volumetric ratio of tissue
with a Tmax > 10 s and Tmax > 6 s.

2.4. Outcome of Interest

NIHSS shift and mRS at 90 days were the primary outcomes. NIHSS shift (admission
NIHSS score − discharge NIHSS score) was computed based on the recent study from
Meyer et al. for each patient [13,14]. With a cut-off defined by the median NIHSS shift,
patients with an NIHSS shift above the median score and patients with an NIHSS shift
below the median score were assigned to the favorable outcome group and the unfavorable
outcome group, respectively. Regarding mRS, the favorable outcome was defined as mRS
0 to 2 [15]. Our study aims to evaluate the effectiveness of ML algorithms in predicting
favorable and unfavorable outcome groups based on mRS and NIHSS shift.

2.5. Data Preprocessing

Imputation was utilized to prevent the introduction of bias by removing missing data
from patients. Values regarding MT related time-sensitive variables (time from admission
to groin puncture, time from groin puncture to recanalization, time from admission to
recanalization) for the patients who did not undergo MT, were assigned as the maximum
value of the total patient cohort. Similarly, values regarding IV-tPA treatment related time-
sensitive variables (time from admission to needle time) were assigned as the maximum
value of the total patient cohort. After this manual imputation for the non-applicable
variables, missing values for the remaining continuous variables were imputed with the
nearest neighbor (NN) method after removing variables with missing values for more than
25% of the patient cohort [16].

The robust scaler was used for continuous data to adjust outliers [17]. The Min-Max
normalization method was applied to normalize the data, and each continuous variable
was set between the 0 and 1 range [18]. Ordinal categorical variables (such as mTICI) were
coded with the ordinal encoder [19], while non-binary variables (e.g., race, sex) were one-
hot-encoded [20]. Minimum redundancy maximum relevance feature selection approach
was utilized for feature selection [21]. Since the NIHSS shift is an outcome obtained at the
time of discharge, other parameters obtained at the time of discharge were not used to
predict the groups stratified based on the NIHSS shift. Parameters obtained at discharge
were used to predict mRS at 90 days.

2.6. Modeling, Training, Validation, and Test Sets

We divided our sample at a ratio of 60:20:20. Therefore, 60% of the data were allocated
to the training set, 20% to the validation set, and the remaining 20% to the test set. The train-
ing set was used to build the models, the validation set to fine-tune the hyperparameters,
and the test set to evaluate the models’ performance.

Python 3.7.15 was used to run ML analyses. We used four supervised ML algorithms:
CatBoost, XGBoost, LightGBM, and Random Forest. With the Optuna optimization pack-
age, the area under the receiver operating characteristic curve was optimized (AUROC).
The Optuna streamlines the utilization of various cutting-edge optimization methods for
efficient and rapid hyperparameter optimization [22]. The Bayesian optimization algorithm
Tree-Structured Parzen Estimator Sampler (TPESampler) was used to create AUROC esti-
mations that served as a guide for the optimization phase. The final models were formed
using the training set and optimized hyperparameters.

2.7. Performance Evaluation

Visually, algorithms were assessed using the receiver operating characteristic (ROC)
curve and the precision-recall curve (PRC); and numerically, using the AUROC, the area
under the PRC (AUPRC), accuracy, Matthew’s correlation coefficient (MCC), recall, and
precision. In addition to performance charts and metrics, we utilized SHapley Additive
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exPlanations (SHAP) to assess the relative significance of predictor factors. SHAP is a
method for illustrating how ML algorithms yield predictions.

2.8. Statistical Analysis

All statistical analyses were performed in Python version 3.7.15. The descriptive
analyses were shown as means (± standard deviations) for normally distributed continuous
variables, medians (interquartile ranges) for non-normally distributed continuous variables,
and the number of patients (% percentages). The independent t-test for normally distributed
continuous variables with equal variances and the Welch’s t-test for normally distributed
continuous variables with unequal variances were used to assess group differences in
outcomes. Group differences in outcomes were investigated using the Mann-Whitney U
test for non-normally distributed continuous variables and Pearson’s chi-squared test for
categorical variables. Levene’s test was used to evaluate the equality of variances for a
variable, whereas the Shapiro-Wilk test was utilized to assess normality. The differences
were considered statistically significant at a p-value of less than 0.05.

3. Results

Initially, 279 patients admitted to JHH and JHBMC with AIS due to an M1 or proximal
M2 occlusion or both were included in the study. Forty-nine patients were excluded
due to unavailable outcome data. Additionally, 45 patients had only the NIHSS shift,
42 patients had only the mRS, and 143 patients had both the NIHSS shift and the mRS
available. Therefore, our study included a total of 230 patients, 185 of whom were included
in predicting favorable and unfavorable outcomes based on mRS and 188 based on NIHSS
shift. Using the minimum redundancy maximum relevance feature selection approach,
each model used 20 features as input.

3.1. mRS as the Outcome Measure

There were 99 patients in the group with a favorable outcome (mRS 0–2) and
86 patients in the group with an unfavorable outcome (mRS 3–6). Table 1 displays the
characteristics of the patient population, both by group and in total. The best predict-
ing algorithm in terms of AUROC was LightGBM, with an AUROC of 0.958 (confidence
interval [CI] = 0.886–1). Once again, LightGBM had the highest AUPRC value of 0.958.
Table 2 provides detailed metrics regarding the performance of the algorithms. Figure 1A
depicts the ROC curve, while Figure 2A depicts the PRC. After feature selection, the models
utilized the 20 most significant features for outcome prediction. Figure 3A displays SHAP
plot of the LightGBM algorithm with 20 selected features. SHAP plots of other algorithms
predicting mRS at 90 days can be found in Supplementary Figure S1.

Table 1. The characteristics of the patient population utilized in mRS prediction.

Variables
90-Day mRS (0–2) 90-Day mRS (3–6)

p Values
Total

Mean (± SD), Median
(IQR), or n (%)

Mean (± SD), Median
(IQR), or n (%)

Mean (± SD), Median
(IQR), or n (%)

Age 62.23 (± 15.81) 76.0 (16.5) <0.001 69.0 (22.0)

Sex
Female 57 (57.6%) 54 (62.8%)

0.568
111 (60.0%)

Male 42 (42.4%) 32 (37.2%) 74 (40.0%)

Race

White 60 (60.6%) 41 (47.7%)

0.206

101 (54.6%)

Black/African American 34 (34.3%) 40 (46.5%) 74 (40.0%)

Other 5 (5.0%) 5 (5.8%) 10 (5.4%)

Alcohol
Not current alcohol user 63 (63.6%) 70 (81.4%)

0.012
133 (71.9%)

Current alcohol user 36 (36.4%) 16 (18.6%) 52 (28.1%)

Smoking
Never smoker 57 (57.6%) 49 (57.0%)

1.0
106 (57.3%)

Current or former smoker 42 (42.4%) 37 (43.0%) 79 (42.7%)

Was Johns Hopkins the
initial hospital?

No, ttransferred to JHH 26 (26.3%) 19 (22.1%)
0.626

45 (24.3%)

Yes 73 (73.7%) 67 (77.9%) 140 (75.7%)
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Table 1. Cont.

Variables
90-Day mRS (0–2) 90-Day mRS (3–6)

p Values
Total

Mean (± SD), Median
(IQR), or n (%)

Mean (± SD), Median
(IQR), or n (%)

Mean (± SD), Median
(IQR), or n (%)

Hypertension
No 31 (31.3%) 13 (15.1%)

0.016
44 (23.8%)

Yes 68 (68.7%) 73 (84.9%) 141 (76.2%)

Diabetes
No 77 (77.8%) 52 (60.5%)

0.017
129 (69.7%)

Yes 22 (22.2%) 34 (39.5%) 56 (30.3%)

Atrial fibrillation
No 63 (63.6%) 54 (62.8%)

1.0
117 (63.2%)

Yes 36 (36.4%) 32 (37.2%) 68 (36.8%)

Heart disease
No 56 (56.6%) 42 (48.8%)

0.367
98 (53.0%)

Yes 43 (43.4%) 44 (51.2%) 87 (47.0%)

Dyslipidemia
No 52 (52.5%) 42 (48.8%)

0.724
94 (50.8%)

Yes 47 (47.5%) 44 (51.2%) 91 (49.2%)

Chronic kidney disease
No 84 (84.8%) 67 (77.9%)

0.305
151 (81.6%)

Yes 15 (15.2%) 19 (22.1%) 34 (18.4%)

Deep vein
thrombosis/Pulmonary

embolism

No 94 (95.0%) 66 (76.7%)
0.001

160 (86.5%)

Yes 5 (5.0%) 20 (23.3%) 25 (13.5%)

Hepatitis C virus
No 95 (96.0%) 84 (97.7%)

0.81
179 (96.8%)

Yes 4 (4.0%) 2 (2.3%) 6 (3.2%)

Human immunodeficiency
virus

No 98 (99.0%) 84 (97.7%)
0.902

182 (98.4%)

Yes 1 (1.0%) 2 (2.3%) 3 (1.6%)

Sleep apnea
No 88 (88.9%) 78 (90.7%)

0.872
166 (89.7%)

Yes 11 (11.1%) 8 (9.3%) 19 (10.3%)

Prior stroke/TIA
No 80 (80.8%) 69 (80.2%)

1.0
149 (80.5%)

Yes 19 (19.2%) 17 (19.8%) 36 (19.5%)

Peripheral vascular disease
No 96 (97.0%) 72 (83.7%)

0.004
168 (90.8%)

Yes 3 (3.0%) 14 (16.3%) 17 (9.2%)

Obesity
No 67 (67.7%) 60 (69.8%)

0.883
127 (68.6%)

Yes 32 (32.3%) 26 (30.2%) 58 (31.4%)

History of malignancy
No 83 (83.8%) 70 (81.4%)

0.808
153 (82.7%)

Yes 16 (16.2%) 16 (18.6%) 32 (17.3%)

Antiplatelet or
anticoagulation use

No 65 (65.7%) 49 (57.0%)
0.289

114 (61.6%)

Yes 34 (34.3%) 37 (43.0%) 71 (38.4%)

Admission BMI 27.82 (9.3) 27.49 (6.36) 0.138 27.54 (6.99)

Admission HR 82.0 (25.0) 84.0 (25.5) 0.184 82.0 (26.0)

Admission SBP 143.0 (33.0) 154.06 (± 28.8) 0.132 146.0 (34.0)

Admission DBP 86.0 (24.5) 83.0 (25.75) 0.327 84.0 (25.0)

Admission RR 17.0 (2.0) 18.0 (4.0) 0.133 18.0 (3.0)

Admission SpO2 98.0 (3.0) 98.5 (3.0) 0.307 98.0 (3.0)

Admission SI 0.59 (0.22) 0.59 (± 0.15) 0.932 0.58 (0.21)

Age related admission SI 34.07 (13.47) 43.08 (± 14.55) <0.001 37.89 (17.03)

Admission sodium 138.7 (± 3.21) 139.0 (4.75) 0.818 139.0 (4.0)

Admission potassium 4.1 (± 0.45) 4.15 (0.5) 0.368 4.1 (0.6)

Admission glucose 117.0 (36.0) 121.0 (47.75) 0.176 118.0 (38.0)

Admission calcium 8.98 (± 0.57) 9.03 (± 0.61) 0.58 9.0 (± 0.59)

Admission BUN 15.0 (8.0) 19.0 (9.75) 0.001 16.0 (8.0)

Admission creatinine 0.9 (0.3) 1.0 (0.51) 0.054 0.96 (0.4)

Admission hematocrit 39.46 (± 4.74) 40.25 (± 6.03) 0.319 39.83 (± 5.38)

Admission hemoglobin 12.84 (± 1.71) 13.0 (± 2.15) 0.578 12.91 (± 1.92)

Admission WBC count 7.48 (3.23) 8.32 (4.4) 0.048 7.96 (3.79)

Admission platelet count (×1000) 227.0 (105.0) 214.8 (107.75) 0.288 220.0 (107.0)

Admission platelet count (×1000) to WBC count ratio 30.28 (13.14) 25.79 (12.75) 0.002 28.88 (11.78)

Admission NIHSS 12.0 (11.0) 17.12 (± 7.07) <0.001 14.0 (10.0)

Door to CT (minutes) 23.0 (27.0) 25.5 (28.75) 0.334 25.0 (30.0)

Baseline non-contrast CT ASPECTS on 5-mm cuts 9.0 (2.0) 9.0 (4.0) 0.013 9.0 (2.8)

Hyperdense MCA present on
thin cuts?

No 42 (42.4%) 36 (41.9%)
1.0

78 (42.2%)

Yes 57 (57.6%) 50 (58.1%) 107 (57.8%)
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Table 1. Cont.

Variables
90-Day mRS (0–2) 90-Day mRS (3–6)

p Values
Total

Mean (± SD), Median
(IQR), or n (%)

Mean (± SD), Median
(IQR), or n (%)

Mean (± SD), Median
(IQR), or n (%)

Stroke etiology
(TOAST criteria)

Cardioembolism 49 (49.5%) 45 (52.3%)

0.873

94 (50.8%)

Large artery atherosclerosis 17 (17.2%) 17 (19.8%) 34 (18.4%)

Stroke of undetermined etiology 27 (27.3%) 20 (23.3%) 47 (25.4%)

Stroke of other
determined etiology 6 (6.1%) 4 (4.6%) 10 (5.4%)

Laterality

Left 44 (44.4%) 47 (54.6%)

0.27

91 (49.2%)

Right 54 (54.6%) 39 (45.4%) 93 (50.3%)

Bilateral 1 (1.0%) 0 (0.0%) 1 (0.5%)

Occluded segment

M1 51 (51.5%) 43 (50.0%)

0.879

94 (50.8%)

M2 20 (20.2%) 20 (23.3%) 40 (21.6%)

M1 and M2 28 (28.3%) 23 (26.7%) 51 (27.6%)

Hemorrhagic transformation?
No 72 (72.7%) 50 (58.1%)

0.053
122 (66.0%)

Yes 27 (27.3%) 36 (41.9%) 63 (34.0%)

Type of
hemorrhagic transformation

No HT 72 (72.7%) 50 (58.1%)

0.058

122 (66.0%)

HI1 3 (3.0%) 2 (2.3%) 5 (2.7%)

HI2 15 (15.2%) 13 (15.1%) 28 (15.1%)

PH1 8 (8.1%) 15 (17.4%) 23 (12.4%)

PH2 1 (1.0%) 6 (7.0%) 7 (3.8%)

Calculated rCBF 20% volume (mL) 0.0 (6.9) 0.0 (13.7) 0.186 0.0 (8.0)

Calculated rCBF 30% volume (mL) 8.0 (23.0) 9.8 (33.45) 0.226 8.0 (26.6)

Calculated rCBF 34% volume (mL) 12.0 (31.2) 15.0 (36.45) 0.166 14.8 (33.4)

Calculated rCBF 38% volume (mL) 20.0 (33.0) 22.0 (43.15) 0.127 21.4 (35.0)

Calculated Tmax 4 s volume (mL) 190.0 (108.3) 216.0 (139.25) 0.03 205.0 (136.8)

Calculated Tmax 6 s volume (mL) 101.0 (81.0) 116.1 (83.75) 0.013 106.2 (80.0)

Calculated Tmax 8 s volume (mL) 54.0 (64.0) 74.0 (67.5) 0.018 67.0 (63.2)

Calculated Tmax 10 s volume (mL) 37.0 (55.0) 45.5 (62.55) 0.024 41.0 (54.0)

CBV 34% (mL) 0.0 (13.4) 5.0 (19.9) 0.031 3.0 (16.4)

CBV 38% (mL) 4.0 (16.0) 7.0 (23.25) 0.024 5.0 (19.2)

CBV 42% (mL) 4.2 (17.8) 8.5 (26.0) 0.015 7.0 (21.6)

Calculated mismatch (mL) 82.0 (67.6) 90.0 (70.75) 0.045 85.0 (68.6)

Calculated mismatch ratio 19.4 (35.06) 17.05 (36.55) 0.483 18.18 (35.5)

Hypoperfusion index 0.3 (0.3) 0.4 (0.3) 0.178 0.38 (0.3)

Single phase CTA collateral score based on Tan 2.0 (0.2) 1.6 (1.0) 0.003 2.0 (1.0)

DSA collaterals (ASITN/SIR criteria) 2.0 (1.0) 2.0 (2.0) 0.156 2.0 (2.0)

Clot burden score 6.8 (2.3) 6.0 (3.95) 0.026 6.0 (3.2)

IV TPA administered?
No 59 (59.6%) 67 (77.9%)

0.012
126 (68.1%)

Yes 40 (40.4%) 19 (22.1%) 59 (31.9%)

Door to needle time (minutes) 1113.0 (1052.0) 1113.0 (0.0) 0.011 1113.0 (1036.0)

MT attempted?
No 23 (23.2%) 18 (20.9%)

0.843
41 (22.2%)

Yes 76 (76.8%) 68 (79.1%) 144 (77.8%)

Type of anesthesia

General 68 (68.7%) 64 (74.4%)

0.561

132 (71.4%)

Monitored anesthesia care 8 (8.1%) 4 (4.6%) 12 (6.5%)

MT not attempted 23 (23.2%) 18 (20.9%) 41 (22.2%)

Door to groin puncture (minutes) 160.0 (463.2) 181.5 (574.75) 0.367 170.0 (595.4)

Groin puncture to recanalization (minutes) 33.0 (79.5) 46.4 (81.5) 0.183 38.0 (82.4)

Door to recanalization (minutes) 193.0 (469.0) 224.5 (552.5) 0.132 209.0 (602.0)

Number of Passes

1 62 (62.6%) 39 (45.4%)

0.027

101 (54.6%)

2 10 (10.1%) 13 (15.1%) 23 (12.4%)

3 1 (1.0%) 7 (8.1%) 8 (4.3%)

4 1 (1.0%) 6 (7.0%) 7 (3.8%)

5 1 (1.0%) 2 (2.3%) 3 (1.6%)

6 0 (0.0%) 1 (1.2%) 1 (0.5%)

7 1 (1.0%) 0 (0.0%) 1 (0.5%)

MT not attempted 23 (23.2%) 18 (20.9%) 41 (22.2%)
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Table 1. Cont.

Variables
90-Day mRS (0–2) 90-Day mRS (3–6)

p Values
Total

Mean (± SD), Median
(IQR), or n (%)

Mean (± SD), Median
(IQR), or n (%)

Mean (± SD), Median
(IQR), or n (%)

mTICI

0 2 (2.0%) 6 (7.0%)

0.21

8 (4.3%)

1 1 (1.0%) 3 (3.5%) 4 (2.2%)

2a 1 (1.0%) 4 (4.6%) 5 (2.7%)

2b 18 (18.2%) 15 (17.4%) 33 (17.8%)

2c 8 (8.1%) 10 (11.6%) 18 (9.7%)

3 46 (46.5%) 30 (34.9%) 76 (41.1%)

MT not attempted 23 (23.2%) 18 (20.9%) 41 (22.2%)

Discharge sodium 139.0 (3.0) 140.0 (5.0) 0.077 140.0 (4.0)

Discharge potassium 4.13 (± 0.39) 4.3 (0.6) 0.004 4.2 (0.54)

Discharge glucose 104.0 (24.0) 113.5 (45.5) 0.105 107.0 (36.0)

Discharge calcium 8.8 (0.7) 8.8 (1.0) 0.062 8.8 (0.7)

Discharge BUN 14.0 (7.0) 19.0 (11.75) <0.001 16.0 (10.0)

Discharge creatinine 0.85 (0.36) 0.9 (0.5) 0.176 0.9 (0.4)

Discharge hematocrit 36.33 (± 5.4) 33.22 (± 6.63) 0.001 34.89 (± 6.19)

Discharge hemoglobin 11.77 (± 1.91) 10.62 (± 2.33) <0.001 11.24 (± 2.18)

Discharge WBC count 7.73 (2.54) 9.98 (4.19) <0.001 8.42 (3.35)

Discharge platelet count (×1000) 223.0 (104.5) 258.6 (170.0) 0.097 239.0 (134.0)

Discharge platelet count (×1000) to WBC count ratio 30.38 (15.82) 26.24 (12.96) 0.043 28.87 (14.12)

Discharge BMI 26.97 (9.79) 27.41 (7.75) 0.583 27.14 (9.15)

Discharge SBP 126.0 (23.0) 128.3 (25.5) 0.916 127.0 (23.0)

Discharge DBP 74.3 (± 13.03) 67.9 (18.75) 0.013 71.0 (18.0)

Discharge HR 78.59 (± 15.23) 76.5 (22.85) 0.875 77.0 (23.0)

Discharge RR 18.0 (2.0) 18.0 (4.0) 0.186 18.0 (2.6)

Discharge SpO2 97.0 (3.0) 97.0 (4.0) 0.434 97.0 (3.0)

Discharge NIHSS 2.0 (3.0) 9.0 (8.0) <0.001 4.0 (7.2)

NIHSS shift 9.0 (9.0) 4.96 (± 5.97) <0.001 7.07 (± 6.39)

90-day mRS a 1.0 (2.0) 5.0 (2.0) <0.001 2.0 (4.0)

a Not included as an input in the model. Abbreviations: mRS: Modified Rankin Score; SD: Standard deviation;
IQR: Interquartile range; JHU: Johns Hopkins Hospitals; TIA: Transient ischemic attack; BMI: Body mass index;
HR: Heart rate; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; RR: Respiratory rate; SI: Shock
index; BUN: Blood urea nitrogen; WBC: White blood cell; NIHSS: National Institutes of Health Stroke Scale;
CT: Computed tomography; ASPECTS: Alberta Stroke Program Early CT Score; MCA: Middle cerebral artery;
HI: Hemorrhagic infarction; PH: Parenchymal hematoma; rCBF: Relative cerebral blood flow; Tmax: Time to
the maximum of the residue function; CBV: Cerebral blood volume; CTA: Computed tomography angiography;
DSA: Digital subtraction angiography; ASITN/SIR: The American Society of Interventional and Therapeu-
tic Neuroradiology/Society of Interventional Radiology; IV: Intravenous; tPA: Tissue plasminogen activator;
MT: Mechanical thrombectomy; mTICI: Modified treatment in cerebral ischemia.

Table 2. Performance metrics of the algorithms.

Algorithm Precision Recall F1 Accuracy MCC AUROC (95% CI) AUPRC

mRS

XGBoost 0.75 0.923 0.828 0.865 0.729 0.923 (0.825–1) 0.917

LightGBM 0.812 0.929 0.867 0.892 0.781 0.958 (0.886–1) 0.958

CatBoost 0.562 0.9 0.692 0.784 0.574 0.872 (0.748–0.996) 0.871

Random Forest 0.625 0.909 0.741 0.811 0.626 0.929 (0.835–1) 0.917

Mean 0.687 0.915 0.782 0.838 0.678 0.921 0.916

NIHSS Shift

XGBoost 0.737 0.7 0.718 0.711 0.422 0.767 (0.615–0.92) 0.813

LightGBM 0.895 0.63 0.739 0.684 0.406 0.787 (0.64–0.934) 0.761

CatBoost 0.737 0.737 0.737 0.737 0.474 0.820 (0.683–0.956) 0.833

Random Forest 0.684 0.765 0.722 0.737 0.476 0.834 (0.702–0.965) 0.870

Mean 0.763 0.708 0.729 0.717 0.445 0.802 0.819

Abbreviations: MCC: Matthew’s correlation coefficient; AUROC: Area under the receiver operating characteristic
curve; CI: Confidence interval; AUPRC: The area under the precision-recall curve; mRS: Modified Rankin Score;
NIHSS: National Institutes of Health Stroke Scale.
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Figure 1. (A) Algorithms’ receiver operating characteristic curves for the outcome mRS at 90 days.
(B) Algorithms’ receiver operating characteristic curves for the outcome NIHSS shift.

Figure 2. (A) Algorithms’ precision-recall curves for the outcome mRS at 90 days. (B) Algorithms’
precision-recall curves for the outcome NIHSS shift.
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3.2. NIHSS Shift as the Outcome Measure

There were 89 patients in the group with a favorable outcome and 99 patients in
the group with an unfavorable outcome. The characteristics of the patient population,
both by group and overall, are presented in Table 3. The best predicting algorithm in
terms of AUROC was Random Forest, with an AUROC of 0.834 (CI = 0.702–0.965). Once
again, Random Forest algorithm had the highest AUPRC value of 0.870. Table 2 provides
comprehensive performance metrics for the models. Figure 1B displays the ROC curve,
while 2B shows the PRC curve. After feature selection, models used the 20 most significant
features to predict the outcome. Figure 3B depicts SHAP plot of the Random Forest
algorithm with 20 selected features. SHAP plots of other algorithms predicting the NIHSS
shift can be found in Supplementary Figure S2.

Table 3. The characteristics of the patient population utilized in NIHSS shift prediction.

Variables
High NIHSS Shift Low NIHSS Shift

p Values
Total

Mean (± SD), Median
(IQR), or n (%)

Mean (± SD), Median
(IQR), or n (%)

Mean (± SD), Median
(IQR), or n (%)

Age 66.0 (17.0) 66.27 (± 15.16) 0.897 67.0 (19.25)

Sex
Female 53 (59.6%) 55 (55.6%)

0.685
108 (57.4%)

Male 36 (40.4%) 44 (44.4%) 80 (42.6%)

Race

White 43 (48.3%) 48 (48.5%)

0.985

91 (48.4%)

Black/African American 41 (46.1%) 46 (46.5%) 87 (46.3%)

Other 5 (5.6%) 5 (5.0%) 10 (5.3%)

Alcohol
Not current alcohol user 64 (71.9%) 67 (67.7%)

0.637
131 (69.7%)

Current alcohol user 25 (28.1%) 32 (32.3%) 57 (30.3%)

Smoking
Never smoker 57 (64.0%) 45 (45.4%)

0.016
102 (54.3%)

Current or former smoker 32 (36.0%) 54 (54.6%) 86 (45.7%)

Was Johns Hopkins the
initial hospital?

No, transferred to JHH 16 (18.0%) 32 (32.3%)
0.037

48 (25.5%)

Yes 73 (82.0%) 67 (67.7%) 140 (74.5%)

Hypertension
No 17 (19.1%) 25 (25.2%)

0.403
42 (22.3%)

Yes 72 (80.9%) 74 (74.8%) 146 (77.7%)

Diabetes
No 69 (77.5%) 68 (68.7%)

0.231
137 (72.9%)

Yes 20 (22.5%) 31 (31.3%) 51 (27.1%)

Atrial fibrillation
No 53 (59.6%) 66 (66.7%)

0.39
119 (63.3%)

Yes 36 (40.4%) 33 (33.3%) 69 (36.7%)

Heart disease
No 40 (44.9%) 58 (58.6%)

0.085
98 (52.1%)

Yes 49 (55.1%) 41 (41.4%) 90 (47.9%)

Dyslipidemia
No 51 (57.3%) 48 (48.5%)

0.288
99 (52.7%)

Yes 38 (42.7%) 51 (51.5%) 89 (47.3%)

Chronic kidney disease
No 70 (78.6%) 81 (81.8%)

0.718
151 (80.3%)

Yes 19 (21.4%) 18 (18.2%) 37 (19.7%)

Deep vein thrombosis/Pulmonary
embolism

No 78 (87.6%) 88 (88.9%)
0.969

166 (88.3%)

Yes 11 (12.4%) 11 (11.1%) 22 (11.7%)

Hepatitis C virus
No 84 (94.4%) 95 (96.0%)

0.87
179 (95.2%)

Yes 5 (5.6%) 4 (4.0%) 9 (4.8%)

Human immunodeficiency virus
No 88 (98.9%) 96 (97.0%)

0.69
184 (97.9%)

Yes 1 (1.1%) 3 (3.0%) 4 (2.1%)

Sleep apnea
No 82 (92.1%) 87 (87.9%)

0.469
169 (89.9%)

Yes 7 (7.9%) 12 (12.1%) 19 (10.1%)

Prior stroke/TIA
No 66 (74.2%) 81 (81.8%)

0.274
147 (78.2%)

Yes 23 (25.8%) 18 (18.2%) 41 (21.8%)

Peripheral vascular disease
No 85 (95.5%) 91 (91.9%)

0.48
176 (93.6%)

Yes 4 (4.5%) 8 (8.1%) 12 (6.4%)

Obesity
No 61 (68.5%) 63 (63.6%)

0.579
124 (66.0%)

Yes 28 (31.5%) 36 (36.4%) 64 (34.0%)

History of malignancy
No 75 (84.3%) 79 (79.8%)

0.545
154 (81.9%)

Yes 14 (15.7%) 20 (20.2%) 34 (18.1%)

Antiplatelet or anticoagulation use
No 48 (53.9%) 65 (65.7%)

0.136
113 (60.1%)

Yes 41 (46.1%) 34 (34.3%) 75 (39.9%)
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Table 3. Cont.

Variables
High NIHSS Shift Low NIHSS Shift

p Values
Total

Mean (± SD), Median
(IQR), or n (%)

Mean (± SD), Median
(IQR), or n (%)

Mean (± SD), Median
(IQR), or n (%)

Admission BMI 27.37 (7.11) 29.01 (9.08) 0.293 28.47 (7.53)

Admission HR 82.0 (25.0) 82.0 (25.5) 0.519 82.0 (26.0)

Admission SBP 150.47 (± 25.54) 147.0 (43.5) 0.57 147.0 (32.25)

Admission DBP 81.0 (22.0) 88.75 (± 19.67) 0.199 85.0 (27.0)

Admission RR 18.0 (4.0) 18.0 (4.0) 0.112 18.0 (4.0)

Admission SpO2 98.0 (3.0) 98.0 (2.0) 0.441 98.0 (3.0)

Admission SI 0.56 (0.21) 0.56 (0.18) 0.989 0.56 (0.18)

Age related admission SI 36.4 (13.82) 35.38 (15.38) 0.913 36.12 (14.92)

Admission sodium 138.87 (± 3.4) 139.02 (± 3.39) 0.77 139.0 (4.0)

Admission potassium 4.12 (± 0.4) 4.1 (0.55) 0.935 4.1 (0.6)

Admission glucose 116.0 (40.0) 114.0 (36.0) 0.558 116.0 (38.0)

Admission calcium 8.92 (± 0.58) 9.1 (0.8) 0.058 9.0 (0.73)

Admission BUN 16.0 (8.0) 16.0 (7.0) 0.726 16.0 (7.0)

Admission creatinine 1.0 (0.43) 0.9 (0.4) 0.294 0.98 (0.4)

Admission hematocrit 39.63 (± 5.07) 40.12 (± 5.49) 0.528 39.89 (± 5.29)

Admission hemoglobin 12.83 (± 1.75) 13.01 (± 1.97) 0.519 12.93 (± 1.86)

Admission WBC count 8.02 (3.37) 7.9 (4.02) 0.721 8.01 (3.55)

Admission platelet count (×1000) 219.0 (100.0) 232.0 (104.2) 0.039 225.5 (97.0)

Admission platelet count (×1000) to WBC count ratio 28.45 (13.12) 28.97 (12.6) 0.073 28.78 (12.42)

Admission NIHSS 17.0 (7.0) 9.0 (12.0) <0.001 14.0 (11.0)

Door to CT (minutes) 25.0 (26.0) 26.0 (28.0) 0.214 25.0 (28.25)

Baseline non-contrast CT ASPECTS on 5-mm cuts 9.0 (2.0) 10.0 (2.0) 0.603 9.0 (2.0)

Hyperdense MCA present
on thin cuts?

No 31 (34.8%) 52 (52.5%)
0.022

83 (44.2%)

Yes 58 (65.2%) 47 (47.5%) 105 (55.8%)

Stroke etiology (TOAST criteria)

Cardioembolism 50 (56.2%) 46 (46.5%)

0.2

96 (51.1%)

Large artery atherosclerosis 11 (12.4%) 24 (24.2%) 35 (18.6%)

Stroke of
undetermined etiology 21 (23.6%) 23 (23.2%) 44 (23.4%)

Stroke of other
determined etiology 7 (7.9%) 6 (6.1%) 13 (6.9%)

Laterality

Left 44 (49.4%) 50 (50.5%)

0.622

94 (50.0%)

Right 45 (50.6%) 48 (48.5%) 93 (49.5%)

Bilateral 0 (0.0%) 1 (1.0%) 1 (0.5%)

Occluded segment

M1 44 (49.4%) 52 (52.5%)

0.833

96 (51.1%)

M2 20 (22.5%) 23 (23.2%) 43 (22.9%)

M1 and M2 25 (28.1%) 24 (24.2%) 49 (26.1%)

Hemorrhagic transformation?
No 54 (60.7%) 69 (69.7%)

0.252
123 (65.4%)

Yes 35 (39.3%) 30 (30.3%) 65 (34.6%)

Type of hemorrhagic transformation

None 54 (60.7%) 69 (69.7%)

0.213

123 (65.4%)

HI1 3 (3.4%) 4 (4.0%) 7 (3.7%)

HI2 14 (15.7%) 18 (18.2%) 32 (17.0%)

PH1 14 (15.7%) 6 (6.1%) 20 (10.6%)

PH2 4 (4.5%) 2 (2.0%) 6 (3.2%)

Calculated rCBF 20% volume (mL) 0.0 (7.0) 0.0 (8.3) 0.479 0.0 (8.0)

Calculated rCBF 30% volume (mL) 9.2 (25.0) 8.0 (25.3) 0.911 8.6 (25.0)

Calculated rCBF 34% volume (mL) 18.0 (35.4) 13.8 (31.4) 0.684 14.7 (33.25)

Calculated rCBF 38% volume (mL) 23.4 (40.0) 20.6 (32.5) 0.53 21.5 (38.1)

Calculated Tmax 4 s volume (mL) 206.8 (105.4) 193.0 (130.1) 0.212 197.4 (129.2)

Calculated Tmax 6 s volume (mL) 116.49 (± 58.85) 90.0 (75.5) 0.028 102.5 (82.25)

Calculated Tmax 8 s volume (mL) 75.33 (± 45.75) 51.0 (62.4) 0.013 62.1 (66.0)

Calculated Tmax 10 s volume (mL) 45.0 (57.8) 33.8 (49.0) 0.047 39.2 (57.4)

CBV 34% (mL) 3.0 (15.0) 3.0 (16.5) 0.787 3.0 (15.25)

CBV 38% (mL) 5.0 (17.0) 5.0 (18.4) 0.897 5.0 (18.0)

CBV 42% (mL) 5.4 (19.4) 6.0 (21.0) 0.939 6.0 (21.0)

Calculated mismatch (mL) 94.0 (65.0) 78.0 (79.5) 0.016 83.8 (66.25)

Calculated mismatch ratio 16.8 (35.9) 18.14 (35.21) 0.992 17.84 (35.72)
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Table 3. Cont.

Variables
High NIHSS Shift Low NIHSS Shift

p Values
Total

Mean (± SD), Median
(IQR), or n (%)

Mean (± SD), Median
(IQR), or n (%)

Mean (± SD), Median
(IQR), or n (%)

Hypoperfusion index 0.4 (0.4) 0.3 (0.2) 0.035 0.33 (0.3)

Single phase CTA collateral score 2.0 (1.0) 2.0 (1.0) 0.749 2.0 (1.0)

DSA collaterals (ASITN/SIR criteria) 2.0 (1.0) 3.0 (1.5) 0.039 2.0 (1.05)

Clot burden score 6.0 (3.0) 6.2 (2.0) 0.383 6.0 (2.85)

IV TPA administered?
No 58 (65.2%) 73 (73.7%)

0.264
131 (69.7%)

Yes 31 (34.8%) 26 (26.3%) 57 (30.3%)

Door to needle time (minutes) 1113.0 (1050.0) 1113.0 (946.0) 0.144 1113.0 (1031.0)

MT attempted?
No 6 (6.7%) 35 (35.4%)

<0.001
41 (21.8%)

Yes 83 (93.3%) 64 (64.6%) 147 (78.2%)

Type of anesthesia

General 76 (85.4%) 59 (59.6%)

<0.001

135 (71.8%)

Monitored anesthesia care 7 (7.9%) 5 (5.0%) 12 (6.4%)

MT not attempted 6 (6.7%) 35 (35.4%) 41 (21.8%)

Door to groin puncture (minutes) 139.0 (88.0) 236.0 (1399.0) <0.001 174.0 (346.25)

Groin puncture to recanalization (minutes) 32.0 (31.0) 60.0 (155.0) <0.001 39.5 (73.35)

Door to recanalization (minutes) 180.0 (120.0) 292.0 (1429.5) <0.001 209.0 (367.5)

Number of Passes

1 62 (69.7%) 37 (37.4%)

<0.001

99 (52.7%)

2 14 (15.7%) 11 (11.1%) 25 (13.3%)

3 5 (5.6%) 7 (7.1%) 12 (6.4%)

4 1 (1.1%) 6 (6.1%) 7 (3.7%)

5 1 (1.1%) 3 (3.0%) 4 (2.1%)

MT not attempted 6 (6.7%) 35 (35.4%) 41 (21.8%)

mTICI

0 0 (0.0%) 6 (6.1%)

<0.001

6 (3.2%)

1 2 (2.2%) 2 (2.0%) 4 (2.1%)

2a 2 (2.2%) 5 (5.0%) 7 (3.7%)

2b 21 (23.6%) 14 (14.1%) 35 (18.6%)

2c 9 (10.1%) 7 (7.1%) 16 (8.5%)

3 49 (55.1%) 30 (30.3%) 79 (42.0%)

MT not attempted 6 (6.7%) 35 (35.4%) 41 (21.8%)

Discharge sodiuma 139.3 (± 2.8) 139.0 (4.0) 0.841 139.0 (4.0)

Discharge potassium a 4.14 (± 0.39) 4.26 (± 0.42) 0.048 4.2 (± 0.41)

Discharge glucose a 103.0 (25.0) 107.0 (29.5) 0.155 104.1 (25.25)

Discharge calcium a 8.77 (± 0.54) 8.9 (0.7) 0.092 8.86 (0.7)

Discharge BUN a 15.6 (7.0) 16.0 (9.5) 0.262 15.8 (8.0)

Discharge creatinine a 0.9 (0.45) 0.84 (0.4) 0.318 0.9 (0.4)

Discharge hematocrit a 35.16 (± 5.63) 35.62 (± 6.0) 0.592 35.4 (± 5.82)

Discharge hemoglobin a 11.31 (± 1.97) 11.47 (± 2.1) 0.59 11.4 (± 2.04)

Discharge WBC count a 7.91 (2.85) 8.02 (3.48) 0.978 8.01 (3.16)

Discharge platelet count (×1000) a 228.0 (115.0) 254.0 (137.5) 0.055 239.0 (126.75)

Discharge platelet count (×1000) to WBC count ratio a 29.14 (13.4) 31.92 (17.84) 0.08 31.06 (16.11)

Discharge BMI a 26.6 (7.99) 29.15 (± 7.61) 0.112 27.1 (9.33)

Discharge HR a 76.0 (27.0) 76.0 (20.5) 0.872 76.0 (25.0)

Discharge SBP a 127.22 (± 19.32) 131.0 (34.5) 0.044 128.5 (27.25)

Discharge DBP a 68.0 (17.0) 73.01 (± 13.4) 0.092 70.0 (17.5)

Discharge RR a 18.0 (2.0) 18.0 (2.0) 0.127 18.0 (2.0)

Discharge SpO2
a 97.0 (3.0) 98.0 (3.0) 0.647 97.0 (3.0)

Discharge NIHSS a 2.0 (6.0) 7.0 (13.0) <0.001 4.0 (9.25)

NIHSS shift a 11.0 (5.0) 3.0 (5.0) <0.001 7.04 (± 7.12)

90-day mRS a 2.0 (2.0) 2.2 (3.0) 0.046 2.0 (2.0)

a Not included as an input in the model. Abbreviations: NIHSS: National Institutes of Health Stroke Scale;
SD: Standard deviation; IQR: Interquartile range; JHU: Johns Hopkins Hospitals; TIA: Transient ischemic attack;
BMI: Body mass index; HR: Heart rate; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; RR: Res-
piratory rate; SI: Shock index; BUN: Blood urea nitrogen; WBC: White blood cell; CT: Computed tomography;
ASPECTS: Alberta Stroke Program Early CT Score; MCA: Middle cerebral artery; HI: Hemorrhagic infarction; PH:
Parenchymal hematoma; rCBF: Relative cerebral blood flow; Tmax: Time to the maximum of the residue function;
CBV: Cerebral blood volume; CTA: Computed tomography angiography; DSA: Digital subtraction angiography;
ASITN/SIR: The American Society of Interventional and Therapeutic Neuroradiology/Society of Interventional
Radiology; IV: Intravenous; tPA: Tissue plasminogen activator; MT: Mechanical thrombectomy; mTICI: Modified
treatment in cerebral ischemia; mRS: Modified Rankin Score.
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4. Discussion

To the best of our knowledge, this is the first study to predict functional outcomes
in AIS patients with isolated proximal MCA occlusions. This study presents a series
of ML models that accurately predict the groups stratified based on NIHSS shift (short-
term functional outcome) and mRS at 90 days (mid-term functional outcome) in AIS
patients with isolated proximal MCA occlusions. Managing massive and varied data,
detecting subtle and hidden patterns, and forecasting complicated events are the primary
benefits of ML models. ML models have the potential to enhance clinical management
by providing patient-centered, individualized management based on the outcomes of the
model. Physicians may be able to personalize better patient care plans for those at risk
of unfavorable outcomes, and they can provide patients with more accurate information
regarding the prognosis of their functional status. On the other hand, physicians may
direct ML models by identifying crucial features to include and the appropriate sources
to represent those features. This study adds to the body of knowledge by describing the
advantages and efficacy of incorporating ML into patient care to predict outcomes in AIS
patients [7]. The most successful algorithm was LightGBM in predicting the favorable
and unfavorable outcome groups based on mRS at 90 days with an AUROC of 0.958
(CI = 0.886–1) and an AUPRC of 0.958. The algorithm with the highest AUROC and
AUPRC was Random Forest, with 0.834 (CI = 0.702–0.965) and 0.870, respectively, when
predicting the favorable and unfavorable groups based on the NIHSS shift.

In the literature, ML and deep learning models have been used to predict favorable
(mRS at 90 days 0–2) and unfavorable (mRS at 90 days 3–6) functional outcome groups in
AIS patients. Despite the difficulties of directly comparing the performance of this algorithm
with the performance of algorithms in other recent studies, based on the metrics reported,
our model appeared to achieve similar performance to the best-performing models in other
published studies [23–25]. Heo et al. used a deep learning model, which yielded an AUROC
of 0.888; Monteiro et al. used an ML model, which produced an AUROC of 0.936; and
Brugnara et al. used an ML model, which yielded an AUROC of 0.856 [23–25]. Our algorithm
LightGBM predicted the mRS group with an AUROC of 0.958, outperforming all other models.
Notably, while our model included only 20 features, the model of Monteiro et al., which was
the most comparable to ours in terms of the AUROC, contained 152 features. Their model
with 49 features yielded an AUROC of 0.808. Furthermore, Brugnara et al. reported an
accuracy of 0.804 for their ML model, whereas our model achieved an accuracy of 0.892 [25].
Moreover, Brugnara et al. had 246 patients, Monteiro et al. had 399 patients, and Heo et al. had
2604 patients in their best-performing models, whereas we had 185 patients. Although the
number of patients in our study was relatively small, we were able to achieve similar results
compared to these papers, demonstrating the efficacy of our models. While it is not accurate
to directly compare models based on AUROC value, we utilized this metric to compare our
model to theirs since they did not report AUPRC and accuracy.

In our study, we also used SHAP to create visual explanations for the predictions of
the four different algorithms used in this study. LightGBM was the most accurate model
for predicting mRS at 90 days, with discharge NIHSS score, discharge BUN, age, age-
related admission SI, and discharge WBC count being the top five most important features
according to SHAP results. Brugnara et al. reported their top five features with the greatest
importance for predicting mRS, and they were NIHSS score after 24 h, premorbid mRS
score, final infarction volume on post-interventional CT after 18 to 36 h, interval from groin
puncture to recanalization, and baseline acute ischemic volume on native CT [25]. With the
exception of the time between groin puncture and recanalization, we did not utilize four of
the top five factors in their analysis. Therefore, comparing our top parameters to theirs is
challenging. In their best-performing models, Heo et al. used 38 features, while Monteiro
et al. used 152 features, with no SHAP figures or other metrics indicating the importance
of distinctive features in predicting the outcome [23,24]. Furthermore, our SHAP results
reveal that patient discharge metrics are crucial for predicting the mRS at 90 days. While
reliable scores that can predict the patient’s functional outcomes use available metrics at



J. Clin. Med. 2023, 12, 839 14 of 16

admission, our results indicate that utilization of discharge parameters might increase the
accuracy of the prediction [26]. This can be an open area of research.

No prior study has, to our knowledge, utilized ML approaches to analyze the NIHSS
shift. Therefore, we cannot compare the performance of our predictive models for the
NIHSS shift to what was accomplished before. The SHAP analysis of Random Forest,
the best predicting algorithm in terms of AUROC and AUPRC, for the NIHSS shift re-
vealed that the most influential variables were admission NIHSS score, number of passes
in thrombectomy, admission glucose, admission WBC count, and groin puncture to re-
canalization in minutes. As it is well known that stroke severity is a crucial predictor of
outcomes in AIS patients, it is not surprising that admission NIHSS was the most important
variable [27]. The SHAP analysis revealed that thrombectomy-related parameters were
crucial, demonstrating the significance of treatment, which makes intuitive sense given that
the NIHSS shift occurs during hospitalization. Furthermore, glucose levels at admission
were identified as a crucial parameter, which makes sense given that elevated glucose
levels are independent predictors of poor outcome in stroke patients [28]. Furthermore,
admission WBC count was identified as a significant predictor of the outcome, consistent
with earlier research [29].

Despite the rigor of our methods, our study is not without limitations. Our study
has limitations inherent to retrospective studies. To validate our ML models, prospective
studies with a larger sample size would be needed. We could not utilize periprocedural
vital signs, such as blood pressure since they were not collected. Although the algorithms
used in our study are widely regarded as state-of-the-art, it is worth noting that algorithms
utilizing gradient boosting are susceptible to outliers and prone to overfitting. The robust
scaler was used to handle outliers, and the minimum redundancy maximum relevance
feature selection approach was used to prevent overfitting.

5. Conclusions

Using clinical, laboratory, and imaging parameters in conjunction with ML, the func-
tional outcome of AIS patients with proximal MCA occlusions could be accurately predicted.
These algorithms have the potential to be implemented in the decision-making process in
clinical practice. This can potentially improve prognostic stratification and management.
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//www.mdpi.com/article/10.3390/jcm12030839/s1. Figure S1: Sorted feature importance and their
mean SHAP values for the model predicting the outcome mRS at 90 days with (A) the XGBoost
algorithm, (B) the CatBoost algorithm, and (C) the Random Forest algorithm; Figure S2: Sorted
feature importance and their mean SHAP values for the model predicting the outcome NIHSS shift
with (A) the XGBoost algorithm, (B) the LightGBM algorithm, and (C) the CatBoost algorithm.
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